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Abstract: To extend the life of a mechanical system, parametric Accelerated Life Testing (ALT) is
proposed as a procedure to identify design faults and reduce fatigue failure. It includes a derivation
of generalized time to failure model by linear transport process and a sample size equation for the
ALT. A refrigerator drawer was used as an example. After loading, the rail rollers broke and the
center support was bent. Ribs were added to the center support and the rail roller support was
extended. At the first ALT, the box cover failed near the intersection between the cover and body.
The box was then modified by increasing the rib and fillet. At the second ALT, the rails and center
support fractured. They were altered by increasing the rib and corner rounding. After the third ALT,
there were no issues. The drawer lifetime was ensured to be B1 life 10 years.

Keywords: fatigue; parametric ALT; mechanical system; drawer; design faults

1. Introduction

Because of increasing competition in the market, new features in refrigerators are often
quickly brought to market for the end-users. With inadequate testing or no comprehension
of how the new features are utilized by the consumer, the new features can grow product
failures in the marketplace and negatively affect the manufacturer’s brand name. These
new attributes for the product might be evaluated in the design phase before being sold
into the market. Systematic methods with reliability quantitative (RQ) specifications for
utilizing an established mechanical system need to be included in evaluating new features.

Mechanical systems, such as automobiles, airplanes, and refrigerators [1], transfer
power to achieve a desired outcome. Forces are used to provide movement of mechanisms
that are typically subjected to repeated loads. In the process, fatigue failure may occur if
there is a stress raiser such as notched, sharp-edged, or thin surface, etc., in a component.
Mechanical systems are made of multi-module structural systems. While these systems
can be complex, a mechanical system can perform satisfactorily if it is designed appropri-
ately. For instance, by making use of the vapor-compression refrigeration cycle, a domestic
refrigerator can provide cooling and freezing for the food stored in the refrigerator. The
evaporator provides cold air to both the refrigerator and freezer sections. A refrigerator in-
cludes several subsystems—door, cabinet, drawers and shelves, control system, compressor
or electric motor, heat exchanger, water supplying device, and other components.

A refrigerator might be composed of as many as 2000 components. Product life is
targeted to be no less than B20 life 10 years. A refrigerator is made up of 20 units (or
8~10 modules) with each unit having approximately 100 parts (See Figure 1a). Therefore,
the lifetime target of each unit should have B1 life 10 years because the system life is
controlled by any design defects in any module. Figure 1b shows a newly designed module
#3, which has a design defect and the shortest time before failure. As a result, this module
determines the system lifetime for the whole refrigerator.
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Figure 1. Product lifetime with multi-modules resolved by new module (a) grouping of multi-mod-
ule refrigerator; (b) product life LB and failure rate λs. 

To prevent recalls of a mechanical product from the market [2], the modules com-
prising the product should be designed to survive typical operations by the end-users 
who acquire and make use of the product. If the product has design defects that will cause 
failure, it should be verified by proper parametric accelerated life testing (ALT) [3,4]. Fa-
tigue is often the principal origin of failure in metallic components, accounting for ap-
proximately 80–95% of all structural failures [5]. It manifests itself in the shape of cracks 
which originate from high stress concentrations such as grooves, thin surfaces, holes, etc. 
in mechanical systems and propagate it to the end. Fatigue thus is the weakening of a 
material caused by cyclic loading. 

A great deal of attention is currently being given to the performance of low-cycle 
fatigue of super-alloys, particularly in the field of turbine–engine designs made of nickel-

Figure 1. Product lifetime with multi-modules resolved by new module (a) grouping of multi-module
refrigerator; (b) product life LB and failure rate λs.

To prevent recalls of a mechanical product from the market [2], the modules comprising
the product should be designed to survive typical operations by the end-users who acquire
and make use of the product. If the product has design defects that will cause failure,
it should be verified by proper parametric accelerated life testing (ALT) [3,4]. Fatigue is
often the principal origin of failure in metallic components, accounting for approximately
80–95% of all structural failures [5]. It manifests itself in the shape of cracks which originate
from high stress concentrations such as grooves, thin surfaces, holes, etc. in mechanical
systems and propagate it to the end. Fatigue thus is the weakening of a material caused by
cyclic loading.

A great deal of attention is currently being given to the performance of low-cycle
fatigue of super-alloys, particularly in the field of turbine–engine designs made of nickel-
base polycrystalline [6–9]. The failure criteria are often evaluated by the representative
Goodman diagram [10,11]. However, it is difficult to estimate the lifetime cycles of multi-
module products because small samples of the part, not the module, are tested, and part
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failures due to design defects rarely occur in the marketplace. These methodologies often
fail to reproduce the market failures because comprehensive testing might have been
necessitated, which might be too expensive due to limitations of time and sample size.

Fatigue failures also depend on measurable factors such as the cyclic stress amplitude,
mean stress, or stress ratio, R (= σmin/σmax), which might be expressed as the ratio of the
minimum cyclic stress to the maximum cyclic stress [12]. Utilizing an elevated load ratio
which may be expressed as an accelerated factor (AF) may help identify the design flaws
such as stress raisers in the structural component.

Any design defects might be identified and altered by the Taguchi approach [13] or
design of experiments (DOE) [14] before a commercially manufactured good is delivered.
However, these approaches demand large computations for optimal solutions. However,
they might not be useful because they may not identify an underlying failure mechanism
such as fatigue. If there are design defects which create a lack of stiffness (or strength) when
a system is subjected to repeat loading, the system will be unsuccessful before its expected
life due to fatigue.

