
����������
�������

Citation: Harrou, F.; Dairi, A.;

Zeroual, A.; Sun, Y. Forecasting of

Bicycle and Pedestrian Traffic Using

Flexible and Efficient Hybrid Deep

Learning Approach. Appl. Sci. 2022,

12, 4482. https://doi.org/

10.3390/app12094482

Academic Editor: Sehyun Tak

Received: 6 February 2022

Accepted: 26 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Forecasting of Bicycle and Pedestrian Traffic Using Flexible and
Efficient Hybrid Deep Learning Approach

Fouzi Harrou 1,*,† , Abdelkader Dairi 2,† , Abdelhafid Zeroual 3,4,† and Ying Sun 1,†

1 Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; ying.sun@kaust.edu.sa

2 Laboratoire des Technologies de l’Environnement LTE, BP 1523 Al M’naouar ENP Oran, University of Science
and Technology of Oran-Mohamed Boudiaf (USTO-MB), El Mnaouar, BP 1505, Bir El Djir 31000, Algeria;
abdelkader.dairi@univ-usto.dz

3 Faculty of Technology, University of 20 August 1955, Skikda 21000, Algeria; a.zeroual@univ-skikda.dz
4 LAIG Laboratory, University of 08 May 1945, Guelma 24000, Algeria
* Correspondence: fouzi.harrou@kaust.edu.sa
† These authors contributed equally to this work.

Abstract: Recently, increasing interest in managing pedestrian and bicycle flows has been demon-
strated by cities and transportation professionals aiming to reach community goals related to health,
safety, and the environment. Precise forecasting of pedestrian and bicycle traffic flow is crucial for
identifying the potential use of bicycle and pedestrian infrastructure and improving bicyclists’ safety
and comfort. Advances in sensory technology enable collecting massive traffic flow data, including
road traffic, bicycle, and pedestrian traffic flow. This paper introduces a novel deep hybrid learning
model with a fully guided-attention mechanism to improve bicycles and pedestrians’ traffic flow
forecasting. Notably, the proposed approach extends the modeling capability of the Variational
Autoencoder (VAE) by merging a long short-term memory (LSTM) model with the VAE’s decoder
and using a self-attention mechanism at multi-stage of the VAE model (i.e., decoder and before
data resampling). Specifically, LSTM improves the VAE decoder’s capacity in learning temporal
dependencies, and the guided-attention units enable selecting relevant features based on the self-
attention mechanism. This proposed deep hybrid learning model with a multi-stage guided-attention
mechanism is called GAHD-VAE. Proposed methods were validated with traffic measurements from
six publicly available pedestrian and bicycle traffic flow datasets. The proposed method provides
promising forecasting results but requires no assumptions that the data are drawn from a given
distribution. Results revealed that the GAHD-VAE methodology can efficiently enhance the traffic
forecasting accuracy and achieved better performance than the deep learning methods VAE, LSTM,
gated recurrent units (GRUs), bidirectional LSTM, bidirectional GRU, convolutional neural network
(CNN), and convolutional LSTM (ConvLSTM), and four shallow methods, linear regression, lasso
regression, ridge regression, and support vector regression.

Keywords: variational autoencoder; self-attention; hybrid deep learning; traffic flow forecasting.

1. Introduction

University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), Com-
puter Science Department Signal, Image and Speech Laboratory (SIMPA) Laboratory, El
Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria

Continued growth in road traffic demand generates numerous challenges, such as
traffic congestion, pollution, and road traffic accidents, which could cause severe injuries
and even deaths [1–3]. In recent years, growing attention has been paid to the correlation
between health and cities to mitigate obesity, pollution, climate change, and road traffic in-
juries. Hence, governments are more engaged in creating safer, more comfortable, and more
connected bicycling and walking environments. While walking and bicycling are beneficial
to both the city environment and its citizens’ health, there is not much research focusing on
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modeling and forecasting pedestrian and bike traffic flow compared to motorized vehicle-
based traffic flow [4]. For cities attempting to encourage walking and bicycling activities
(i.e., nonmotorized travel), it is essential to quantify the need for facilities supporting active
transportation [5]. Importantly, pedestrian and bicycle traffic flows are characterized by
their sensitivity to environmental conditions (e.g., weather situations and topography) and
are more dynamic. A timely and accurate forecast of nonmotorized traffic flow (walking
and bicycling) is essential in developing walkable cities [4]. Due to the high dynamic
behavior of motorized-based traffic flow, modeling and predicting pedestrian and bicycle
traffic flows become a challenging task. Deep recurrent neural networks have recently
gained great success in modeling the time-dependence in time series data. Thus, this work
attempted to develop an innovative deep learning-driven approach to forecasting bicycle
and pedestrian traffic flows.

Short and long-term forecasting techniques represent helpful tools for efficiently man-
aging road traffic flow. In the last decades, much effort has been made to develop and
improve traffic flow forecasting [6–8]. Time-series methods, such as autoregressive inte-
grated moving average (ARIMA) and its extensions, are widely exploited in modeling
and forecasting traffic flow [7,9,10]. Crucially, parametric models provide generally rea-
sonable performance in the case of traffic flow with regular variations, but the forecasting
quality can be degraded when the traffic flow exhibits irregular variations [11]. Several
non-parametric techniques have been designed in the literature to mitigate this challenge.
As data-driven methods, machine learning methods, such as support vector machine [12]
and neural network [13], have been widely used to enhance forecasting of traffic flow.
The central feature of data-based methods is their capacity to model complex data without
an analytical model formulation. For example, Chun et al. in [14] introduced an approach
for forecasting road traffic speed by coupling a radial basis function neural network and
the aid of the Fuzzy system. They showed that the coupled model reduced the mean
absolute percentage error to 6.4% and provided performance superior than the time series
and simplex prediction methods. In [15], Cai et al. considered a hybrid learning-based
approach by merging the benefit of support vector regression (SVR) and the gravitational
search algorithm (GSA). They applied GSA to determine the optimal values of the SVR
parameters and showed that the SVR-GSA provides better results than SVR-particle swarm
optimization (PSO). In [16], Chen et al. presented an innovative approach by constructing
multiple base forecasting models, each with different time lag and performance. More
specifically, they employed the least-squares SVR (LSSVR) and investigated the influence
of time lag on forecasting quality. In [17], Wenqi et al. introduced an approach to forecast
lane-level traffic flow by integrating extreme gradient boosting and complete ensemble em-
pirical mode decomposition. Results revealed the suitable performance of this approach in
modeling the complex volatility of traffic flow at different types of lane sections. The study
conducted in [18] focused on passenger flow forecasting based on automatic fare collection
(AFC) data in metro transportation. To this end, different models, including ARIMA, linear
regression, and SVR, have been employed to forecast passenger flow. It has been shown
that incorporating information from temporal, spatial, and weather features improves
forecasting accuracy. In [19], a stacking model is introduced to predict the variation of
public bicycle traffic flow. This model combines numerous base models, and they are
trained using distinct combinations of features to improve prediction. The XGBoost al-
gorithm is employed to train the models. Results using datasets from Hangzhou and
New York City showed the promising performance of this stacked model compared to the
standalone models.

