Photogrammetric Precise Surveying Based on the Adjusted 3D Control Linear Network Deployed on a Measured Object
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Accuracy of the Photogrammetric Intersection
The Photogrammetric Central Projection
3.2. The Photogrammetric Spatial Resection
3.3. The Photogrammetric Triangulation
3.4. The Accuracy of the Photogrammetric Intersection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pozzoli, A.; Mussio, L. Quick solutions particularly in close range photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIV, 273–278. [Google Scholar]
- Osada, E.; Sośnica, K.; Borkowski, A.; Owczarek-Wesołowska, M.; Gromczak, A. Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models. Sensors 2017, 17, 1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remondino, F.; El-Hakim, S. Image-Based 3D Modelling: A Review. Photogramm. Rec. 2006, 21, 269–291. [Google Scholar] [CrossRef]
- Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close Range Photogrammetry and 3D Imaging, 2nd ed.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2013; pp. 221–253. [Google Scholar]
- Cyganek, B.; Siebert, J.P. An Introduction to 3D Computer Vision, Techniques and Algorithms; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2009; pp. 323–342. [Google Scholar]
- Mataa, E.; Hernandeza, M.A.; Cardenala, J.; Pereza, J.L. Assisted control point measurement for close range photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B5, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Osada, E.; Owczarek-Wesołowska, M.; Ficner, M.; Kurpinski, G. Total Station/GNSS/EGM integrated geocentric positioning method. Surv. Rev. 2017, 49, 206–211. [Google Scholar] [CrossRef]
- Luhmann, T.; Robson, S.; Kyle, S.; Harley, I. Close Range Photogrammetry—Principles, Techniques and Applications; Whittles Publishing: Scotland, UK, 2011; pp. 135–181. [Google Scholar]
- Revilla-León, M.; Att, W.; Özcan, M.; Rubenstein, J. Comparison of conventional, photogrammetry, and intraoral scanning accuracy of complete-arch implant impression procedures evaluated with a coordinate measuring machine. J. Prosthet. Dent. 2021, 125, 470–478. [Google Scholar] [CrossRef]
- Sapirstein, P. A high-precision photogrammetric recording system for small artifacts. J. Cult. Herit. 2018, 31, 33–45. [Google Scholar] [CrossRef]
- Yakar, M.; Yilmaz, H.M.; Mutluoglu, O. Close range photogrammetry and robotic total station in volume calculation. Int. J. Phys. Sci. 2010, 5, 86–96. [Google Scholar]
- Navarro, S.; Lerma, J.L. Accuracy analysis of a mobile mapping system for close range photogrammetric projects. Measurement 2016, 93, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.M. Two-dimensional displacement measurement using static close range photogrammetry and a single fixed camera. Alex. Eng. J. 2011, 50, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Ding-bang, Z.; Yi, Z.; Tao, C.; Yuan, M.; Kun, F.; Ankit, G.; Akhil, G. Measurement of displacement for open pit to underground mining transition using digital photogrammetry. Measurement 2017, 109, 187–199. [Google Scholar]
- Ye, N.; Zhu, H.; Wei, M.; Zhang, L. Accurate and dense point cloud generation for industrial measurement via target-free photogrammetry. Opt. Lasers Eng. 2021, 140, 106521. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric map-ping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Ćmielewski, K.; Karsznia, K.; Kuchmister, J.; Gołuch, P.; Wilczyńska, I. Accuracy and functional assessment of an original low-cost fibre-based inclinometer designed for structural monitoring. Open Geosci. 2020, 12, 1052–1059. [Google Scholar] [CrossRef]
- Esmaeili, F.; Varshosaz, M.; Ebadi, H. Displacement measurement of the soil nail walls by using close range photogrammetry and introduction of CPDA method. Measurement 2013, 46, 3449–3459. [Google Scholar] [CrossRef]
- Ordóñez, C.; Martínez, J.; Arias, P.; Armesto, J. Measuring building façades with a low-cost close-range photogrammetry system. Autom. Constr. 2010, 19, 742–749. [Google Scholar] [CrossRef]
- Lerma, J.L.; Navarro, S.; Cabrelles, M.; Villaverde, V. Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: The Upper Palaeolithic Cave of Parpalló as a case study. J. Archaeol. Sci. 2010, 37, 499–507. [Google Scholar] [CrossRef]
- Christensen, R. (Ed.) General Gauss–Markov models. In Plane Answers to Complex Questions: The Theory of Linear Models, 4th ed.; Springer: New York, NY, USA, 2011; pp. 237–266. [Google Scholar]
- Canon EOS 500D Specifications—Technical Brochure; Canon Hongkong Company Limited: Hongkong, China, 2008.
