Impact of Seat Inclination and Misalignment on Airborne Pollutant Transport in a Single-Aisle Aircraft Cabin
Abstract
:1. Introduction
2. Method
2.1. Case Design and Boundary Conditions
2.2. Numerical Model and Solution Strategies
2.3. Numerical Model Validation
3. Results
3.1. Model Validation Results
3.2. Flow and Pollutant Transport in the Reference Case (Case 1)
3.3. Influence of Cabin Seat Inclination on the Transport of Pollutants
3.4. Impact of Misalignment of Seat Rows on the Transport of Pollutants
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Sotomayor-Castillo, C.; Radford, K.; Li, C.; Nahidi, S.; Shaban, R.Z. Air travel in a COVID-19 world: Commercial airline passengers’ health concerns and attitudes towards infection prevention and disease control measures. Infect. Dis. Health 2021, 26, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Khanh, N.C.; Thai, P.Q.; Quach, H.L.; Thi, N.A.H.; Dinh, P.C.; Duong, T.N.; Mai, L.T.Q.; Nghia, N.D.; Tu, T.A.; Quang, L.N.; et al. Transmission of SARS-CoV 2 During Long-Haul Flight. Emerg. Infect. Dis. 2020, 26, 2617–2624. [Google Scholar] [CrossRef] [PubMed]
- WHO. Modes of Transmission of Virus Causing COVID-19. In Implications for IPC Precaution Recommendations: Scientific Brief; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Yan, Y.; Li, X.; Shang, Y.; Tu, J. Evaluation of airborne disease infection risks in an airliner cabin using the Lagrangian-based Wells-Riley approach. Build. Environ. 2017, 121, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Mangili, A.; Gendreau, M.A. Transmission of infectious diseases during commercial air travel. Lancet 2005, 365, 989–996. [Google Scholar] [CrossRef]
- Hanna, S. Transport and dispersion of tracers simulating COVID-19 aerosols in passenger aircraft. Indoor Air 2021, 32, e12974. [Google Scholar] [CrossRef]
- Zee, M.; Davis, A.C.; Clark, A.D.; Wu, T.; Jones, S.P.; Waite, L.L.; Cummins, J.J.; Olson, N.A. Computational Fluid Dynamics Modeling of Cough Transport in an Aircraft Cabin. Sci. Rep. 2021, 11, 23329. [Google Scholar] [CrossRef]
- Hunt, E.H.; Reid, D.H.; Space, D.R.; Tilton, F.E. Commercial airliner environmental control system. In Proceedings of the Aerospace Medical Association Annual Meeting, Anaheim, CA, USA, 7–11 May 1995. [Google Scholar]
- Zhang, T.; Li, P.; Zhao, Y.; Wang, S. Various air distribution modes on commercial airplanes, Part 1: Experimental measurement. HVACR Res. 2013, 19, 457–470. [Google Scholar]
- Zhang, T.; Li, P.; Zhao, Y.; Wang, S. Various air distribution modes on commercial airplanes, Part 2: Computational fluid dynamics modeling and validation. HVACR Res. 2013, 19, 457–470. [Google Scholar]
- Zhang, T.; Chen, Q. Novel air distribution systems for commercial aircraft cabins. Build. Environ. 2007, 42, 1675–1684. [Google Scholar] [CrossRef]
- You, R.; Lin, C.-H.; Wei, D.; Chen, Q. Evaluating the commercial airliner cabin environment with different air distribution systems. Indoor Air 2019, 29, 840–853. [Google Scholar] [CrossRef]
- Cao, Q.; Liu, M.; Li, X.; Lin, C.H.; Wei, D.; Ji, S.; Zhang, T.T.; Chen, Q. Influencing factors in the simulation of airflow and particle transportation in aircraft cabins by CFD. Build. Environ. 2022, 207, 108413. [Google Scholar] [CrossRef]
- Wan, M.P.; Sze To, G.N.; Chao, C.Y.H.; Fang, L.; Melikov, A. Modeling the Fate of Expiratory Aerosols and the Associated Infection Risk in an Aircraft Cabin Environment. Aerosol Sci. Technol. 2009, 43, 322–343. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Mazumdar, S.; Zhang, T.; Chen, Q. Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup. Build. Environ. 2009, 44, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Sagnik, M.; Chen, Q. Influence of cabin conditions on placement and response of contaminant detection sensors in a commercial aircraft. J. Environ. Monit. 2008, 10, 71–81. [Google Scholar]