Over the last decade, city and transportation professionals have shown increasing
interest in managing pedestrian and bicycle flows to reach community goals related to
health, safety, and the environment [20,21]. Precise traffic forecasting of pedestrian and
bicycle traffic flows is crucial to improve conditions for pedestrians and bicycles and in
providing crucial information to road users and decision managers for improved decision
making [22]. However, few research studies have been proposed in the literature to forecast
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the potential use of bicycle and pedestrian infrastructure. Besides, most of the methods
mentioned above need a large amount of labeled data for supervised learning, exhibit
high computation cost, and have a complex architecture that limits online forecasting
applications. This study developed a guided-attention hybrid deep learning architecture
for improved forecasting of different types of traffic flows.

This work aims to develop a forecasting method from traffic flow data, which leverages
pedestrian and bicycle traffic flow complexity and produces accurate results. The major
contributions of this work are summarized as follows.

• In this study, we first introduce a proficient hybrid approach for traffic flow forecast-
ing. The primary elements of the proposed guided-attention hybrid deep learning
architecture (termed GAHD-VAE) are the VAE model, the self-attention mechanism,
and LSTM. As we know, this is the first study using a hybrid deep learning model
to improve the forecasting of pedestrian and bicycle traffic flows. This approach
improves the traditional VAE model to capture potential temporal dependencies by
using the self-attention unit at a multi-level of the VAE model and including an LSTM
model in the VAE encoder. The self-attention mechanism that mimics the human brain
is adapted in the GAHD-VAE to uncover the most relevant traffic flow data features.
Indeed, self-attention allows attention-driven long-range dependency modeling for
time-series. On the other hand, the hybrid LSTM-VAE is employed to automatically
learn time dependence in traffic data without feature engineering. Employing all
these advanced statistical tools is beneficial in the sense that it has the potential to
enhance short-term forecasting of pedestrian and bicycle traffic flows. The forecasting
performance of the GAHD-VAE method has been compared to that of the traditional
VAE and some powerful deep recurrent neural networks, namely LSTM, gated re-
current units (GRUs), BiLSTM, bidirectional GRU (BiGRU), convolutional neural
network (CNN), and convolutional LSTM (ConvLSTM), and four shallow methods,
linear regression (LR), lasso regression, ridge regression (RR), and support vector
regression (SVR).

• The second contribution consists of investigating the impact of using different con-
figurations of the self-attention module on the forecasting quality of the GAHD-VAE.
Crucially, we examined the influence of the adopted activation functions in the at-
tention mechanism, such as Rectified Linear Unit (ReLU), Hyperbolic Tangent (tanh),
and Logistic Sigmoid, on the proposed approach’s forecasting quality. Moreover,
the influence of the attention type, including multiplicative and additive, on the
forecasting accuracy has been investigated.

• Finally, this study investigated both single- and multi-step-ahead forecasting. Data sets
from six pedestrians and bicycle traffic flows are utilized to evaluate the forecasting
quality of the considered methods. Results reveal that the proposed GAHD-VAE
method offers satisfying performance to forecast different types of traffic flows and
consistently performed better than the other methods.

The rest of the paper consists of three sections. Section 2 highlights literature reviews
on the related works. Section 3 describes preliminary material and the proposed GAHD-
VAE methodology. Section 4 presents the forecasting results and discussion based on six
pedestrians and bicycle traffic flow datasets. Lastly, Section 5 summarizes the paper and
provides future directions for possible improvements.

2. Related Works

Deep learning techniques are powerful in discovering layer-by-layer complex non-
linearity in multivariate data and automatically extracting hidden and relevant complex
patterns from data. They achieved remarkable success in modeling and forecasting time
series data in academia and industry [11,23–25]. Numerous deep methodologies have
been employed in the literature to address traffic flow forecasting [26]. In [23], a temporal
convolutional network (TCN) is proposed for traffic flow, and the Taguchi method is
utilized to optimize the TCN structure. Lv et al. in [27] employed a stacked auto-encoder
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(SAE) model to predict traffic flow. They used a greedy layerwise approach to train the
model and showed the superior performance of the SAE compared to the backpropagation
neural network, SVM, and random walk forecast approach. In [26], Yang et al. proposed
an approach using the exponential smoothing and extreme learning machine approach
to forecast traffic flow. The configuration of this approach has been optimized using the
Taguchi method. Results revealed that this approach exhibited satisfactory performance in
traffic flow forecasting by achieving 91% and 88% accuracy rates in freeways and highways.
In [28], Dai et al. introduced a deep learning approach to predict traffic flow by combining
a Gated Recurrent Unit (GRU) with the spatio-temporal analysis. To this end, the GRU
model is applied to process the spatio-temporal feature information obtained from the
time and spatial correlation analyses. Results showed the superior performance of this
combined approach compared to the convolutional neural network (CNN) model and
the GRU model. By using a deep belief network and kernel extreme learning machine,
a short-term method for the traffic flow prediction is proposed in [29].

During recent years, attention-driven methods have shown good efficacy for vision-
based multiple-object localization and recognition, despite the training performed using
labeled samples of each object [30]. Essentially, attention-based methods mimic the hu-
man vision system to recognize objects by focusing only on the object’s relevant areas.
However, it is worth noticing that, until recently, only a very few studies reported in the
literature focused on attention-driven methods for time-series data modeling and predic-
tion. For instance, in [31] a traffic flow prediction framework is introduced using a complex
architecture including a combination of LSTM and CNN with a wide attention module.
This architecture comprises dual paths: The wide attention module preprocesses input data
via linear transformation followed by a self-attention layer in the first path. The second
path contains a composite model formed by staking LSTM and CNN models; the two
paths’ outputs are also concatenated in one layer. In this approach, the feature extraction
is performed via interactions between a linear model and a self-attention mechanism to
predict traffic flow. The authors in [32] design a hybrid deep learning-driven model based
on CNN and LSTM (called Conv-LSTM) for traffic flow forecasting. The Conv-LSTM is
applied to uncover spatial-temporal features in traffic data efficiently. A bidirectional LSTM
(Bi-LSTM) is employed to extract long-term temporal features. It has been shown that
incorporating the attention mechanism in this approach improves forecasting performance.

