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Abstract: This paper introduces and illustrates an approach to automatically detecting and selecting
“critical” road segments, intended for application in circumstances of limited human or technical
resources for traffic monitoring and management. The reported study makes novel contributions
at three levels. At the specification level, it conceptualizes “critical segments” as road segments
of spatially prolonged and high traffic accident risk. At the methodological level, it proposes a
two-stage approach to traffic accident clustering and selection. The first stage is devoted to spatial
clustering of traffic accidents. The second stage is devoted to selection of clusters that are dominant in
terms of number of accidents. At the implementation level, the paper reports on a prototype system
and illustrates its functionality using publicly available real-life data. The presented approach is
psychologically inspired to the extent that it introduces a clustering criterion based on the Gestalt
principle of proximity. Thus, the proposed algorithm is not density-based, as are most other state-of-
the-art clustering algorithms applied in the context of traffic accident analysis, but still keeps their
main advantages: it allows for clusters of arbitrary shapes, does not require an a priori given number
of clusters, and excludes “noisy” observations.

Keywords: traffic accident; clustering; spatially prolonged risk; Gestalt; proximity; open data

1. Introduction

Road traffic accidents represent a global health and social problem. It is estimated that
approximately 1.35 million people die each year in traffic accidents, up to 50 million are
injured, and the costs for countries are approximately equal to three percent of their annual
gross domestic product [1]. In the EU, 22,700 people die each year in traffic accidents and
120,000 are seriously injured, while the external cost of road traffic accidents represents
approximately two percent of the EU’s annual gross domestic product [2].

It comes as no surprise that significant research efforts have already been devoted
to the question of automatic detection of traffic-accident-prone areas. In this paper, we
consider a somewhat more specific question. One way to increase traffic safety is by traffic
monitoring and managing. However, in circumstances of limited human or technical
resources, it is necessary to select “critical” road segments to be the subject of monitoring or
managing. For example, Figure 1 provides a map of traffic accidents with injuries or death
that occurred in “inner” Belgrade, Serbia, over the one-year period from January 2021 to
December 2021. It shows a relatively dense distribution with no clear cluster separation.
The research question considered in this paper can be stated as follows: given data on
traffic accidents, how we should conceptualize, cluster, and select “critical” road segments?
Thus, the reported study makes novel contributions at three levels:

• At the specification level, we conceptualize “critical segments” as road segments of
spatially prolonged and high traffic accident risk (cf. Section 2);
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• At the methodological level, we propose a two-stage approach to traffic accident
clustering and selection (cf. Section 3);

• At the implementation level, we report on a prototype system and illustrate its func-
tionality using publicly available real-life data (cf. Section 4).

Figure 1. The map of road traffic accidents with injuries or death that occurred in “inner” Belgrade
over the one-year period from January 2021 to December 2021. The map was generated using the
ArcMap component of the Esri’s ArcGIS suite (https://www.esri.com).

The point of departure for this study is that spatial clustering of traffic accidents is
a Gestalt problem. One of the traditional problems considered by Gestalt psychologists
is related to the question of how humans naturally group points on a two-dimensional
plane. The approach presented in this paper is psychologically inspired to the extent that
it introduces a clustering criterion based on the Gestalt principle of proximity. In line
with this, the proposed algorithm is not density-based, as are most other state-of-the-art
clustering algorithms applied in the context of traffic-accident analysis. On the other hand,
it keeps their main advantages: it allows for clusters of arbitrary shapes, does not require
an a priori given number of clusters, and excludes “noisy” observations.

The rest of this paper is organized as follows. Section 2 provides an overview of related
work and describes the main idea underlying this study. Section 3 formally introduces a novel
approach to spatial clustering and selection of road traffic accidents. Section 4 illustrates the
functionality of a prototype system. Section 5 discusses the approach from the perspective of
other relevant studies inspired by the Gestalt principles. Section 6 concludes the paper.

2. Related Work and Main Idea

The research question of traffic accident clustering has been devoted significant re-
search attention [3–6]. For a more comprehensive overview, the reader may consult [3,7,8].
Here, we reflect on selected methodological aspects and emphasize the main idea of this
particular study.