Engineers have often used traditional design aspects such as strength of materials [15,16].
A recent fracture mechanics investigation [17,18] showed that the key components might be
fracture toughness as an alternative of strength as an applicable material property. With the
use of quantum mechanics in the electronic industry, designers have identified that product
failures occur from micro-void coalescence (MVC). This type of failure is also observed
in a great number of engineering plastics or metallic alloys. To better identify the failures
in a mechanical system, a life-stress model [19] might be integrated with a conventional
design perspective and connected to failure of electronic elements due to a pre-existing
defect or little crack. This process would not be practical for use in a finite element method
(FEM) approach [20,21].

To evaluate product failures, there is another engineering viewpoint which can be used
along with the FEM. Several engineers have proposed that rare system failures might be
assessed by: (1) rigorous modeling such as Newtonian or Lagrangian techniques; (2) getting
its time response for (dynamic) loads, acquiring the system stress/strain from it; (3) making
use of the rain-flow counting procedure for von-Mises stress [22,23]; (4) estimating product
damage by the Palmgren–Miner’s rule [24]. Nevertheless, using a methodology which
may provide closed-form, accurate solutions would require applying several assumptions
which might not recognize multi-module system failures, due to material defects such as
contacts, thin surface, micro-voids, etc., as subjected to repeated loading.

This research presents parametric ALT as a systematic approach which may be used
to recognize design faults of a newly designed mechanical structure and modify them.
It includes: (1) an ALT scheme created on system BX lifetime, (2) load check for the
ALT, (3) suitable modified ALTs with the revised designs, and (4) an appraisal of whether
the newest design(s) of the system fulfils the targeted BX lifetime. We also suggested
generalized time to failure model and sample size formulation. As a test investigation,
a newly designed drawer system in a refrigerator subjected to repeated food loading
is evaluated.

2. Parametric Accelerated Life Testing for Mechanical Product
2.1. Meaning of BX Lifetime

To implement parametric ALT, BX life as a measure of system life is necessitated. BX
life, LB, may be viewed as the amount of time when X percent of a collection of a selected
product might have failed. Otherwise, ‘BX life Y years’ is a preferable term for system life,
which helps to satisfactorily decide the cumulative failure rate of a product in response to
its use in the field. As an example, if the product lifetime has B20 life 10 years, 20% of the
population might have been unsuccessful in achieving one’s goal for 10 years of a working
period. On the other hand, the mean time to failure (MTTF)—B60 lifetime—as the reverse
of the failure rate might not be utilized for the system lifetime. It is too lengthy a time to be
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unsuccessful in the 60% of the population in commercially manufactured products. BX life
should indicate a more proper measure for product lifetime, contrasted with MTTF.

2.2. Placing an Entire Parametric ALT Scheme

Reliability might be described as the capability of a system to function under specified
circumstances for a stated interval of time [25]. It has traditionally been illustrated by
the “bathtub curve” (Figure 2) which has three sections [26]. In the first section, there is
a decreasing failure rate in the earlier portion of the product’s life (β < 1). In the second
section, there is a flat failure rate (β = 1) during the middle life of the product which follows
an exponential distribution. Eventually, there is an increasing failure rate to the termination
of the product’s life (β > 1) which follows a Weibull distribution.
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Assuming that T is a random variable specifying the time to failure, the reliability
function, the fraction yet surviving at time t, could be expressed as follows:

R(t) = P(T > t) (1)

As the complement of R(t), the accumulative distribution function (CDF), F(f ), might
also be defined as:

F(t) = 1− R(t) (2)

For individuals in a population has a density function f (t). The equivalent distribution
function is the fraction of the population failing by the time t. That is,

F(t) =
∫ t

−∞
f (s)ds (3)

The failure rate function λ(t) measures the instantaneous risk, in that λ(t)δt is the
chance of failing in the following small interval δt given survival to time t. From the
relation we can find as follows:

P(survival to t + δt) = P(survival to t) P(survival to δt|survival to t) (4)

where P is probability
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So we can obtain the following equations. That is,

1− F(t + δt) = {1− F(t)}{1− λ(t)δ(t)} (5a)

δtF′(t) = {1− F(t)}λ(t)δ(t) (5b)

So, the failure rate function is expressed as follows:

λ(t) = δ(t)F′(t)/{1− F(t)}δ(t) = f (t)/{1− F(t)} = f (t)/R(t) (6a)

or λ(t) =
f (t)
R(t)

=
dF(t)/dt

R(t)
=

(1− R(t))
′

R(t)
=
−R′(t)

R(t)
(6b)

If Equation (6b) is integrated with respect to time, the X% accumulative failure F(LB)
at BX life, LB may be estimated.

F =
∫

λ(t)dt = −lnR(t) (7a)

In other words, we might state F(LB) as:

A(orX) = 〈λ〉 · LB =
∫ LB

0
λ(t) · dt = −lnR(LB) = −ln(1− F) ∼= F(LB) (7b)

Assume that T1 be the time of the first failure, we may express reliability function R(t).
That is,

R(t) = P(T1 > t) = P(nofailure in(0, t]) =
(m)0e−m

0!
= e−m = e−λt (8)

If a commercially manufactured product follows the characteristics of the bathtub
curve, it might have difficulties achieving success in the field because of the short lifetime
and large failure rates early in its life due to design defects. Manufacturers will clearly
improve the product design by subjecting its lifetime targets to (1) removing unexpected
failures, (2) minimizing random failures for its working period, and (3) extending product
lifetime. As the product design improves, the failure rates from the field decease and the
product lifetime is extended. For such situations, the established bathtub curve could be
converted to a simple line with low failure and longer life that only increases the failure
rates toward the termination of its life.

Consequently, because it is less than approximately 20 percent of the cumulative
failure rates, the reliability of a mechanical system might be expressed as [27]:

R(LB) = 1− F(LB) = e−λLB ∼= 1− λLB (9)

The reliability of mechanical system therefore might be achieved by estimating the
objective product lifetime LB and failure rate λ after optimally identifying the market failure
by parametric ALT and modifying the design flaws (or material) of structures (Figure 3).