3. Methods

This section is dedicated to providing the basic concept of the investigated attention,
self-attention mechanisms, and VAE employed in this study. Then, the introduced GAHD-
VAE forecasting methodology is presented.

3.1. Attention Mechanism

The attention mechanism, also called soft attention, was primarily designed to improve
machine translation in [33]. Importantly, it is designed to mimic the human brain by
targeting the most relevant information in a sentence or some specific regions in images
where the most important information is given rather than memorizing all the input data.
In recent years, attention mechanisms are becoming a necessary component of neural
network construction [34]. It has been widely exploited in image processing [35] and
neural machine translation [33]. Essentially, the attention mechanism aims to identify the
importance of every feature and attribute weight coefficients to highlight the important
and unimportant features. To this end, in the training phase, the main purpose is to focus
on particular features by a weighted sum procedure described by an attention vector.
Specifically, the attention vector at time t, s, is calculated as,

st = ∑
t

fftht, (1)
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Here, ht denotes the hidden states from the model (e.g., a recurrent network) feeding
the attention model. αt refers to the normalized attention model weights calculated by:

fft = so f tmax(et), (2)

where et denotes the attention model weights, also known as alignment score; it is usually
calculated using a feed-forward neural network [33], conditioned on the past hidden state
ht−1 (Figure 1):

et = σ(Waht−1 + ba), (3)

Wa and ba represent, respectively, weight matrix and bias vector of the attention model
calculated in the training stage. Essentially, the attention vector s of the attention model is
a dynamic representation of the pertinent portion of the data at time t.

Figure 1. Schematic representation of attention layer.

This mechanism uses a weighted sum for highlighting the important and unimpor-
tant data based on the normalized attention model weights that could be explained as
a probability (Figure 1). Of course, the idea behind the attention mechanism is inspired
by humans’ brain functionality that focuses on the distinctive and relevant pieces in case
of handling large amounts of information. The attention unit provides the model the
ability to concentrate on relevant features. Specifically, it supports the learning to identify a
distinctive part of the data sequence by evaluating its memory at prediction. In this study,
not all features contribute equitably to traffic flow forecasting. Hence, we should assign
more attention to more relevant features.

Note that the two widely employed attention types are additive [33] (Equation (3))
and multiplicative [36] attentions. The principal distinction between then consists in the
way of computing the alignment score:

et = Wa · ht. (4)

Additive attention, also called Bahdanau attention, is essentially based on a single-
hidden layer feed-forward network with tanh activation function for computing the atten-
tion alignment score. The alignment score in the multiplicative attention is obtained by
reducing the hidden states using matrix multiplications [37].

3.2. Self-Attention Mechanism

The self-attention, also called intra-attention, can be viewed as an extension of the
attention mechanism with the ability to reduce external information dependency and
model dependencies within the input data [37]. In recent years, deep learning models
incorporating the self-attention mechanisms demonstrated improved performance in differ-
ent applications, including machine translation and image description generation [37–39].
For instance, the authors in [40] demonstrated that the attention mechanism improves
the capacity of both the generator and the discriminator (i.e., neural network models) to
capture the long-range dependencies in the feature maps. One of the key properties of the
self-attention concept consists of its flexibility to be employed in any layer that represents
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a data sequence like a time series, which enhances the internal input structure’s learn-
ing by concentrating on the relation within observations of the same sequence. Notably,
the key concept of self-attention is generating weights (termed score) between observation
in position i and j of input data sequence X as [37]:

Eij =
(WaXi)

T(WaXj)√
d

. (5)

The weight of the self-attention, Wa, is obtained in the training stage. In (5), the divi-
sion by

√
d is employed to make the convergence faster. High weights are an indicator of

high relevance, whereas low weights indicate lower relevancy. The weights, Eij, are then
passed via a softmax function. The normalization of the weights can make them be seen as
a probability (the sum of weight values is 1).

Aij = so f tmax(Eij) =
exp(Eij)

∑j exp(Eij)
. (6)

The output of the self-attention unit is given by,

Oi =
n

∑
j=1
Aij(WaXi). (7)

This output effectively enhances the extracted features’ quality and explicitly describes
the internal correlation of the input data. Of course, self-attention quantifies the level of
relevance between the actual observation and any other observation previously seen in
the sequence.

3.3. Variational Autoencoder

Variational autoencoders represent one of the most effective and proficient classes of
deep generative methods [41]. Recently, VAE-based models have been shown good per-
formance in different applications, including forecasting of photovoltaic solar power [42],
desertification detection [43], overcrowding forecasting [44], air pollution forecasting [45],
and COVID-19 time series forecasting [46,47]. The primary components of the VAE archi-
tecture are two neural networks: An encoder and a decoder (Figure 2). The encoder maps
the data into a latent representation to get more compacted and informative data with a
reduced dimension compared to the input data. Crucially, the decoder’s principal mission
is to learn a data distribution (i.e., the distribution parameters) over the latent variables.
In other words, the decoder attempts to rebuild the input data based on the sampled data
provided by the encoder. The encoder is usually computed via a posterior approximation
of qθ(h|y), whereas the decoder is derived via a likelihood pφ(y|h), where θ and φ denote,
respectively, the parameters of the VAE encoder and decoder.

Figure 2. Variational autoencoder architecture.

The VAE tries to find the appropriate assignments of latent variables h that would
have resulted in input data y. More specifically, h is considered following a prior distri-
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bution pθ(h), usually Gaussian distribution N (0, I); the VAE encoder tries to estimate the
parameters of this distribution. Analytically, the purpose is to determine

pθ

(
h
∣∣y) = pθ(y, h)

pθ(y)
(8)

It should be noted that this is challenging to compute because the left-hand side
in (8) includes pθ(y), which is intractable. Precisely, it could be calculated through the
marginalization out of the latent variables:

p(y) =
∫

p(y|h)p(h)dh. (9)

Regrettably, this integral is not easy to calculate. To bypass this difficulty, VAE treats
it as an optimization problem [48]. More specifically, we can solve this based on the
variational inference procedure by finding an approximation posterior qφ

(
h
∣∣y) [48,49]

qφ

(
h
∣∣y) = N

(
µh, σ2

hI
)

(10)

Here, σh and µh refer to the standard deviation and the mean of qφ

(
h
∣∣y), respectively,

obtained using the VAE encoder.
Given qφ

(
z
∣∣x), we can compute the evidence lower bound (ELBO) as [48,49]:

logpθ(y) =E
qφ

(
h
∣∣y)[log pθ(y)] (11)