Some of the widely applied clustering algorithms (e.g., k-means type
algorithms [9,10]) take the number of clusters as an input parameter (cf. also [11]). In
practice, the observed data are clustered repetitively by varying the input number of clus-
ters; then, the optimal number of clusters is selected with respect to some criterion. One

https://www.esri.com


Appl. Sci. 2022, 12, 4543 3 of 14

of such criteria is based on the pooled within-cluster sum of squares around the cluster
means [12]:

WCSS(t) =
t

∑
i=1

(
1

2ni
∑

j,k∈Ci

djk

)
, (1)

where t is the number of clusters, Ci is the ith cluster, ni is the number of observations
assigned to cluster Ci, and djk is the pairwise distance between observations j and k. A plot
of the within-cluster dispersion versus the applied number of clusters typically contains
an elbow that indicates the optimal number of clusters [12]. An alternative method to
determine the optimal number of clusters is described in [13].

In general, the requirement that the number of clusters should be given a priori rep-
resents a limitation. In addition, the k-means algorithm considers the entire dataset and
generates spherical shape clusters that are not necessarily suitable to represent traffic-
accident-prone areas [8]. To address these limitations, the density-based DBSCAN algo-
rithm [14] is aimed at eliminating noise from data and allowing for clusters of arbitrary
shapes. Instead of an a priori given number of clusters, this algorithm accepts two different
parameters: the maximum neighborhood radius and the minimum number of points re-
quired to form a dense region. The OPTICS algorithm [15] is an extension of the DBSCAN
algorithm that produces a density-based clustering structure of a dataset.

It is shown in [8] that the density-based clustering algorithms perform better than
the k-means algorithm in the context of traffic-accident analysis. Similarly to them, the
algorithm introduced in this paper allows for clusters of arbitrary shapes and does not
require that the number of clusters is given in advance. The proposed clustering approach
is not density-based, but inspired by the Gestalt principle of proximity [16]. According
to this principle, when humans are confronted with a number of the same visual stimuli
(e.g., points on a two-dimensional plane), the most natural form of grouping involves the
smallest interval. For example, for the set of points given in Figure 2i, the most natural
arrangement would be abc/def/ghi, while for the set in Figure 2ii the natural grouping
would be adg/beh/cfi. It is important to note that the natural grouping is by no means
impeded by increasing the number of points [16].

Figure 2. Illustration of the Gestalt principle of proximity. The most natural arrangement in (i) would
be abc/def/ghi; the most natural arrangement in (ii) would be adg/beh/cfi (inspired by [16]).

We build on the Gestalt principle of proximity and introduce a novel approach to
automatic spatial clustering of road traffic accidents. At the level of specification, our study
aims at detecting road segments of spatially prolonged and high traffic accident risk. A
road segment is considered to be of spatially prolonged risk if it is related to a nonempty
set N of traffic accident locations, which can be considered close to each other by means of
transitive closure. More precisely, let R be a relation defined on N as follows:

R = {(ni, nj) | d(ni, nj) ≤ τ} , (2)

where τ is a spatial threshold and d(ni, nj) is spatial distance between traffic accidents ni
and nj. A cluster is formed as a transitive closure of R, and detection of road segments of
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spatially prolonged risk is achieved by means of clustering, as explained in Section 3.2. Spatial
threshold τ is an input parameter to the introduced clustering algorithm, and the selection of
its particular value is discussed in Section 4.2.

In addition, a road segment is considered to be of high traffic accident risk if it can be
considered dominant in terms of number of accidents. The adaptive selection of high-risk
road segments are introduced in Section 3.3. Thus, our approach can be represented as a
two-stage algorithm. The first stage is devoted to spatial clustering of road traffic accidents.
The second stage is devoted to selection of dominant clusters.

3. Methods

In this section, we formally introduce our two-stage approach to road traffic accident
clustering and selection. Section 3.1 introduces the basic notions. Section 3.2 describes a
graph-based approach to spatial clustering of traffic accidents, and Section 3.3 introduces
an approach to adaptive selection of clusters that are dominant with respect to the number
of traffic accidents.

3.1. Basic Notions

A road traffic accident ni is represented as follows:

ni = (idi, ϕi, λi) , (3)

where

• idi is a unique identification number of ni;
• ϕi and λi are positional coordinates of ni, i.e., latitude and longitude expressed in

radians, respectively.