- Li, J.; Cao, X.; Liu, J.; Wang, C.; Zhang, Y. Global airflow field distribution in a cabin mock-up measured via large-scale 2D-PIV. Build. Environ. 2015, 93, 234–244. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Wang, C.; Wesseling, M.; Müller, D. PIV experimental study of the large-scale dynamic airflow structures in an aircraft cabin: Swing and oscillation. Build. Environ. 2017, 125, 180–191. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.; Li, J.; Guo, Y.; Jiang, N. Turbulence characterization of instantaneous airflow in an aisle of an aircraft cabin mockup. Build. Environ. 2017, 116, 207–217. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Fan, M.; Liu, M.; Chang, D.; Wei, Z.; Lin, C.-H.; Ji, S.; Liu, J.; Shen, S.; et al. Experimental evaluation of particle exposure at different seats in a single-aisle aircraft cabin. Build. Environ. 2021, 202, 108049. [Google Scholar] [CrossRef]
- Liu, M.; Chang, D.; Liu, J.; Ji, S.; Lin, C.H.; Wei, D.; Long, Z.; Zhang, T.; Shen, X.; Cao, Q.; et al. Experimental investigation of air distribution in an airliner cabin mockup with displacement ventilation. Build. Environ. 2021, 191, 107577. [Google Scholar] [CrossRef]
- Li, B.; Duan, R.; Li, J.; Huang, Y.; Yin, H.; Lin, C.H.; Wei, D.; Shen, X.; Liu, J.; Chen, Q. Experimental studies of thermal environment and contaminant transport in a commercial aircraft cabin with gaspers on. Indoor Air 2016, 26, 806–819. [Google Scholar] [CrossRef]
- Khaled, T.; Mohamed, A.; Omar, A.M.; Anderoglu, O.; Poroseva, S.V. Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation. Phys. Fluids 2021, 33, 033312. [Google Scholar]
- Li, F.; Liu, J.; Pei, J.; Chen, Q. Experimental study of gaseous and particulate contaminants distribution in an aircraft cabin. Atmos. Environ. 2014, 85, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, X.; Fang, X.; Tu, J. Transmission of COVID-19 virus by cough-induced particles in an airliner cabin section. Eng. Appl. Comput. Fluid Mech. 2021, 15, 934–950. [Google Scholar] [CrossRef]
- Gupta, J.K.; Lin, C.-H.; Chen, Q. Transport of expiratory droplets in an aircraft cabin. Indoor Air 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Wang, W.; Wang, F.; Lai, D.; Chen, Q. Evaluation of SARS-COV-2 transmission and infection in airliner cabins. Indoor Air 2022, 32, e12979. [Google Scholar] [CrossRef]
- ASHRAE. 2019 Ashrae Handbook Heating, Ventilating, and Air-Conditioning Application SI Edition. Ashrae Hvac Applications Ip Handbook-2019; ASHRAE: Atlanta, GA, USA, 2019. [Google Scholar]
- Gupta, J.K.; Lin, C.H.; Chen, Q. Characterizing exhaled airflow from breathing and talking. Indoor Air 2010, 20, 31–39. [Google Scholar] [CrossRef]
- Liu, S.; Xu, L.; Chao, J.; Shen, C.; Liu, J.; Sun, H.; Xiao, X.; Nan, G. Thermal environment around passengers in an aircraft cabin. HVACR Res. 2013, 19, 627–634. [Google Scholar]
- Fabian, P.; McDevitt, J.J.; DeHaan, W.H.; Fung, R.O.P.; Cowling, B.J.; Chan, K.H.; Leung, G.; Milton, D.K. Influenza virus in human exhaled breath: An observational study. PLoS ONE 2008, 3, e2691. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yan, Y.; Zhao, B.; Tu, J.; Liu, J.; Li, F.; Wang, C. Assessment of turbulence models and air supply opening models for CFD modelling of airflow and gaseous contaminant distributions in aircraft cabins. Indoor Built Environ. 2018, 27, 606–621. [Google Scholar] [CrossRef]
- Schatzmann, M.; Olesen, H.; Franke, J. COST 732 Model Evaluation Case Studies: Approach and Results; Meteorological Institute: Hamburg, Germany, 2010.