=E
qφ

(
h
∣∣y)[log pθ

(
y
∣∣h)+log pθ(h)−log qφ

(
h
∣∣y)]+ DKL

(
qφ
(
h
∣∣y)||pθ

(
h
∣∣y)) (12)

where DKL[.] denotes the Kulback–Leibler divergence separating the true posterior pθ

(
h
∣∣y) and the

approximate qφ
(
h
∣∣y), and the first term denotes the ELBO. Since

DKL
(
qφ
(
h
∣∣y)||pθ

(
h
∣∣y)) ≥ 0, it can be deduced that

logpθ(y) ≥ E
qφ

(
h
∣∣y)[log pθ

(
y
∣∣h)+log pθ(h)−log qφ

(
h
∣∣y)]. (13)

The term on the right-hand side of (13) (i.e., the ELBO term) represents that the lower bound of
logpθ(y) needs to be maximized. Therefore, for the maximization of logpθ(y), we concentrate on the
maximization of the ELBO term, which is equivalent and computationally tractable. The VAE cost
function can be expressed as:

LVAE(θ, φ; y) =E
qφ

(
h
∣∣y)[log pθ

(
y
∣∣h∗)]

− DKL
(
qφ
(
h
∣∣y)||pθ(h)

)
. (14)

Note that during the construction of the VAE approach using training data, the Stochastic
Gradient Variational Bayes procedure has been usually implemented for optimizing the ELBO to
compute the values of the encoder and decoder parameters [48,50,51].

3.4. The Proposed Approach
This paper proposes a novel guided-attention hybrid deep learning framework (called GAHD-

VAE) for traffic flow forecasting. The GAHD-VAE stretches the VAE model’s ability, enhances
forecasting quality, and outperforms traditional neural network models. This study introduces the
self-attention unit into the VAE at multi-levels, specifically in the encoder part with a recurrent neural
network (Figure 3), to improve modeling and forecasting quality. As discussed above, the attention’s
integration was most commonly used in the decoder parts [33,35], where the objective is to map
the sequence (image or text) to a sequence of text. However, the forecasting task aims to map a
sequence of numerical values to a single data point, which is the next value in this sequence. The key
idea behind VAE is to learn the probability distribution of the input without any data labeling via
an unsupervised method. It is anticipated that integrating the robust variation inference method,
a robust regularization, and the attention mechanism will increase forecasting accuracy.
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Figure 3. The flowchart of the GAHD-VAE forecasting procedure.

First, the input (data sequence in our case) is processed via a non-linear transformation using
a dense layer. Next, a self-attention layer is applied to dense layer output to highlight interactions
between sequence data points by computing the context vector (i.e., a weighted sum of features).
The regularization procedure ensures the diversification of the weighted sum; we applied regular-
ization optimization methods to weights normalization based on the kernel-regularizer: and bias
extenuation via bias-regularizer: L1 [52]. Moreover, regularization aims to avoid over-fitting during
traffic flow training. The third step consists of feeding the LSTM using the self-attention output,
which starts extracting the long-term dependencies learning and capturing the temporal sequential
dependency embedded in traffic flow input (time-series). LSTM output is obtained after several
non-linear transformations supported by a complex gating mechanism; this output serves as input
to regularize the covariance matrix and the mean of the distributions returned by LSTM. More
specifically, the regularization is realized by imposing that the distributions be similar to a standard
Gaussian distribution and enforcing the covariance matrix close to the identity. Next, the latent space
is obtained after double self-attention of the regularized mean and variance; both are concatenated
to form an enhanced input for the encoder output layer. Data points are sampled from the latent
space to be reconstructed using the decoder model; only generative models can generate new data.
The decoder in the proposed approach is a deep, fully connected neural network; it represents the
reverse path, where the sampled data points are reconstructed. Kullback–Leibler (KL) is used to
measure the loss, which is the divergence between the learned probability distribution and the
true data; this step is repeated until the convergence of the model parameters, especially when the
divergence becomes small, ideally close to zero. The reconstruction error is back-propagated over the
whole neural network structure, and the model parameters are updated accordingly. To be concise,
the forecasting is accomplished at the level of the encoding space. The training procedure of the
GA-HD-VAE algorithm is given in Algorithm 1.

The effectiveness of the proposed model was verified through experiments of large-scale datasets.
A comparison with the baseline deep learning methods, including GRU, LSTM, BiLSTM, and BiGRU, is
performed to show the proposed approach’s forecasting capacity.
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Algorithm 1: The training procedure of the GA-HD-VAE algorithm
Input: Time series data T
Output: Encoder parameters, θ, and decoder parameters, φ
LEG: data sequence length ;
W1, W2, W3: weight matrices for the dense layer(1-3);
b1, b2, b3: bias vectors for the dense layer(1-3);
CV, MeanCV, CovarianceCV: Self attention Context Vector;
←: Self attention function;
T ′ = Normalize(T );
X, Y = WindowSliding(T ′, LEG);
{θ, φ} ←− Initialize model parameters;
repeat

O← σ(W1 . X + b1) ;
CV ←←(O);
OLSTM ← LSTM(CV);
OMean ← σ(W2 . OLSTM + b2);
OCovariance ← σ(W3 . OLSTM + b3);
MeanCV←←(OMean);
CovarianceCV←←(OCovariance);
Z ← Sampling([MeanCV, CovarianceCV]);
L ← ComputeLoss(Z);
UpdateModelParameters({θ, φ},L);

until Model Parameters Convergence {θ, φ};

4. Model Testing and Results Analysis
This section presents the used pedestrian and bicycle traffic flow datasets and evaluates the fore-

casting performance of the proposed method. At first, we verify the one-step forecasting performance
of the proposed GAHD-VAE model and compare its improvement with the traditional VAE model.
Then, we provide a comparison against the baseline deep learning models, namely LSTM, GRU,
BiLSTM, and BiGRU. Furthermore, the impact of using different configurations of the attention model,
namely, attention type and activation function at a different level of the proposed architecture, is
analyzed. Finally, we evaluate the effectiveness of the considered methods for multi-step forecasting.

4.1. Measurements of Effectiveness
To evaluate the forecasting results, the following scores were adopted: The root-mean-square

error (RMSE), the mean absolute error (MAE), the coefficient of determination (R2), and the explained
variance (EV).

R2 =
∑n

i=1[(yi, − ȳ) · (ŷi − ȳ)]2√
∑n

i=1(yi − ȳ)2 ·
√

∑n
i=1(ŷi − ȳ)2

, (15)

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)2, (16)

MAE =
∑n

t=1|yt − ŷt|
n

, (17)

EV = 1− Var(ŷ− y)
Var(y)

, (18)

where yt are the actual values, ŷt are the corresponding forecasted values, and n is the number
of measurements.