Spatial distance between traffic accidents ni and nj is calculated based on the haversine
formula [17]:

d(ni, nj) = 2 · R · atan2(
√

a(ni, nj) ·
√

1− a(ni, nj)) , (4)

where

a(ni, nj) = sin2 ϕ2 − ϕ1

2
+ cos ϕ1 cos ϕ2 sin2 λ2 − λ1

2
, (5)

function atan2 is an adoption of the arctangent function designed to calculate an unam-
biguous angle value, and R = 6371 · 103m (i.e., mean Earth radius). In addition, let τ be a
spatial threshold value representing an input parameter to the clustering algorithm, and let
N = {n1, n2, . . . , nk} be a set of traffic accidents that occurred in a given period.

3.2. The Clustering Algorithm

The proposed clustering approach adapts the graph-based image segmentation algo-
rithm introduced in [18] (cf. also [19]) and can be described as follows:

1. Throughout the algorithm execution, current clustering results are represented by
integer array:

C = (c(n1), c(n2), . . . , c(nk)) , (6)

where (∀ 1 ≤ i ≤ k)(c(ni) ∈ {1, 2, . . . , k}) and c(ni) represents the identification
number of a cluster to which traffic accident ni is currently assigned. In Step 1, each
traffic accident is assigned to its own cluster, i.e.,

(∀ 1 ≤ i ≤ k)(c(ni) = i) . (7)

2. Let D(N, τ) be a set of all combinations of two traffic accidents (i.e., a set of all
unordered pairs of traffic accidents) whose mutual distance is less than or equal to the
threshold value τ. In other words, set D(N, τ) contains pairs of traffic accidents that
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are considered close to each other and are thus candidates to be in the same cluster.
Without loss of generality, set D(N, τ) can be defined as

D(N, τ) = {(ni, nj)|{ni, nj} ⊂ N ∧ i < j ∧ d(ni, nj) ≤ τ} . (8)

3. We generate a sequence that contains all elements from D(N, τ) ordered by nonde-
creasing distance between traffic accidents.

D̂(N, τ) = (ni1 , nj1), (ni2 , nj2), . . . , (nim , njm) . (9)

4. We iterate through sequence D̂(N, τ) from the first to the last position. For each
ordered pair δp = (ni, nj) in D̂(N, τ), if traffic accidents ni and nj belong to different
clusters c(ni) and c(nj), then those clusters are merged, i.e.,

f or (1 ≤ p ≤ |D̂(N, τ)|) {
let δp = (ni, nj)

i f (c(ni) 6= c(nj)) then

f or (1 ≤ q ≤ |C|)
i f (c(nq) = c(nj)) then (c(nq)← c(ni))

}

(10)

Thus, the clustering is performed by means of transitive closure of the undirected
graph over set N defined in Step 3 (cf. sequence D̂(N, τ)).

The clustering results are represented by array C after Step 4 is completed. In general,
array C generated in this algorithm stage contains information on t clusters, where 1 ≤ t ≤ k
(i.e., the number of cluster is equal to the number of distinct values in C).

3.3. Cluster Selection

In the second algorithm stage, a subset of clusters that are dominant with respect to
the number of traffic accidents is adaptively selected. Let χ(C) be the histogram of array
C, i.e.,

χ(C) = {(c1, p1), (c2, p2), . . . , (ct, pt))} , (11)

where

• ci is the identification number of a cluster contained in array C,
• pi is the number of traffic accidents assigned to cluster ci,
• and 1 ≤ i ≤ t.

The adaptive cluster selection algorithm represents an adaptation of the method of
threshold selection for image binarization introduced in [20] (pp. 120–121; cf. also [21]) and
can be described as follows.

1. The starting threshold value µ0 is set to the average number of traffic accidents
per cluster:

µ0 =
1

|χ(C)|

|χ(C)|

∑
i=1

pi . (12)

2. Given a current threshold value µi, where i ≥ 0, set χ(C) is divided into two disjoint
subsets based on µi:

χ1 = {(c, p) | (c, p) ∈ χ(C) ∧ p ≤ µi} ,

χ2 = {(c, p) | (c, p) ∈ χ(C) ∧ p > µi} ,
(13)

and the subsequent threshold value µi+1 is calculated as
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µi+1 =
1
2

(
1
|χ1|

|χ1|

∑
i=1

pi +
1
|χ2|

|χ2|

∑
i=1

pi

)
. (14)

3. If the change in threshold is not significant, i.e.,

|µi − µi+1| ≤
1
2

, (15)

the calculation is completed and the final threshold µ is set to µi+1. Otherwise, the
process returns to Step 2.