To achieve the goal of a specific product lifetime by parametric ALT, three cases of the
product module were required: (1) a changed module, (2) a newly altered module, and
(3) a related module to the former design on the base of field request. The newly designed
drawer system in a refrigerator inspected here as a case investigation was a new module
which had design faults to be rectified. Consumers were asking for replacements of drawers
that had failed early in the life of the refrigerator. The new module B from the market data
had a failure rate of 0.24% per year and a B1 life 4.2 years. To address consumer requests,
a new lifetime target for the drawer was put to have B1 life 10 years with a cumulative
failure rate of one percent (0.1%/year) over the life of the product (Table 1).
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Table 1. Complete ALT scheme of mechanical system such as refrigerator.

Modules

Field Data Expected Reliability Targeted Reliability

Failure Rate per Year,
λ (%/Year)

BX Life,
LB (Year)

Failure Rate per Year,
λ (%/Year)

BX Life,
LB (Year)

Failure Rate per Year,
λ (%/Year)

BX Life,
LB (Year)

A 0.35 2.9 Same ×1 0.35 2.9 0.10 10 (BX = 1.0)
B 0.24 4.2 Newly ×5 1.20 0.83 0.10 10 (BX = 1.0)
C 0.30 3.3 Same ×1 0.30 3.33 0.10 10 (BX = 1.0)
D 0.31 3.2 Altered ×2 0.62 1.61 0.10 10 (BX = 1.0)
E 0.15 6.7 Altered ×2 0.30 3.33 0.10 10 (BX = 1.0)

Others 0.50 10.0 Same ×1 0.50 10.0 0.50 10 (BX = 5.0)
Product 1.9 2.9 - - 3.27 0.83 1.00 10 (BX = 10)

2.3. Generalized Time to Failure Model and Sample Size Equation for Parametric ALT

Mechanical systems have subsystems that transmit (generated) power from one com-
ponent to another through various mechanisms in the system. If there is a design flaw in a
component that has an insufficient strength (or stiffness) during repeated loading of the
component, it can fail prematurely before achieving its expected lifetime. In reproducing
the field failure by parametric ALT, a designer must understand the loading experienced
in the field and failure process before being able to both redesign the product shape and
change materials selection to achieve the desired reliability of the product. The system
must survive the minimum repeated loads in its lifetime so that it can attain the objective
reliability (or lifetime) (Figure 4).
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The primary goal for reliability testing is determining how early the probable fail-
ure mode might be obtained in the process. A failure model that connects the relevant
coefficients must be derived. That is, the life-stress (LS) model, which includes stresses
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and reaction parameters, may clarify numerous failures such as fatigue on the structure.
Product failure appears from the emergence of microscopic material imperfections when
repetitively subjected to a varying compression and tensile loading under the consumer
usage. A life-stress model may be determined from such a viewpoint.

Linear transport processes can be expressed as follow:

J = LX (10)

where J is a flux vector that is associated with some transport property such as mass,
momentum, energy, charge, etc. Similarly, X is defined as a (driving or thermodynamic)
force that is associated with a disequilibrium in some physical property, such as gradients of
concentration, fluid velocity, temperature, electrical potential, etc. L is a phenomenological
transport coefficient, which makes a connection between fluxes and forces.

Transport processes in essence are dissipative when happening in some physical
system, which begin to form the system in equilibrium when any net transport comes to
stop (Table 2).

Table 2. Abridged linear transport phenomena [28,29].

Ohm’s Law of electrical conduction: j = −σ∇V

J = electric current density,
j (units: A/cm2)

X = electric field, −∇V
(units: V/cm, V = electrical potential)

L = conductivity, σ = 1/ρ
(units: ρ = resistivity (Ω cm))

Fourier’s Law of heat transport: q = −κ∇T

J = heat flux, q (units: W/cm2)
X = thermal force, −∇T

(units: ◦K/cm, T = temperature)
L = thermal conductivity, κ

(units: W/◦K cm)

Fick’s Law of diffusion: F = −D∇C

J = material flux, F (units: /sec cm2)
X = diffusion force, −∇C

(units: /cm4, C = concentration)
L = diffusivity, D
(units: cm2/sec)

Newton’s Law of viscous fluid flow: Fu = −µ∇u

J = fluid velocity flux,
Fu (units: /(sec2 cm))

X = viscous force, −∇u
(units: /sec, u = fluid velocity)

L = viscosity, µ
(units: /(sec cm))

For example, when an electric magneto-motive force, ξ, is applied, the impurities in
materials, generated by electronic motion, easily migrate as the levels of junction energy
are lessened. The processes for evaluating solid-state diffusion of impurities in a silicon can
be summarized as follows: (1) electro-migration-induced voiding; (2) build-up of chloride
ions; (3) trapping of electrons or holes. Solid-state diffusion of impurities in silicon J could
be stated as [30] (Figure 5):

J = [aC(x− a)] · exp
[
− q

kT

(
w− 1

2
aξ

)]
· v

[Density/Area]·[Jump Probability]·[Jump Frequency]

= −
[

a2ve−qw/kT
]
· cosh

qaξ

2kT
∂C
∂x

+
[
2ave−qw/kT

]
Csinh

qaξ

2kT

= Φ(x, t, T)sinh(aξ)exp
(
− Q

kT

)
(11a)

= Asinh(aξ)exp
(
− Q

kT

)
where A is constant, C is the concentration, q is the value of electric charge, ν is the frequency,
Φ() is a quantity that does not change its value, a is the distance between atoms, ξ is the
applied field, k is Boltzmann’s constant, Q is energy, and T is temperature.
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Conversely, the reaction process that rests on speed might be expressed as.