4.2. Data Description
This study uses six actual pedestrian and bicycle traffic flow datasets to verify the investigated

deep learning methods’ forecasting performance. These hourly traffic flow datasets are created and
maintained by the Seattle Department of Transportation in the USA. The data is gathered using
sensors that record people riding bikes and pedestrians from 2014 until now in different Seattle
locations (Table 1). In our experiment, the training is conducted using 90% of each dataset. The k-fold
cross-validation technique has been considered in constructing these models based on the training
data as recommended in [53,54]. Specifically, we applied a five-fold cross-validation technique in
training the investigated models.
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Table 1. Traffic datasets used to evaluate the considered models.

Dataset Location Contents Records

Data 1 Burke Gilman Trail north of NE 70th St Bicycle 57,697
Data 2 Burke Gilman Trail north of NE 70th St Pedestrian 57,697
Data 3 MTS Trail west of I-90 Bridge Pedestrian 57,289
Data 4 MTS Trail west of I-90 Bridge Bicycle 57,289
Data 5 Seattle Spokane St Bridge Bicycle 51,121
Data 6 26th Ave SW Greenway at SW Oregon St Bicycle 55,568

Figure 4 displays an example of the time evolution of bicycle and pedestrian traffic flows
recorded over two weeks. The descriptive statistics of the six traffic flow datasets are given in Table 2.
Table 2 indicates that the pedestrian and bicycle traffic datasets are non-Gaussian distributed with
positive support and exhibit different intervals of variability.

Figure 4. A week of traffic data from Data 1 and Data 2.

Table 2. Statistics summary of the pedestrian and bicycle traffic flow datasets.

Min Max Std Q-0.25 Q-0.5 Q-0.75 Skewness Kurtosis

Data 1 0 8191 77.963 2 22 63 41.250 4078.161
Data 2 0 5118 148.542 0 12 28.938 14.342 240.455
Data 3 0 1940 41.034 0 2 8 26.154 840.791
Data 4 0 431 34.739 1 9 34 2.239 9.356
Data 5 0 431 43.209 4 18 45 2.071 7.842
Data 6 0 274 14.352 0 2 7 5.141 46.965

4.3. Results Analysis and Comparison
This section first shows the improvement introduced to the traditional VAE by incorporating

the self-attention mechanism at the VAE encoder. We compare it with well known recurrent neural
networks, LSTM, GRU, BiLSTM, BiGRU, CNN, and ConvLSTM, as well as baseline methods, namely
LR, RR, SVR, and Lasso regression, to forecast pedestrian and bicycle traffic flows. The LSTM and
GRU are equipped with memory-cell and gating mechanisms, making them powerful models for
time-series modeling and suitable for a comparison study. In these experimentations, the set of
hyperparameters is fixed for all considered model-based training datasets: optimizer = ‘rmsprop’,
loss function = ‘Cross-Entropy’, batch size = 250, epochs = 500, and learning rate = 0.001, activation
function = ‘Rectified Linear Unit (ReLU)’. The configuration of the proposed approach is: [Input: 3,
Intermediate: 6, Self-Attention: 6, LSTM: 16, Variance: 16, Mean: 16, Z: 16, Self-Attention: 4, Self-
Attention: 4, Predictor: 1]. For the considered models GRU, LSTM, BiLSTM, BiGRU, and ConvLSTM,
we set the hidden units to 32. Here, deep recurrent neural networks are built by stacking two
recurrent layers as deep temporal feature extractors and a dense layer used for the forecasting
task. For example, for LSTM, we have a stacked-LSTM network containing two LSTM layers with
32 hidden units for each layer and a fully connected layer. All hyper-parameters are determined
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based on a grid search approach. Similarly, the same architecture is used for BiLSTM and BiGRU
models: Deep bidirectional temporal feature extractors and a dense layer used for the forecasting task.
Generally, the bidirectional models allow the input to be processed in the forward and backward
direction, making it possible to extract more complex hidden features. We used a linear kernel for the
SVR model, with the regularization parameter C = 100 and gamma = ‘scale’. For the Lasso regression,
we set the constant that multiplies the L1 term, alpha = 0.1, the maximum number of iterations is
1000, and the tolerance for the optimization is tol = 1× 10−3 . For RR, the value of the regularization
strength is chosen as 1, the maximum number of iterations is 1000, and the precision of the solution is
chosen to be tol = 1× 10−3.

To show the advantage of the proposed GAHD-VAE compared to the traditional VAE, we
applied them to the six traffic flow datasets (Table 3). The proposed approach scored the lowest
RMSE for the six considered datasets (3.33, 2.39, 1.58, 4.05, 3.641, 2.824) compared to results achieved
by the VAE (8.05, 3.63, 1.61, 6.69, 3.707, 3.257). Furthermore, the averaged R2 and EV values for the
GAHD-VAE are (0.963, 0.968) and for the VAE are (0.919, 0.94), respectively. Results demonstrate the
significant improvement attributed to the high learning quality and capability of GAHD-VAE, brought
by the deep self-attention mechanism and the deep hybrid architecture that incorporates recurrent
neural networks. Results in Table 3 also revealed that the GAHD-VAE model exhibited superior
prediction performance compared to four shallow methods, linear regression, Lasso regression,
ridge regression, and support vector regression. This could be attributed to the ability of a deep
learning structure to learn complicated patterns from data. Indeed, deep models’ structure enables
transforming data multiple times to get the final output, allowing to learn deeper information. On the
other hand, shallow methods generally can transform the data only one or two times to reach the
output, limiting their ability to learn complicated patterns from input data.

Table 3. Performance comparison of the proposed GAHD-VAE, traditional VAE, SVR, LR, RR,
and Lasso.

Model Dataset RMSE MAE R2 EV

VAE 1 8.053 6.063 0.851 0.904
2 3.633 2.094 0.947 0.949
3 1.619 1.139 0.965 0.967
4 6.691 4.922 0.847 0.902
5 3.707 2.691 0.931 0.948
6 3.257 2.464 0.971 0.972

GAHD-VAE 1 3.336 2.81 0.975 0.979
2 2.393 1.616 0.977 0.98
3 1.586 0.97 0.968 0.968
4 4.053 3.077 0.945 0.954
5 3.641 2.853 0.933 0.952
6 2.824 1.867 0.978 0.978

SVR 1 17.334 16.595 0.314 0.927
2 10.384 9.11 0.575 0.815
3 2.892 2.199 0.893 0.914
4 11.484 10.739 0.559 0.877
5 8.605 8.002 0.627 0.816
6 3.227 2.753 0.416 0.618
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Table 3. Cont.