Finally, a subset of clusters that are dominant with respect to the number of traffic
accidents is adaptively derived by applying the calculated threshold value µ:

C = {c | (c, p) ∈ χ(C) ∧ p > µ} . (16)

4. Results

This section reports on the prototype system and describes the results obtained when
it was applied to real-life data.

4.1. Tools

A prototype system based on the approach introduced in Section 3 is implemented
in the Racket programming language. To graphically represent spatial data and estimate
areas covered by clusters, we applied the ArcMap component of the Esri’s ArcGIS suite.

4.2. Spatial Threshold Selection

Spatial threshold τ introduced in Section 3.2 represents an input parameter to the
clustering algorithm. We set threshold τ to 200 m for the following reason. The national
urban speed limit is set to 50 km

h [22] (cf. article 43). However, to account for the relationship
between the posted speed limit and actual speeds in urban areas, we consider the minimum
speeding offense of exceeding the speed limit by up to 20 km

h [22] (cf. article 333). Therefore,
we assume a driver operating her or his vehicle at a speed of 70 km

h and define the spatial
threshold as the distance traveled by this vehicle in ten seconds (i.e., τ ≈ 200 m).

Although spatial threshold τ is assigned a particular value, we recall that it is intro-
duced as an input parameter. In general, its value is intended to be set according to external
criteria, which may vary with the application context. Thus, the spatial threshold is not
learned as a hyperparameter in the sense typically found in the field of machine learning.
Instead, it is intentionally left to the practitioner to decide on the spatial threshold value,
i.e., on the maximum distance between two traffic accident locations that are considered
close to each other.

4.3. Data

We resort to a publicly available dataset on traffic accidents provided by the Ministry
of Interior of the Republic of Serbia. To illustrate the functionality of the prototype system
(cf. Section 4.4), we use a part of this dataset containing details on 15,366 road traffic
accidents that occurred in Belgrade, the capital of Serbia, over the one-year period from
January 2021 to December 2021 [23]. Those accidents can be divided in three groups:

• 11,294 road traffic accident with material damage;
• 3996 road traffic accidents with injuries;
• 76 road traffic accidents with death.

We consider only severe road traffic accidents from the last two groups, i.e., 4072
(3996 + 76) accidents with injuries or death. For each accident, the prototype system
considers only its unique identification number and positional coordinates (i.e., latitude
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and longitude). The map showing a subset of road traffic accidents with injuries or death
that occurred in “inner” Belgrade during 2021 is given in Figure 1.

To estimate the stability of results through time (cf. Section 4.5), the algorithm is
applied to data on traffic accidents with injuries or death that occurred in one of the “inner”
Belgrade municipalities—i.e., the municipality of Zvezdara—over the three-year period
from January 2019 to December 2021 [23–25].

4.4. Algorithm Execution

In the first algorithm stage, 4072 traffic accidents are divided into 1439 clusters. The
average number of accidents per cluster is 2.796, with a standard deviation of 8.909. In
the second algorithm stage, only ten clusters are selected as dominant with respect to the
number of traffic accidents. The average number of accidents per cluster is 73.3, with
standard deviation of 69.103 (cf. Table 1).

Table 1. A summary of the clustering and selection results obtained when the introduced algorithm
was applied to publicly available data on traffic accidents with injuries or death that occurred in
Belgrade during 2021.

First Stage (Clustering) Second Stage (Selection)

Number of traffic accidents: 4072 733
Number of clusters: 1439 10
Average num. of accidents per cluster: 2.796 73.3
Standard deviation: 8.909 69.103

The map representation of the selected clusters is given in Figure 3. Although the map
shows only “inner” Belgrade, it contains all ten clusters selected when the prototype system
was applied to data on traffic accidents in the entire city. The numbers of traffic accidents
assigned to each cluster are provided in the second row of Table 2. The cluster identification
numbers given in this table correspond to those given in the legends of Figures 3 and 4.