K = K+ − K− = a
kT
h

e−
∆E−aS

kT − a
kT
h

e−
∆E+aS

kT = 2
kT
h

e−
∆E
kT sinh(

aS
kT

) (11b)

= Bsinh(aS)exp
(
−∆E

kT

)
The reaction rate K from Equations (11a) and (11b) might be shortened as

K = Bsinh(aS)exp
(
− Q

kT

)
(12)

If Equation (12) takes an inverse function, the generalized life-stress (LS) model could
be expressed as

TF = A[sinh(aS)]−1exp
(

Ea

kT

)
(13)

The sine hyperbolic formula [sinh(aS)]−1 in Equation (13) may be stated as: (1) (S)−1

has a little linear consequence at first, (2) (S)−n has what is considered as medium conse-
quence, and (3) (eaS)

−1 is big in the end (Figure 5).
As ALT is commonly carried out in the medium scope, Equation (13) could be rede-

fined as

TF = A(S)−nexp
(

Q
kT

)
(14)

where n = −
[

∂ln(TF)
∂ln(S)

]
T

, Q = −
[

∂ln(TF)
∂ln( 1

T )

]
S
.

For a specified crack and part geometry, Equation (14) can also be expressed as

TF = B(∆K)−nexp
(

Q
kT

)
(15)

where B is constant, stress intensity factor ∆K = YS(or ∆σ)
√

πa,
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That is, a (fluctuating) stress range, S, moves the crack to develop at some rate. As
a certain stress range (or intensity range ∆K) is exerted to a material for some number
of cycles ∆N, it moves the crack to develop in length by a particular quantity ∆a. We
know that the crack growth rate at a specific stress intensity range is thus obtained by the
derivative ∆a/∆N that is dependent on part geometries such as holes, thin area, grooves,
etc. So, the crack grows until it gets to a critical size and failure happens. The cause for this
acceleration in growth is that the growth rate is dependent on the stress intensity factor at
the crack tip, such as holes, notch, etc., and the stress intensity factor is dependent on the
crack size, a.

The stress of a mechanical system is not a simple quantity to calculate for accelerated
testing. If the power is stated as the process of multiplying flows and effort, the stresses
originate from effort in a multi-port system [31].

Because the stress due to numerous energy fields in Equation (11a,b) for a mechanical
system originates from effort, Equation (14) or (15) could be redefined as

TF = A(S)−nexp
(

Ea

kT

)
= C(e)−λexp

(
Ea

kT

)
(16)

where C is constant.
The acceleration factor (AF) could be restated as the proportion between the sufficient

elevated stress levels and usual working conditions. From Equation (16), AF could be
adjusted to integrate the effort notions:

AF =

(
S1

S0

)n[Ea

k

(
1
T0
− 1

T1

)]
=

(
e1

e0

)λ[Ea

k

(
1
T0
− 1

T1

)]
(17)

To acquire the number of mission cycles of a parametric ALT from the target BX
lifetime on the test scheme, the sample size formulation integrated with acceleration factors
needs to be determined (See Appendix A).

n ≥ (r + 1)× 1
x
×
(

L∗B
AF · ha

)β

+ r (18)

where the sample size formulation in Equation (18) may be expressed as n ~ (failure
numbers + 1)·(1/accumulative failure rate)·((target lifetime/(testing plan time)) ˆ β + r.

Equation (18) also may be confirmed as [32]. That is, for n� r, sample size formulation
may be stated as:

n = −χ2
α(2r + 2)

2mβlnRL
=

χ2
α(2r + 2)

2mβlnR−1
L

=
χ2

α(2r + 2)

2mβln(1− FL)
−1 =

χ2
α(2r + 2)

2
× 1

ln(1− FL)
−1 ×

(
LB
h

)β

(19)

where m ∼= h/LB.
Otherwise, for r = 0, the sample size formulation may be stated as:

n =
ln(1− C)
mβlnRL

=
−ln(1− C)
−mβlnRL

=
ln(1− C)−1

mβlnRL−1 =
lnα−1

mβlnRL−1 =
χ2

α(2)
2
× 1

ln(1− FL)
−1 ×

(
LB
h

)β

(20)

where 2lnα−1 = χ2
α(2).

So, we know that Equations (19) and (20) have the same formulation as Equation (18).
If the life of a mechanical system, such as a drawer, is targeted to be a B1 life 10 years,

the mission cycles might be attained for an assigned collection of samples subjected to
repeated (food) loading. In performing parametric ALTs, the design flaws of a newly
designed mechanical system could be recognized to help fulfill the lifespan target [33–35].
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2.4. Case Study—Enhancing the Fatigue Life of a New Drawer System in Domestic Refrigerator

One popular type of refrigerator is the French door refrigerator. Figure 6 shows one
with a new designed drawer system. It is made up of a box, two guide rails, and a support
in the center between the two drawers. Food is stocked in the drawers. The drawer system
should be designed to sustain the working circumstances subjected to it by the consumer.
In the United States, the representative customer opens drawers in the refrigerator to store
food from five to ten times per day. Stocking food in the French-door refrigerator involves
repetition: (1) the drawer is opened, (2) food is placed in it, and then (3) it is closed. The
drawers have different amounts of food stored in them when the customer utilizes it.
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created failures (cracks) in the drawers once they were subjected to repeated opening and 
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Figure 6. French-door refrigerator and drawer system. (a) French-door refrigerator; (b) mechanical
components in a drawer: box 1©, two guide rails 2©, support center 3©.