Model Dataset RMSE MAE R2 EV

LR 1 17.568 15.698 0.295 0.571
2 10.053 7.764 0.602 0.626
3 10.332 8.17 −0.364 0.019
4 10.941 9.603 0.6 0.696
5 9.363 7.97 0.762 0.78
6 12.853 11.596 0.655 0.753

RR 1 6.653 6.085 0.899 0.963
2 4.093 3.216 0.934 0.941
3 4.294 3.59 0.764 0.845
4 5.875 5.249 0.885 0.932
5 9.933 8.736 0.794 0.851
6 5.203 4.219 0.927 0.936

Lasso regression 1 6.64 6.033 0.899 0.951
2 3.756 2.975 0.944 0.951
3 3.33 2.882 0.858 0.913
4 5.965 5.265 0.881 0.925
5 10.036 8.741 0.789 0.843
6 5.05 4.103 0.931 0.94

In the next numerical experiments, we compared the performance of the proposed GAHD-VAE
approach to that of GRU, LSTM, BiLSTM, BiGRU, CNN, and ConvLSTM models because of their
popularity in modeling and forecasting time-series data. Figure 5a–f displays the measured and the
forecasted traffic flow obtained by the proposed GAHD-VAE and the six considered deep learning
models when applied to the six traffic datasets. From Figure 5a–f, we observe that the forecasted
traffic flows from the seven models closely followed the measured traffic flow data (solid line) for all
test datasets. Figure 6a–f present the boxplots of forecasting errors, which is the deviation between
the forecasted and the measured traffic flow values. The more the boxplot’s median tends to zero,
and the boxplot is compact, the more the model is accurate. As a consequence, Figure 6 indicates that
the GAHD-VAE provides better performance than all the other models.

The obtained forecasting results are tabulated in Table 4. Results in Table 4 show that the quality
of the forecast of pedestrian and bicycle traffic flows from the seven trained models is promising.
Table 4 indicates that the proposed approach exhibited improved forecasting performance compared
to other deep learning methods by achieving the lowest RMSE and MAE values and the highest
R2 and EV values (close to 1). The averaged metrics by datasets of the proposed approach are
RMSE of 3.35 and MAE of 2.54; the proposed model has reached a high fitting score with low
forecasting error for pedestrians, and bicycle traffic flows using six datasets. This could be attributed
to the GAHD-VAE capacity in handling nonlinearity. On the other hand, results demonstrate that
bidirectional methods (i.e., BiLSTM and BiGRU) improved the quality of forecasting compared to
the uni-directional models (i.e., LSTM and GRU). Moreover, the overall performance of BiLSTM
is slightly better than BiGRU. Notably, the GAHD-VAE method shows promising capability for
modeling complex temporal features in different datasets, especially pedestrian traffic flow (datasets
2 and 3), which is highly dynamic and nonlinear.

Table 5 summarizes the aggregated performances of each approach. R2 implies that all deep
learning approaches are providing good forecasting. In terms of all metrics computed, the proposed
GAHD-VAE approach achieves the best forecasting with high efficiency and satisfying accuracy (i.e.,
R2 = 0.96, RMSE = 3.36). It is followed by BiGRU and BiLSTM, which achieve R2 = 0.88. Notice that
a significant forecasting improvement was obtained using the GAHD-VAE approach compared to the
other deep learning models. This could be attributed to its capacity to capture relevant information
and dynamics from traffic flow time series.
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Figure 5. Measured and forecasted, (a) Data Set 1, (b) Data Set 2, (c) Data Set 3, (d) Data Set 4, (e) Data
Set 5 and (f) Data Set 6.

To further assess the performance of the GAHD-VAE, we investigate the impact of the attention
mechanism setting used in the proposed GAHD-VAE model on the forecasting accuracy. An impor-
tant point to highlight is that the activation function changes how data is transformed (or processed)
at the layer unit level and significantly impacts the neural network’s overall performance. Mainly,
we evaluate the impact of the used activation function in the attention mechanism on the proposed
approach’s forecasting performance. Table 6 shows the forecasting results obtained through different
configurations of the activation function used on each attention layer: Rectified Linear Unit (ReLU),
Hyperbolic Tangent (tanh), and Logistic Sigmoid. We also evaluate the impact of the attention
type, namely multiplicative and additive, on the forecasting accuracy. Moreover, these experiments
are based on four traffic flow datasets for the proposed approach with a self-attention mechanism
(Table 6). Note here that the highlighted rows in Table 6 represent the results obtained with default
attention configuration (activation function: Tanh; attention type: Additive), while the results in
bold are the enhanced forecasting metrics. The term ’None’ in Table 6 represents the case where the
multiplicative self-attention is based only on matrix multiplications without the activation function.
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Figure 6. Boxplot of forecasting errors obtained by the seven considered methods based on the
six datasets: (a) Data Set 1, (b) Data Set 2, (c) Data Set 3, (d) Data Set 4, (e) Data Set 5 and (f) Data
Set 6.

Results in Table 6 show that the GAHD-VAE model with the Sigmoid activation function,
when applied to dataset 1, provides the best results for both attention types (i.e., multiplicative and
additive). Specifically, it achieves the lowest RMSE and MAE values (i.e., 1.812 and 1.224, respectively)
and describes 98.8% of the traffic flow variance. We also observe that adjusting the attention layer
significantly improves the forecasting quality by reducing RMSE from 3.336 to 1.812 and MAE from
2.81 to 1.224 and improving R2 to more than 0.98. Moreover, Table 6 shows that the multiplicative
type with Tanh and additive with Sigmoid offers the most favorable result for the traffic data set 4 (i.e.,
RMSE = 1.18, MAE = 0.761, and R2 = 0.986). The best forecasting accuracy when applying GAHD-VAE
to Data Set 5 is obtained by using multiplicative type with Sigmoid activation function, where RMSE
was reduced from 5.641 to 2.743 and MAE from 4.853 to 1.969, compared to the additive type with
Tanh (i.e., default configuration). From Table 6, we also observe that there is no improvement on
Dataset 6; the default configuration scored the best results. Overall, it is not obvious to automatically
decide the best attention configuration for any dataset. On average, the use of GAHD-VAE with the
Sigmoid activation function provides suitable forecasting performance.
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Table 4. One-step ahead forecasting of pedestrian and bicycle traffic flows using the seven deep
learning models.