Figure 3. The map representation of the selected clusters, Belgrade, 2021. The map was generated
using the ArcMap component of the Esri’s ArcGIS suite (https://www.esri.com).

https://www.esri.com
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Figure 4. The map representation of the selected clusters (Belgrade, 2021) and camera poles
(March 2022). The map was generated using the ArcMap component of the Esri’s ArcGIS suite
(https://www.esri.com).

Table 2. Description of the selected clusters obtained when the introduced algorithm was applied to
publicly available data on traffic accidents with injuries or death that occurred in Belgrade during
2021. The cluster identification numbers given in this table correspond to those given in the legends
of Figures 3 and 4.

Cluster ID: 1762 1730 2397 1556 3680 457 1233 3665 3522 624
Number of Traffic Accidents: 279 66 62 58 53 45 44 44 43 39
Area (km2): 1.75 0.30 0.33 0.22 0.20 0.06 0.23 0.15 0.13 0.29
Number of Camera Poles: 33 4 2 7 4 6 3 5 1 5

There is a set of well-established measures that are often applied to analyze results of
traffic accident clustering by means of evaluating the tightness and separation of clusters:
the silhouette coefficient [13], Calinski–Harabasz index [26], Davies–Bouldin index [27],
etc. However, these measures are rather general (i.e., task-independent). Consequently,
validation approaches based on these measures lack task-related criteria. In contrast to
them, we apply a qualitative evaluation based on traffic-related criteria.

In line with this, the obtained results can be considered promising: ten selected clusters
covering approximately 0.11 percent of the city area (i.e., 3.65 km2 out of approximately
3233 km2, cf. Table 2) capture 18 percent of all traffic accidents (i.e., 733 out of 4072, cf.
Table 1).

For the purpose of further illustration, we compare the clustering results with the
locations of traffic camera poles derived from the publicly available information provided
by the Ministry of Interior of the Republic of Serbia [28]. To justify this decision, it is
important to clarify the following:

• The locations of camera poles are determined by a third party, independent of
this study.

• The introduced algorithm is agnostic of the camera pole locations, i.e., they are not
considered in the clustering process.

https://www.esri.com


Appl. Sci. 2022, 12, 4543 9 of 14

• The traffic accident data used to generate clusters are collected during 2021. At the
moment of conducting this study (i.e., March 2022), the considered traffic cameras
still have not been put into use, i.e., they did not influence the traffic behavior in the
observed period.

Thus, the particular camera pole locations can serve as an indirect “response” variable.
Out of 464 camera poles installed in Belgrade, seventy are located within the selected
clusters. The numbers of camera poles within each cluster are provided in Table 2. The map
representation of the selected clusters and camera poles within them is given in Figure 4.
It can be observed that the ten selected clusters, which cover 0.11 percent of the city area,
capture 15 percent of the camera poles.

4.5. Stability of Results through Time

To estimate the stability of results through time, the introduced algorithm is applied
to data collected in the same spatial area at different periods. The previous section con-
siders the entire city of Belgrade, which has a surface area of approximately 3233 km2.
In this section, the same spatial threshold (i.e., τ = 200 m) is applied to just one of the
“inner” Belgrade municipalities—the municipality of Zvezdara—which has a surface area
of approximately 31.11 km2 (i.e., 9.6 percent of the city surface area). In line with our goal
to introduce an approach suitable for application in circumstances of limited human or
technical resources for traffic monitoring and management, this municipality was selected
as one of the “inner” municipalities with fewest camera poles. It contains only 16 out of
464 camera poles installed in Belgrade.

The algorithm is applied to publicly available data on traffic accidents with injuries
or death that occurred in the municipality of Zvezdara over the three-year period from
January 2019 to December 2021. The maps showing road traffic accidents that occurred
in this municipality during 2021, 2020, and 2019 are given in Figure 5a,c,e, respectively.
The corresponding map representations of the selected clusters are given in Figure 5b,d,f,
respectively. The camera pole locations (March 2022) are represented for the purpose of
completeness. A summary of the clustering and selection results is given in Table 3. The
selected clusters are described in Table 4.