The drawer system returned from the market had been fracturing, causing customers
to ask for replacements. As the drawers were failing from being subjected to repeated
stresses from openings/closings, it was clear that there was a design problem with the
drawer system. Failed drawers from the field showed the drawer system had crucial
design defects, which include stress risers—thin ribs and sharp corner angles. These defects
created failures (cracks) in the drawers once they were subjected to repeated opening and
closing with food loads in the drawers even though the drawer structure was designed to
endure repeated food loading under anticipated customer working conditions (Figure 7).

When customers opened the drawer, they usually took food out or put food into it.
Relying on the end-user working conditions, the drawer system experienced repeated
loading as food was loaded/unloaded and the drawer was opened and shut. To correctly
work the drawer system, many mechanical structural parts in drawer assembly should be
designed to handle the expected loading from the consumers. Because the concentrated
stresses in a mechanical system occur at stress raisers such as sharp corner angles, it is
crucial to determine these design flaws experimentally and then modify them.
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From the drawer system and its free-body diagram (Figure 7b), we knew that the draw-
ing force came from the food weight. The exerted force in the drawer can be expressed as

Fbox = µWlaod (21)

As the stress in a drawer system relies on the exerted food load, Equation (16) could
be represented as

TF = A(S)−n = A(Fbox)
−λ = A(µW)−λ = B(W)−λ (22)

where A and B are constants
Therefore, the AF in Equation (17) can be restated as follows:

AF =

(
S1

S0

)n
=

(
F1

F0

)λ

=

(
W1

W0

)λ

(23)

For the French-door refrigerator, including the drawer system, the environmental (or
working) customer conditions are approximately 0–43 ◦C with 0.2–0.24 g’s of acceleration,
and a relative humidity ranging from 0 to 95%. As previously mentioned, the drawer
cycles per day were between 5 and 10 times. With the design criterion of a product
lifetime for 10 years, L∗B, the drawer structure was subjected to 36,500 usage cycles for the
worst occasion.

Under a lifetime target—B1 life 10 years, if the number of lifetime cycles L∗B and AF
are computed for assigned sample size, the actual mission cycles, ha, might be determined
from Equation (18). ALT equipment may thus be built and operated in accordance with the
expected consumer usage conditions of the drawer system. Through parameter ALTs we
might attain the design missing parameters (or design flaws) for a new mechanical system.

The greatest force exerted by the customer in storing food, W1, was 0.059 kN (6 kgf).
To decide the stress level for ALT, we used the step-stress life test that can assess the lifetime
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under constant used-condition for diverse elevated food weights such as 0.088 kN (9 kgf),
0.117 kN (12 kgf), and 0.137 kN (14 kgf) [36]. As the different stress level is changed, the
failure cycles of the drawer system at a specific stress level can be noticed. That is, the crack
at first grows slowly, but the growth accelerates (i.e., da/dN increases) as the crack size
increases due to accelerated load. So, we can pinpoint the failure time, in which it reaches a
critical size and failure happens at the design weak points.

For ALT, the exerted force, W2, took double to 0.117 kN (12 kgf). With a cumulative
damage exponent, λ, of 2, the AF was 4.0 from Equation (23). To acquire the missing design
parameters of a new drawer structure, the lifetime target could be put to be more than B1
life 10 years. At first, we supposed that the shape parameter β was 2.0, the real test cycles
computed from Equation (18) were 37,000 cycles for six sample units. If the parametric ALT
fails less than once during 37,000 cycles, the lifetime for drawer structure will be assured to
be B1 life 10 years

To signal the number of test cycles, beginning, and ending of the equipment, etc., a
testing apparatus with control console was utilized to operate the samples. As the start
knob on the controller console gave the starting signal, the straightforward hand-shaped
arms pushed and pulled the drawer. The greatest mechanical food force due to accelerated
load (0.117 kN) was exerted to the drawer system (Figure 8).
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3. Results and Discussion

In the 1st ALT, we found the failure time of the following stress levela—0.088 kN
(9 kgf), 0.117 kN (12 kgf), and 0.137 kN (14 kgf). For 0.088 kN (9 kgf), the cover of the
drawer fractured at 14,000 cycles, 19,000 cycles, and 21,000 cycles. For 0.117 kN (12 kgf), it
fractured at 3800 cycles and 4800 cycles. For 0.137 kN (14 kgf), it fractured at 550 cycles,
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650 cycles, and 800 cycles. To investigate the fracture surfaces, they were observed by SEM.
We found the voids produced because of falling out particles (Figure 9).
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Finally, we determined the stress level as 0.117 kN (12 kgf) for the parametric ALT
because it had a relatively acceptable data—linearity, contrasted with the other stress level.
It also can be seen that increasing the repeated food weight has the effect of shifting the
left of failure time as stress range (or intensity range ∆K) increased and the crack growth
rate moved up, but it did not influence the gradient of the growth rate curve and shape
parameter, β (Figure 10).
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Initially, when 1.17 kN (12 kgf), as the accelerated weight in drawer was loaded,
the left/right rollers on the rail were taken away and the center support rail was
deformed so that the drawer system no longer slid. Because of insufficient strength
due to design flaws, the draw system was modified by extending the roller support
to 7 mm (C2) on the guide rail, as well as adding up strengthened ribs on the center
support rail (C1) (Figure 11 and Table 3).
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 When carefully observing the returned drawers from the marketplace and the first
ALT, failure locations were found to be in the junction regions of the drawer cover and
its body structure, as a consequence of high repeated stress and expected high da/dN.
Figure 10 also provides a Weibull plot of the ALT results, compared to the data from the
market. As two patterns had similar slopes on its plot, it was recognized that each loading
of the first ALT and the market was similar for the operation conditions. For the shape
parameter, β, the final shape parameter from the chart was affirmed to be 4.2 (Figure 10),
compared with the estimated value—2.0. Based on both test consequences and the Weibull
plot, the ALT was effective because it identified the design flaws that were accountable for
the field failures. Based on the pictures from the ALT and the field and Weibull plot, the
tests helped in identifying the problems in the design responsible for market failures and
the poor product lifetime.