- Esmaeili, F.; Ebadi, H.; Saadatseresht, M.; Kalantary, F. Application of UAV Photogrammetry in Displacement Measurement of the Soil Nail Walls Using Local Features and CPDA Method. ISPRS Int. J. Geo-Inf. 2019, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Forstner, W.; Wrobel, B.P. Photogrammetric Computer Vision, Statistics, Geometry, Orientation and Reconstruction; Springer International: Cham, Switzerland, 2016; pp. 195–246. [Google Scholar]
- Isotalo, J. Linear Estimation and Prediction in the General Gauss–Markov Model. Ph.D. Dissertation, University of Tampere, Tampere, Finland, 2007. Available online: https://trepo.tuni.fi/bitstream/handle/10024/67741/978-951-44-7018-9.pdf?sequence=1 (accessed on 24 February 2022).
- Jiang, R.; Jauregui, D.V.; White, K.R. Close-range photogrammetry applications in bridge measurement: Literature review. Measurement 2008, 41, 823–834. [Google Scholar] [CrossRef]
- Luhmann, T. Close range photogrammetry for industrial applications. J. Photogramm. Remote Sens. 2010, 65, 558–569. [Google Scholar] [CrossRef]
- Wang, X.; Clarke, T.A. Separate adjustment of close-range photogrammetric measurements. J. Photogramm. Remote Sens. 1998, XXXII, 177–184. [Google Scholar]
- El-Ashmawy, K.L.A. Using direct linear transformation (DLT) method for aerial photogrammetry applications. Geod. Cartogr. 2018, 44, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Schenk, K. From point-based to feature-based aerial triangulation. J. Photogramm. Remote Sens. 2004, 58, 315–329. [Google Scholar] [CrossRef]
- Bellamy, C.; Watterson, G. Least Squares Adjustment of networks. Surv. Rev. 1970, 20, 250–258. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
Type | Digital AF/AE SLR camera with built-in flash |
Recording media | SD memory card, SDHC memory card |
Image type | JPEG, RAW (14-bit, Canon original) |
Image sensor type | CMOS sensor |
Image sensor size | 22.3 × 14.9 mm |
Resolution | Effective pixels: approx. 15.10 MPx Total pixels: approx. 15.50 MPx |
Color filter system | RGB primary color filter |
Low-pass filter | Fixed position in front of the image sensor |
Focus modes | Servo mode; Auto-focus; Manual focus |
Exposure control | Full Auto, Portrait, Landscape, Close-up, Sports, Night Portrait, Flash Off, Creative Auto, Program), shutter-priority AE, aperture-priority AE, auto depth-of-field AE, manual exposure, E-TTL II autoflash, movie shooting |
From Point | To Point | Tape Measured Distance [m] | Photogrammetric Measured Distance [m] | Residual Value σ [m] |
---|---|---|---|---|
A | B | 0.210 | 0.210 | 0.000 |
C | D | 0.990 | 0.989 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karsznia, K.; Osada, E. Photogrammetric Precise Surveying Based on the Adjusted 3D Control Linear Network Deployed on a Measured Object. Appl. Sci. 2022, 12, 4571. https://doi.org/10.3390/app12094571
Karsznia K, Osada E. Photogrammetric Precise Surveying Based on the Adjusted 3D Control Linear Network Deployed on a Measured Object. Applied Sciences. 2022; 12(9):4571. https://doi.org/10.3390/app12094571
Chicago/Turabian StyleKarsznia, Krzysztof, and Edward Osada. 2022. "Photogrammetric Precise Surveying Based on the Adjusted 3D Control Linear Network Deployed on a Measured Object" Applied Sciences 12, no. 9: 4571. https://doi.org/10.3390/app12094571
APA StyleKarsznia, K., & Osada, E. (2022). Photogrammetric Precise Surveying Based on the Adjusted 3D Control Linear Network Deployed on a Measured Object. Applied Sciences, 12(9), 4571. https://doi.org/10.3390/app12094571