Table 3. A summary of the clustering and selection results obtained when the introduced algorithm
was applied to publicly available data on traffic accidents with injuries or death that occurred in the
municipality of Zvezdara during 2021, 2020, and 2019, respectively.

Year Summary Data First Stage
(Clustering)

Second Stage
(Selection)

2021

Number of traffic accidents: 317 116
Number of clusters: 97 4
Average num. of accidents per cluster: 3.186 29
Standard deviation: 5.930 8.573

2020

Number of traffic accidents: 282 101
Number of clusters: 95 5
Average num. of accidents per cluster: 2.905 20.2
Standard deviation: 5.020 11.214

2019

Number of traffic accidents: 349 136
Number of clusters: 93 5
Average num. of accidents per cluster: 3.699 27.2
Standard deviation: 6.561 11.444
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Table 4. Description of the selected clusters obtained when the introduced algorithm was applied to
publicly available data on traffic accidents with injuries or death that occurred in the municipality of
Zvezdara during 2021, 2020, and 2019, respectively.

2021

Cluster ID: 161 22 198 78
Number of Traffic Accidents: 43 28 25 20
Area (km2): 0.132 0.193 0.171 0.189

2020

Cluster ID: 28 5 6 140 182
Number of Traffic Accidents: 42 19 16 12 12
Area (km2): 0.272 0.073 0.065 0.121 0.109

2019

Cluster ID: 194 72 192 116 80
Number of Traffic Accidents: 50 23 22 21 20
Area (km2): 0.486 0.235 0.317 0.163 0.145

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. On the left: the maps showing road traffic accidents with injuries or death that occurred in
the Municipality of Zvezdara during (a) 2021, (c) 2020, and (e) 2019. On the right: the corresponding
map representations of the obtained clusters. The camera pole locations (March 2022) are represented
for the purpose of completeness. (a) Traffic accidents, Zvezdara, 2021. (b) Selected clusters, Zvezdara,
2021. (c) Traffic accidents, Zvezdara, 2020. (d) Selected clusters, Zvezdara, 2020. (e) Traffic accidents,
Zvezdara, 2019. (f) Selected clusters, Zvezdara, 2019. The maps were generated using the ArcMap
component of the Esri’s ArcGIS suite (https://www.esri.com).

The stability of results through time is considered in two aspects: the share of traffic
accidents belonging to the selected clusters, and the overlapping surface area between
the selected clusters in all three years. With regard to the first aspect, the following can
be observed:

• In 2021, four selected clusters covering approximately 2.2 percent of the municipality
surface area (i.e., 0.685 km2 out of 31.11 km2) capture 36.59 percent of all traffic
accidents (i.e., 116 out of 317).

• In 2020, five selected clusters covering approximately 2.06 percent of the municipality
surface area (i.e., 0.64 km2 out of 31.11 km2) capture 35.82 percent of all traffic accidents
(i.e., 101 out of 282).

• In 2019, five selected clusters covering approximately 4.33 percent of the municipality
surface area (i.e., 1.346 km2 out of 31.11 km2) capture 38.97 percent of all traffic
accidents (i.e., 136 out of 349).

Thus, the share of traffic accidents belonging to the selected clusters is steady through
the given three-year period (i.e, 36.59, 35.82, and 38.97 percent, respectively).

With regard to the second aspect, a significant overlapping between the selected
clusters in all three years can be observed. The overlapping surface area is 0.353 km2, which
makes 51.53 percent of the selected surface area in 2021, 55.15 percent of the selected surface
area in 2020, and 26.23 percent of the selected surface area in 2019.

5. Discussion

In addition to reporting the algorithm results, we discuss the introduced approach
from the perspective of other relevant studies inspired by the Gestalt principles. The
idea of applying human cognitive judgments reflecting the principles of visual Gestalt
perception is not new. E.g., Ref. [29] introduces a clustering algorithm based on local
k-dimensional neighbors of each point, allowing for an arbitrary number of clusters and
arbitrary clusters shapes. However, their implicit conceptualization of proximity differs
from the conceptualization adopted in our study. According to the conceptualization
adopted in [29], the pattern of points given in Figure 6i contains three clusters: two large

https://www.esri.com
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clusters and one “chain” cluster between them. In our approach, the proximity of points
(i.e., locations) is defined by means of transitive closure, so the same pattern contains only
one cluster (cf. Figure 6ii).