- Zukowska, D.; Melikov, A.; Popiolek, Z. Impact of geometry of a sedentary occupant simulator on the generated thermal plume: Experimental investigation. HVACR Res. 2012, 18, 795–811. [Google Scholar]
- Melikov, A. Breathing thermal manikins for indoor environment assessment: Important characteristics and requirements. Eur. J. Appl. Physiol. 2004, 92, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.V. Benchmark test for a computer simulated person. Indoor Air 2003, 14, 144–156. [Google Scholar]
Airplane Model | Seat Number | Seat Shape | Seat Structure | Manikins | Method | References |
---|---|---|---|---|---|---|
B767 | 49 in 7 rows | Simplified seats | Upright | Realistic body profiles | Measurement | Zhang, 2013 [9] |
B767 | 49 in 7 rows | Simplified seats | Upright | Tealistic body profiles | CFD | Zhang, 2013 [10] |
B767 | 28 in 4 rows | Simplified seats | Upright | Rectangular boxes | CFD | Zhang, 2007 [11] |
B767 | 49 in 7 rows | Simplified seats | Upright | Realistic body profiles | CFD | You, 2019 [12] |
B737 | 42 in 7 rows | Simplified seats | Upright | Realistic body profiles | CFD | You, 2019 [12] |
B737 | 42 in 7 rows | Simplified seats | Upright | Rectangular boxes and cylinders | CFD | Cao, 2022 [13] |
B737 | 42 in 7 rows | Realistic airplane seats | Upright | Realistic body profiles | Measurement | Li, 2015 [17], Li, 2017 [18], Wang, 2017 [19] |
B737 | 36 in 6 rows | Realistic airplane seats | Upright | Rectangular boxes and cylinders | Measurement | Li, 2021 [20] |
B737 | 42 in 7 rows | Realistic airplane seats | Upright | Rectangular boxes and cylinders | Measurement | Liu, 2021 [21] |
B737 | 42 in 7 rows | Realistic airplane seats | Upright | Realistic body profiles | CFD | Yan, 2017 [4] |
Airplane Model | Seat Number | Seat Shape | Seat Structure | Manikins | Method | References |
---|---|---|---|---|---|---|
Unknown | 49 in 7 rows | Simplified Seats | All seats inclined (15°) | Rectangular boxes | CFD | Gupta, 2010 [26] |
B787-9 | 39 in 5 rows | Simplified Seats | All seats lying flat | Cylinders | CFD | Wang, 2021 [27] |
B737 | 60 in 10 rows | Realistic airplane seats | All seats inclined (12.1°) | Cylinders | CFD | Khaled, 2021 [23] |
B737 | 3 in 1 rows | Realistic airplane seats | All seats inclined (unknown angels) | Realistic body | CFD | Yan, 2021 [25] |
Airplane Model | Seat Number | Reasons for Asymmetric Structure | Seat Shape | Seat Structure | Manikins | Method | References |
---|---|---|---|---|---|---|---|
Unknown | 21 in 3 rows | Seat occupancy rate: 15/21 | Simplified Seats | Upright | Rectangular boxes | CFD | Wan, 2009 [14] |
Unknown | 28 in 4 rows | Seat occupancy rate: 14/28 | Simplified Seats | Upright | Rectangular boxes | CFD | Zhang, 2009 [15] |
Unknown | 18 in 4 rows | Seats staggered | Simplified Seats | Upright | Rectangular boxes | CFD | Sagnik, 2008 [16] |
MD-82 | 25 in 5 rows | 3 + 2 passengers in each row | Realistic airplane seats | Upright | Realistic body profiles | Measurement | Li, 2016 [22] |
Case | Seat Layout | Illustration | Assumed Pollutant Source Position |
---|---|---|---|
1 | Upright seats in symmetric layout | Figure 1 | 4B, 4E |
2 | Only seats 4A to 4C inclined | Figure 2a | 4B |
3 | Seats inclined in half a cabin | Figure 2b | 4B, 4E |
4 | All seats inclined but in symmetric layout | Figure 2c | 4B |
5 | Misaligned seat rows | Figure 2d | 4B, 4E |
Parameter | Value | Parameter | Value |
---|---|---|---|
Cabin air pressure | 85 kPa | Ceiling temperature | 22 °C |
Ventilation rate per person | 9.5 L/s | Lighting temperature | 29.4 °C |
Width of air-supply opening | 15 mm | Side wall temperature | 22 °C |
Air-supply speed | 2.43 m/s | Floor temperature | 23 °C |
Air supply direction from the horizontal | 30° | Manikin skin temperature | 30.1 °C |
Air-supply temperature | 19.4 °C | Exhalation air temperature | 33 °C |
Width of air-exhaust opening | 65 mm | Seat | Adiabatic |
Velocity | Concentration | |
---|---|---|
Validation in this study | 0.396 | 0.481 |
Validation in the literature [13] | 0.455 | 0.551 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Fan, M.; Liu, S. Impact of Seat Inclination and Misalignment on Airborne Pollutant Transport in a Single-Aisle Aircraft Cabin. Appl. Sci. 2022, 12, 4538. https://doi.org/10.3390/app12094538
Zhang T, Fan M, Liu S. Impact of Seat Inclination and Misalignment on Airborne Pollutant Transport in a Single-Aisle Aircraft Cabin. Applied Sciences. 2022; 12(9):4538. https://doi.org/10.3390/app12094538
Chicago/Turabian StyleZhang, Tengfei (Tim), Mingqi Fan, and Sumei Liu. 2022. "Impact of Seat Inclination and Misalignment on Airborne Pollutant Transport in a Single-Aisle Aircraft Cabin" Applied Sciences 12, no. 9: 4538. https://doi.org/10.3390/app12094538
APA StyleZhang, T., Fan, M., & Liu, S. (2022). Impact of Seat Inclination and Misalignment on Airborne Pollutant Transport in a Single-Aisle Aircraft Cabin. Applied Sciences, 12(9), 4538. https://doi.org/10.3390/app12094538