Dataset MODEL RMSE MAE R2 EV

CNN 5.905 3.333 0.92 0.921
ConvLSTM 8.064 5.445 0.852 0.887
BiGRU 6.726 3.894 0.897 0.897

1 BiLSTM 5.846 3.515 0.922 0.923
GRU 6.627 4.087 0.9 0.902
LSTM 6.29 3.878 0.91 0.912
GAHD-VAE 3.336 2.81 0.975 0.979

CNN 6.096 2.526 0.853 0.853
ConvLSTM 5.058 2.655 0.899 0.9
GRU 5.45 2.784 0.883 0.883

2 LSTM 5.444 2.758 0.883 0.883
BiGRU 6.239 2.639 0.847 0.847
BiLSTM 5.874 2.531 0.864 0.864
GAHD-VAE 2.693 1.681 0.971 0.972

CNN 3.837 1.357 0.805 0.806
ConvLSTM 4.482 3.332 0.735 0.782
BiGRU 2.254 1.344 0.935 0.94

3 BiLSTM 2.762 1.241 0.903 0.903
GRU 3.263 2.039 0.864 0.864
LSTM 4.414 2.964 0.751 0.752
GAHD-VAE 1.586 0.97 0.968 0.968

CNN 5.609 3.8 0.893 0.895
ConvLSTM 7.307 4.681 0.819 0.842
BiGRU 6.186 3.47 0.872 0.875

4 BiLSTM 5.867 3.175 0.885 0.885
GRU 6.582 3.736 0.855 0.855
LSTM 6.566 3.819 0.856 0.857
GAHD-VAE 4.053 3.077 0.945 0.954

CNN 7.553 4.416 0.845 0.845
ConvLSTM 8.872 6.59 0.756 0.801
BiGRU 9.998 5.721 0.791 0.797

5 BiLSTM 9.692 5.419 0.804 0.809
GRU 10.763 6.197 0.758 0.76
LSTM 10.746 6.355 0.759 0.768
GAHD-VAE 5.641 4.853 0.933 0.952

CNN 5.31 2.794 0.924 0.927
ConvLSTM 5.887 3.958 0.905 0.91
BiGRU 5.253 3.355 0.925 0.937

6 BiLSTM 5.249 2.964 0.925 0.931
GRU 5.959 3.505 0.904 0.911
LSTM 6.061 3.883 0.9 0.916
GAHD-VAE 2.824 1.867 0.978 0.978

Table 5. Averaged measurements of effectiveness per model.

MODEL RMSE MAE R2 EV

CNN 5.72 3.04 0.87 0.87
ConvLSTM 6.61 4.44 0.83 0.85
BiGRU 6.11 3.40 0.88 0.88
BiLSTM 5.88 3.14 0.88 0.89
LSTM 6.59 3.94 0.84 0.85
GRU 6.44 3.72 0.86 0.86
GAHD-VAE 3.36 2.54 0.96 0.97
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Table 6. Evaluation of the forecasting performance of the GAHD-VAE under different configura-
tions of the attention mechanism.

⊕
is the additive attention mode, while

⊗
is the multiplicative

attention mode.

Dataset Type Attention RMSE MAE R2 EV

Tanh 2.663 1.639 0.972 0.973
1

⊗
Sigmoid 1.812 1.224 0.987 0.988

Relu 2.086 1.457 0.983 0.985
None 5.079 3.92 0.941 0.951
Tanh 3.336 2.81 0.975 0.979

1
⊕

Sigmoid 2.225 1.686 0.98 0.981
Relu 1.841 1.397 0.987 0.987

Tanh 2.072 1.601 0.983 0.984
2

⊗
Sigmoid 2.281 1.931 0.979 0.984

Relu 2.373 2.094 0.978 0.99
None 2.403 1.692 0.977 0.979
Tanh 2.393 1.616 0.977 0.98

2
⊕

Sigmoid 1.81 1.273 0.987 0.988
Relu 2.399 1.736 0.977 0.978

Tanh 1.844 1.587 0.957 0.973
3

⊗
Sigmoid 1.86 1.262 0.956 0.959

Relu 1.878 1.397 0.955 0.962
None 1.753 1.105 0.961 0.962
Tanh 1.586 0.97 0.968 0.968

3
⊕

Sigmoid 2.299 1.955 0.932 0.958
Relu 1.705 0.797 0.963 0.964

Tanh 1.18 0.761 0.986 0.986
4

⊗
Sigmoid 2.137 1.637 0.953 0.957

Relu 2.259 1.769 0.947 0.956
None 2.754 2.205 0.922 0.953
Tanh 4.053 3.077 0.945 0.954

4
⊕

Sigmoid 2.066 1.932 0.956 0.987
Relu 2.591 2.021 0.931 0.958

Tanh 3.469 3.091 0.939 0.965
5

⊗
Sigmoid 2.743 1.969 0.962 0.968

Relu 3.979 2.63 0.92 0.93
None 2.784 2.417 0.961 0.978
Tanh 5.641 4.853 0.933 0.952

5
⊕

Sigmoid 3.672 2.448 0.932 0.936
Relu 3.508 2.796 0.938 0.952

Tanh 3.118 2.095 0.974 0.975
6

⊗
Sigmoid 3.077 2.534 0.974 0.98

Relu 2.921 1.661 0.977 0.977
None 4.481 3.192 0.946 0.958
Tanh 2.824 1.867 0.978 0.978

6
⊕

Sigmoid 2.852 1.973 0.978 0.978
Relu 4.087 2.744 0.955 0.962

Table 7 displays the aggregated performances of GAHD-VAE per configurations of the attention
mechanism (i.e., additive attention mode and multiplicative attention mode). R2 implies that the
use of the two configurations in the GAHD-VAE approach results in good forecasting performance.
Overall, forecasts based on the additive attention mode outperform those based on the multiplicative
attention mode.
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Table 7. Averaged validation metrics per configurations of the attention mechanism.
⊕

is the additive
attention mode, while

⊗
is the multiplicative attention mode.