Figure 6. Emphasizing the difference in the conceptualization of the Gestalt principle of proximity in
(i) the approach introduced in [29] and (ii) our approach.

More recently, two different approaches to saliency detection in digital images based on
the Gestalt principles are proposed in [30,31]. Particularly, related to the Gestalt principle of
proximity, these approaches consider color distance between image regions and implicitly
include the transitive closure. However, both approaches restrict the selected image regions
only to neighbors of a currently salient image region. Even the image segmentation
algorithm introduced in [18], on which we build in this contribution, includes a pairwise
region comparison predicate. In our approach, this restriction is not present and we
comment briefly on this.

In [18], the difference between segments Ci and Cj is defined as the minimum weight
edge connecting them, i.e.,

Di f (Ci, Cj) = min
vi ∈ Ci,
vj ∈ Cj,

(vi, vj) ∈ E

w(vi, vj) , (17)

where vi and vj are two neighboring pixels (i.e., (vi, vj) ∈ E) belonging, respectively, to
segments Ci and Cj, and w(vi, vj) represents the color distance between vi and vj. In our
approach, we consider spatial distance between traffic accident locations, but define the
distance between two clusters in the same manner. On the other hand, to detect evidence
of a boundary between segments Ci and Cj, the approach introduced in [18] assumes that
their difference must be greater than their internal differences Int(C1) and Int(C2):

Di f (Ci, Cj) > min{Int(Ci) + τ(Ci), Int(Cj) + τ(Cj)} , (18)

where threshold values are defined as inversely proportional to the size of a segment, i.e.,
τ(C) ∼ 1

|C| . We relax this condition in our approach: in order to detect evidence of a
boundary between two clusters, their distance must be greater than a constant threshold
value (cf. Equation (8) in Section 3.2). The justification for this decision is related to the
domain of this study. In line with our aim to detect road segments of spatially prolonged
traffic accident risk, we do not require stronger evidence for boundary of relatively smaller
clusters (and, therefore, do not consider internal cluster differences). The input parameter
threshold allows for controlling the scale of observation: a larger threshold value causes a
preference for larger clusters.

6. Conclusions

This paper introduced an approach to automatically detecting and selecting road
segments of spatially prolonged and high traffic accident risk, intended for application
in circumstances of limited human or technical resources for traffic monitoring and man-
agement. It also reported on a prototype system and illustrated its functionality using
publicly available real-life data on road traffic accidents that occurred in Belgrade. The
approach was positively evaluated in two aspects: (i) comparing the clustering results
with the locations of traffic camera poles installed a posteriori; (ii) the stability of results
through time.
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To conclude, we first reflect on the comprehensiveness of the feature set that represents
a traffic accident. Machine-learning-based approaches to traffic accident clustering typically
deal with a number of features, including road features (e.g., road, surface, road type,
vehicle type, etc.), environmental features (e.g., date, time, weather, etc.), and human
features (e.g., participant’s age and gender, violation of law, etc.) [3,7,32]. The application of
those approaches assumes the existence of a dataset that is rather comprehensive in terms
of features. However, the comprehensiveness of available datasets varies between different
geographical areas and time periods. In contrast, a traffic accident in our approach is
represented by two positional coordinates only, i.e., latitude and longitude, which increases
the possibility of its application.

Related to the time complexity of the proposed approach, the clustering algorithm
introduced in Section 3.2 represents the dominant component. Its running time can be
factored as follows. Step 1 takes constant time. In Step 2, for a given set containing k traffic
accidents, there are k2 candidate elements for set D(N, τ), i.e., this step takes O(k2) time.
In the example given in Section 4, the number of traffic accidents was k = 4072, which
means that approximately k2 ≈ 16.6 million candidate pairs were considered. However,
the number of elements in set D(N, τ), which corresponds to the memory footprint of
Step 2, does not necessarily follow this pattern. E.g., set D(N, τ) produced in the example
contained only m = 8407 pairs. In general, the size of set D(N, τ) depends on threshold
value τ. Finally, it was shown in [18] that Steps 3 and 4 can be implemented in O(m log m)
and O(mα(m)) time, where α is the very slow-growing inverse Ackerman’s function.
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