Due to design defects such as no corners in the high stress areas of intersection (A), the
repeated loading of the drawers in conjunction with these structural defects may have been
fracturing the drawer cover. These design defects can be altered by: (1) making thicker
reinforced ribs, Rib1, C3, from T2.0 mm to T3.0 mm; (2) applying the fillets, Fillet1, C4, from
R0.0 mm to R1.0 mm (Figure 12).
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Stress analysis, which may be integrated with fatigue analysis and parametric ALT,
was performed by utilizing a finite element analysis (FEA). As the drawer system was
attached against the wall, the uncomplicated food loads, as seen in Figure 7, were exerted.
Using materials and processing conditions similar to those of the drawer, the constitutive
properties of the materials such as polypropylene (drawer structure) were decided. For
the old and new designs, we individually evaluated the maximum stresses. Based on this
analysis, we could estimate the stress for the new designs for the drawer. After altering the
current designs to enhance the fatigue design, the approximated stress concentrations at the
intersection areas of the drawer decreased from 23.0 to 14.0 MPa using the FEM analysis.
We anticipated that the new design might be successful in lessening fatigue failure of the
drawer when subjected to repeated food loading under the customer usage conditions.

With the confirmed shape parameter β being 4.2, the real mission cycles determined
from Equation (18) were 19,000 cycles for six samples. If the drawer structure failed at
less than once for 13,000 cycles, its lifetime would be assured to be B1 life 10 years. In
the second ALT, the fractured guide rail and sunken roller in center support rail failed at
6000 cycles. When carefully inspecting the product failure in the second ALT, the guide
rail in drawer structure had no reinforced rib and insufficient corner rounding to endure
the repeated loading of the drawer. To improve the guide rail, it was altered by (1) adding
reinforced ribs, C5; (2) extending the corner rounding, C6, from R3 mm to R4 mm. The
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center support rail in drawer structure was altered by (1) extending the roller rib, C7, from
L0.0mm to L2.0mm (Figure 13 and Table 4).
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4. Summary and Conclusions

A reliability methodology for application to new mechanical systems was presented. It
contained: (1) a parametric ALT scheme created on product BX lifetime, (2) a load inspection
for ALT, (3) ALTs with the design alterations, and (4) an estimation of whether the system
design(s) fulfilled the target BX lifetime. We thus proposed a generalized stress model and
sample size formulation. As an example, a new refrigerator drawer system subjected to
repetitive food loading was discussed.

• For the original drawer design, when the accelerated loads were performed, the
left/right rail rollers were taken away and the center support rail was deformed be-
cause of the insufficient strength. The drawer structure might be altered by extending
the roller support in the guide rail as well as attaching up-strengthened ribs on the
center support.

• In the first ALT, the box cover in the drawer system fractured at the junction of the
drawer cover and its body structure. It was corrected by making the enforced ribs and
executing fillets thicker. As the approximated stress concentrations at the intersection
areas of drawer decreased from 23.0 to 14.0 MPa using the FEM analysis, we also
verified the appropriateness of new design for fatigue.

• In the second ALT, rollers in the center support were broken away and the guide
rails fractured. To improve them, the center support rail extended the roller rib. The
guide rail also was altered through: (1) adding the reinforced rib; (2) enhancing the
corner rounding.

• With these altered designs, in the third ALT, there were no reliability issues. The
altered drawer system was guaranteed to satisfy the lifetime need—B1 life 10 years.
By examining problematic field products, load analysis, and parametric ALTs with
design modifications, the mechanical system, such as in the drawer, was successful in
having a lengthy lifetime.

• By figuring out the design problems for returned products, we could design and
perform parametric ALTs. After reproducing the design failures, we might modify
them. Finally, we checked if the product achieved the lifetime target. In the process,
we utilized the (generalized) stress model and sample size equation.

This structured reliability method can be applied to other mechanical products such as
airplanes, automobiles, and construction machinery. To make use of this systematic method,
designers might recognize why products fail during their lifetime. If there are design flaws
in the structure which are subjected to repeated loads, the system will be unsuccessful
before its anticipated lifetime. After identifying the load features of a mechanical system,
engineers may perform the parametric ALT until the needed mission cycles. Ultimately,
parametric ALT can be utilized to recognize the design problems of a mechanical product
and alter them.
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a Crack size
BX Time which is a cumulated failure rate of X%: durability index
Ea Activation energy, eV
e Effort
f Flow
F(t) Unreliability
h Testing cycles (or cycles)
h* Non-dimensional testing cycles, h∗ = h/LB ≥ 1
k Boltzmann’s constant, 8.62 × 10−5 eV/deg
ka Constant of the counter-electromotive force
LB Target BX life and x = 0.01X, on the condition that x ≤ 0.2
n Number of test samples
R Ratio for minimum stress to maximum stress in stress cycle, σmin/σmax
r Failed numbers
Ra Electromagnetic resistance
S Stress
T Temperature, K
ti Test time for each sample
TF Time to failure
TL Ice-crushing torque in bucket, kN cm
X Accumulated failure rate, %
x x = 0.01X, on condition that x ≤ 0.2.
Greek symbols
η Characteristic life
λ Cumulative damage exponent in Palmgren–Miner’s rule
χ2 Chi-square distribution
α Confidence level
µ Friction coefficient
Superscripts
β Shape parameter in Weibull distribution

n Stress dependence, n = −
[

∂ln(Tf )

∂ln(S)

]
T

Subscripts
0 Normal stress conditions
1 Accelerated stress conditions

Appendix A. Derivation of Sample Size Equation for Redesign of Mechanical Systems
through ALT

To acquire the number of mission cycles of a parametric ALT from the target BX
lifetime on the test scheme, the sample size formulation integrated with acceleration factors
needs to be determined.