Attention RMSE MAE R2 EV

Additive
⊕

2.827 2.108 0.961 0.969

Multiplicative
⊗

2.612 1.950 0.958 0.967

The following experiments are devoted to assessing the proposed approach’s daily forecasting
performance against the other recurrent models. Table 8 summarized the results of forecasting
daily pedestrian and bicycle traffic flows using the seven deep learning models based on the six
datasets. Results indicate that the proposed approach scored the lowest averaged forecasting error
(i.e., RMSE = 42 and MAE = 32) and the highest determination factor (i.e., R2 = 0.9 and EV = 0.9).
Moreover, results in Table 8 indicate that the bi-directional recurrent neural networks (BiLSTM and
BiGRU) exhibit higher accuracy compared to the uni-directional (LSTM, GRU). This could be due to
the capability of BiLSTM and BiGRU in processing data in the forward and backward direction, which
enable them to discover more complex features. We also observe that BiLSTM outperforms BiGRU
slightly; however, LSTM and GRU recorded mostly the same score. Results confirm the superiority of
the proposed GAHD-VAE approach in modeling long-term temporal dependencies and the attention
mechanism’s efficiency to highlight the internal correlation between elements. In summary, results
in this study showed that the proposed model achieved an improved forecasting quality for both
one-step and multi-step pedestrians and bicycle traffic flow forecasting.

Table 8. Performance evaluation of the seven models for daily forecasting of pedestrian and bicycle
traffic flows.

Dataset MODEL RMSE MAE R2 EV

ConvLSTM 183.619 139.092 0.818 0.818
CNN 210.837 162.627 0.818 0.877
LSTM 98.575 79.5 0.796 0.902

1 GRU 91.176 73.017 0.826 0.908
BiGRU 86.176 68.847 0.844 0.915
BiLSTM 74.93 59.556 0.882 0.938
GAHD-VAE 60.945 47.493 0.922 0.925

ConvLSTM 22.485 15.764 0.895 0.908
CNN 25.639 12.826 0.899 0.914
LSTM 34.633 18.455 0.747 0.747

2 GRU 21.844 19.131 0.899 0.962
BiLSTM 23.489 16.936 0.884 0.923
BiGRU 22.144 18.488 0.896 0.95
GAHD-VAE 11.755 7.326 0.971 0.977

ConvLSTM 69.637 49.907 0.795 0.806
CNN 90.285 56.004 0.602 0.602
LSTM 65.821 46.566 0.854 0.864

3 GRU 64.254 47.184 0.861 0.872
BiGRU 67.314 49.322 0.848 0.86
BiLSTM 66.488 48.488 0.851 0.861
GAHD-VAE 60.603 41.953 0.877 0.878

ConvLSTM 21.83 17.913 0.807 0.815

4
CNN 19.137 15.519 0.84 0.86
LSTM 22.744 18.019 0.776 0.778
GRU 22.246 16.924 0.785 0.785
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Table 8. Cont.

Dataset MODEL RMSE MAE R2 EV

BiGRU 20.068 16.32 0.825 0.826
BiLSTM 19.115 15.441 0.842 0.843
GAHD-VAE 16.98 13.613 0.875 0.878

ConvLSTM 23.738 24.604 0.779 0.78
CNN 15.112 12.716 0.856 0.902
LSTM 11.265 7.663 0.936 0.936

5 GRU 15.07 12.106 0.886 0.901
BiGRU 18.482 12.609 0.828 0.833
BiLSTM 10.577 7.097 0.944 0.944
GAHD-VAE 10.202 7.015 0.948 0.951

ConvLSTM 89.583 72.832 0.733 0.755
CNN 68.138 56.918 0.87 0.901
LSTM 82.286 64.834 0.792 0.807

6 GRU 84.914 67.21 0.779 0.787
BiGRU 75.26 64.157 0.826 0.854
BiLSTM 76.796 65.442 0.819 0.844
GAHD-VAE 63.531 52.38 0.876 0.91

To summarize the assessments, the averaged metrics of effectiveness per model computed
from Table 8 are listed in Table 9. The results support that the GAHD-VAE forecasting approach
has higher accuracy overall than the other deep learning models (i.e., VAE, LSTM, GRU, BiLSTM,
BiGRU, CNN, and ConvLSTM). Overall, the results indicate that the GAHD-VAE approach has high
forecasting accuracy due to the robustness of variational inferences in approximating data probability
distribution of traffic flow time-series, in addition to the promising capability of a self-attention
mechanism to learn implicit information within data points of a given sequence.

Table 9. Averaged measurements of effectiveness per model for daily forecasting of pedestrian and
bicycle traffic flows.

MODEL RMSE MAE R2 EV

ConvLSTM 68.48 53.35 0.80 0.81
CNN 71.52 52.77 0.81 0.84
BiGRU 48.24 38.29 0.84 0.87
BiLSTM 45.23 35.49 0.87 0.89
LSTM 52.55 39.17 0.82 0.84
GRU 49.92 39.26 0.84 0.87
GAHD-VAE 37.34 28.30 0.91 0.92

5. Conclusions and Future Directions
5.1. Conclusions

This paper introduced the guided-attention hybrid deep learning architecture (called GAHD-
VAE) and showed its capacity for pedestrian and bicycle traffic flow modeling and forecasting.
Notably, the proposed approach improves the VAE capacity to learn temporal dependencies in
time-series data by adding the self-attention mechanism at different levels in the VAE structure and
including a recurrent neural network (LSTM) in the VAE encoder side. The role of the self-attention
mechanism in the GAHD-VAE is to uncover the most relevant part of features. LSTM is embedded
in the VAE encoder to enable modeling the time-dependence in time series data. Results based on
six traffic flow datasets demonstrated that the GAHD-VAE could generate high accurate traffic flow
forecasting (one-step and multi-step) and outperform the traditional VAE model and the state-of-
the-art models, namely LSTM, GRU, BiGRU, and BiLSTM, as well as four shallow models (i.e., LR,
SVR, RR, Lasso regression). Furthermore, we investigated the impact of using the attention module’s
multi-configuration on the forecasting quality of the GAHD-VAE. It has been shown that results could
be improved by changing the attention mechanism’s internal data processing (activation function)
and the attention mode.
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5.2. Future Directions
Despite the satisfactory traffic flow forecasting results using the GAHD-VAE methodology,

future works will be aimed at improving the robustness of the GAHD-VAE model to noisy traffic
flow measurements by developing a wavelet-based GAHD-VAE approach. Another direction of
improvement is to incorporate explanatory variables, such as meteorological measurements and
spatial information, in constructing the deep learning models to further improve forecasting quality.
Moreover, this deep learning approach ignores the spatiotemporal correlation in the traffic network.
Thus, we plan to develop a more flexible forecasting approach that considers spatiotemporal cor-
relations of the traffic network and captures spatiotemporal features. We will also investigate the
capacity of applying the GAHD-VAE approach in other applications that need forecasting like envi-
ronment, health, energy, big data, and many others. We also plan to improve the robustness of the
GAHD-VAE model to noisy measurements by developing a wavelet-based GAHD-VAE forecasting
model. Moreover, it will be interesting to investigate the forecasting capability of this deep learning
method in other applications, such as predicting bike-sharing demand.
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