Currently, numerous methods have been suggested to settle matters on sample size.
The Weibayes model, utilizing Weibull examination, is a popularly accepted procedure
of inspecting reliability data. However, it cannot be straightforwardly utilized due to the
complication of the mathematical equation. The cases as failures (r ≥ 1) and no failures
(r = 0) need to be separate. As a consequence, it is practical to obtain a probable sample
size formulation that could provide the mission cycle after right presumptions.

The Weibull distribution is popularly utilized because it can be simply described as a
shape parameter and characteristic life. That is, if the product pursues Weibull distribution,
the accumulated failure rate, F(t), in Equation (2) is stated as

F(t) = 1− e−(
t
η )

β

(A1)

where t is time, η is characteristic life, and β is shape parameter.
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When t = LB in Equation (A1), the correlation between BX life, LB, and characteristic
life, η, may be stated as

Lβ
B =

(
ln

1
1− x

)
· ηβ (A2)

where x = 0.01F(t).
Product failures in the bathtub curve might be categorized into three sections: infant

mortality (β < 1), random failure (β = 1), and wear-out failure ((β > 1) that may be defined
as shape parameter in the Weibull distribution. For approximating lifetime, the Weibayes
method is explained as Weibull analysis with an assigned shape parameter that can be
presumed from prior learning or actual testing.

For a Weibayes analysis, the characteristic life can be obtained from utilizing the
maximum likelihood estimate (MLE) as follows:

η
β
MLE =

∑n
i=1 tβ

i
r

(A3)

where ηMLE is the MLE of the characteristic life, n is the whole number of samples, ti is the
full test length for each sample, and r is the number of failures.

When the failure number is r ≥ 1 and confidence level is 100(1–α), the characteristic
life, ηα, could be approximated as the following middle term and altered into the last term
utilizing Equation (A3):

η
β
α =

2r
χ2

α(2r + 2)
· ηβ

MLE =
2

χ2
α(2r + 2)

·∑n
i=1 tβ

i for r ≥ 1 (A4)

where there are no failures, we know that 2ln(α−1) = χ2
2(2). That is, at this moment, the

first term, ln 1
α , is mathematically identical to the Chi-squared value, χ2

α(2)
2 , if p-value is α.

The characteristic life, ηα, could be defined as follows:

η
β
α =

2
χ2

α(2)
·∑n

i=1 tβ
i =

1
ln 1

α

·∑n
i=1 tβ

i for r = 0 (A5)

Thus, Equation (A4) can be applicable to all occasions. In other words,

η
β
α =

2
χ2

α(2r + 2)
·∑n

i=1 tβ
i for r ≥ 0 (A6)

If Equation (A6) is inserted into Equation (A2), BX life may be expressed as

Lβ
B =

(
ln

1
1− x

)
· ηβ ∼= x · ηβ = x · 2

χ2
α(2r + 2) ∑n

i=1 tβ
i for x ≤ 0.2 (20%) (A7)

If the sample size is big enough, the planned testing time might advance as

∑n
i=1 tβ

i
∼= n · hβ (A8)

where h is the planned test time
The approximated lifetime (LB) in the test might be as lengthy as the targeted life (L∗B).

That is, if Equation (A8) is substituted in Equation (A7), we can obtain as follows:

Lβ
B = x · 2

χ2
α(2r + 2) ∑n

i=1 tβ
i
∼= x · 2

χ2
α(2r + 2)

· n · hβ ≥ L∗βB (A9)

If Equation (A9) is altered, the sample size formulation is redefined as follows:

n ≥ χ2
α(2r + 2)

2
× 1

x
×
(

L∗B
h

)β

(A10)
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For a 60% confidence level, the first expression χ2
α(2r+2)

2 may be estimated as (r + 1).
Thus, Equation (A10) may be estimated as follows:

n ≥ (r + 1)× 1
x
×
(

L∗B
h

)β

(A11)

If the acceleration factors in Equation (17) are attached to the planned testing time h,
Equation (A11) is defined as follows:

n ≥ (r + 1)× 1
x
×
(

L∗B
AF · ha

)β

+ r (A12)

where the sample size formulation in Equation (A12) may be expressed as n ~ (failure
numbers + 1)·(1/accumulative failure rate)·((target lifetime/(testing plan time)) ˆ β + r.
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7. Bazaras, Ž.; Leonavičius, M.; Lukoševičius, V.; Raslavičius, L. Assessment of the Durability of Threaded Joints. Appl. Sci. 2021,

11, 12162. [CrossRef]
8. Qiu, B.; Kan, Q.; Kang, G.; Yu, C.; Xie, X. Rate-dependent transformation ratcheting-fatigue interaction of super-elastic NiTi alloy

under uniaxial and torsional loadings: Experimental observation. Int. J. Fatigue 2019, 127, 470–478. [CrossRef]
9. Sun, J.; Su, J.; Wang, A.; Chen, T.; Wei, G.W. Effect of laser shock processing with post-machining and deep cryogenic treatment

on fatigue life of GH4169 super alloy. Int. J. Fatigue 2019, 119, 261–267. [CrossRef]
10. Burhan, I.; Kim, H. S-N curve models for composite materials characterization: An evaluative review. J. Compos. Sci. 2018,

2, 38. [CrossRef]
11. Sutherland, H.J.; Mandell, J.F. Optimized Goodman diagram for the analysis of fiberglass composites used in wind turbines

blades. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005.
12. Campbell, F.C. (Ed.) Fatigue. In Elements of Metallurgy and Engineering Alloys; ASM International: Materials Park, OH, USA, 2008.
13. Chowdhury, S.; Taguchi, S. Robust Optimization: World’s Best Practices for Developing Winning Vehicles, 1st ed.; John Wiley and Son:

Hoboken, NJ, USA, 2016.
14. Montgomery, D. Design and Analysis of Experiments, 10th ed.; John Wiley and Son: Hoboken, NJ, USA, 2020.
15. Beer, F.P.; Johnston, E.R.; Mazurek, D.; Cornwell, P.; Self, B. Vector Mechanics for Engineers: Statics and Dynamics, 1st ed.; McGraw

Hill: New York, NY, USA, 2018.
16. Goodno, B.J.; Gere, J.M. Mechanics of Materials, 9th ed.; Cengage Learning, Inc.: Boston, MA, USA, 2017.
17. Anderson, T. Fracture Mechanics—Fundamentals and Applications, 3rd ed.; CRC: Boca Raton, FL, USA, 2017.
18. Garcia-Giner, V.; Han, Z.; Giuliani, F.; Porter, A.E. Nanoscale Imaging and Analysis of Bone Pathologies. Appl. Sci. 2021,

11, 12033. [CrossRef]
19. McPherson, J. Reliability Physics and Engineering: Time-to-Failure Modeling; Springer: New York, NY, USA, 2010.
20. Zhang, Z.; Geng, A. Development and Evaluation of Low-Damage Maize Snapping Mechanism Based on Deformation Energy

Conversion. Appl. Sci. 2021, 11, 12158. [CrossRef]
21. Reddy, J.N. An Introduction to Nonlinear Finite Element Method with Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics,

2nd ed.; Oxford Press: Oxford, UK, 2021.
22. Matsuishi, M.; Endo, T. Fatigue of metals subjected to varying stress. Jpn. Soc. Mech. Eng. 1968. Available online: https://www.

scinapse.io/papers/37625411 (accessed on 3 April 2022).
23. Janssens, K.G.F. Universal cycle counting for non-proportional and random fatigue loading. Int. J. Fatigue 2020, 133, 105409. [CrossRef]
24. Palmgren, A.G. Die Lebensdauer von Kugellagern. Z. Ver. Dtsch. Ing. 1924, 68, 339–341.
25. IEEE Standard Glossary of Software Engineering Terminology. IEEE STD 610.12-1990. Standards Coordinating Committee of

the Computer Society of IEEE. (Reaffirmed September 2002). Available online: https://ieeexplore.ieee.org/document/159342
(accessed on 31 December 2020).

http://doi.org/10.1016/j.ress.2019.106604
http://doi.org/10.3390/app12073443
http://doi.org/10.3390/app112412162
http://doi.org/10.1016/j.ijfatigue.2019.06.034
http://doi.org/10.1016/j.ijfatigue.2018.10.012
http://doi.org/10.3390/jcs2030038
http://doi.org/10.3390/app112412033
http://doi.org/10.3390/app112412158
https://www.scinapse.io/papers/37625411
https://www.scinapse.io/papers/37625411
http://doi.org/10.1016/j.ijfatigue.2019.105409
https://ieeexplore.ieee.org/document/159342


Appl. Sci. 2022, 12, 4497 21 of 21

26. Klutke, G.; Kiessler, P.C.; Wortman, M.A. A critical look at the bathtub curve. IEEE Trans. Reliabil. 2015, 52, 125–129. [CrossRef]
27. Kreyszig, E. Advanced Engineering Mathematics, 10th ed.; John Wiley and Son: Hoboken, NJ, USA, 2011; p. 683.
28. Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley and Son: Hoboken, NJ, USA, 2006.
29. Plawsky, J.L. Transport Phenomena Fundamentals, 3rd ed.; John Wiley and Son: Hoboken, NJ, USA, 2014.
30. Grove, A. Physics and Technology of Semiconductor Device, 1st ed.; Wiley International Edition: New York, NY, USA, 1967; p. 37.
31. Karnopp, D.C.; Margolis, D.L.; Rosenberg, R.C. System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems, 6th ed.;

John Wiley & Sons: New York, NY, USA, 2012.
32. Wasserman, G. Reliability Verification, Testing, and Analysis in Engineering Design; Marcel Dekker: New York, NY, USA, 2003; p. 228.
33. Woo, S.; Pecht, M. Failure analysis and redesign of a helix upper dispenser. Eng. Fail. Anal. 2008, 15, 642–653. [CrossRef]
34. Woo, S.; O’Neal, D.; Pecht, M. Design of a hinge kit system in a Kimchi refrigerator receiving repetitive stresses. Eng. Fail. Anal.

2009, 16, 1655–1665. [CrossRef]
35. Woo, S.; O’Neal, D.; Pecht, M. Failure analysis and redesign of the evaporator tubing in a Kimchi refrigerator. Eng. Fail. Anal.

2010, 17, 369–379. [CrossRef]
36. Tang, L.C. Multiple-steps step-stress accelerated life tests: A model and its spreadsheet analysis. Int. J. Mater. Prod. Technol. 2004,

21, 423–434. [CrossRef]

http://doi.org/10.1109/TR.2002.804492
http://doi.org/10.1016/j.engfailanal.2007.10.005
http://doi.org/10.1016/j.engfailanal.2008.11.010
http://doi.org/10.1016/j.engfailanal.2009.08.003
http://doi.org/10.1504/IJMPT.2004.004999

	Introduction 
	Parametric Accelerated Life Testing for Mechanical Product 
	Meaning of BX Lifetime 
	Placing an Entire Parametric ALT Scheme 
	Generalized Time to Failure Model and Sample Size Equation for Parametric ALT 
	Case Study—Enhancing the Fatigue Life of a New Drawer System in Domestic Refrigerator 

	Results and Discussion 
	Summary and Conclusions 
	Appendix A
	References

