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Featured Application: The elaborated method can be applied to objects dimensioning, volume
calculations, or displacement measurements. The approach uses popular and commonly avail-
able instruments, making the solution universal.

Abstract: In surveying engineering tasks, close-range photogrammetry belongs to leading technology
by considering different aspects like the achievable accuracy, availability of hardware and software,
accessibility to measured objects, or the economy. Hence, constant studies on photogrammetric data
processing are desirable. Especially in industrial applications, the control points for close-range
photogrammetry are usually measured using total stations. In the case of smaller items, more precise
positions of control points can be obtained by deploying and adjusting a three-dimensional linear
network located on the object. This article analyzes the accuracy of the proposed method based on the
measurement of the linear network using a professional tape with a precision of ±1 mm. It is shown
what accuracy of object feature dimensioning can be obtained based on the proposed innovative
network method for photo-point measurement, using only the minimum required number of two
stereo-images. The photogrammetric 3D model derived from them and captured with a non-metric
camera is characterized by the highest possible precision, which qualifies the presented approach
to accurate measurements used in the surveying engineering. The authors prove that the distance
between two randomly optional points derived from the 3D model of a dimensioned object is equal
to the actual distance measured directly on it with one-millimeter accuracy.

Keywords: close-range photogrammetry; 3D linear control network; object dimensioning

1. Introduction

Close-range photogrammetry (CRP) is a versatile surveying technology able to create
object models of different sizes, from small industrial elements to large buildings [1,2]. The
accuracy of CRP mostly depends on the size of the pixel, the distance between subsequent
camera positions, and the respective distances to the photographed item. Moreover, the
essential factor is the distribution, density, and accuracy of the control points. Such photo-
points deployed on engineering objects and captured with CRP or terrestrial laser scanning
(TLS) are usually measured using classical methods by utilizing total stations, for exam-
ple [3–7]. The CRP techniques are used in various engineering tasks related to studying
the geometry of structures [8], both on the macro and micro scale [9,10]. According to the
current state-of-the-art in land surveying and the capacities offered by modern computers,
it is possible to apply CRP for capturing static and dynamic objects in motion. For example,
in publication [11], the authors focused on the self-developed photogrammetric system
consisting of dedicated hardware and employing a unique adjustment strategy to deter-
mine the accurate position of the mapped elements. They proved that such an integrated
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approach significantly increases the positioning accuracy allowing for fast registration
of the existing scenes. The GNSS satellite receiver and the IMU inertial unit were used
as additional devices supporting the integrated surveying. Another work [12] discusses
precisely capturing geometrical changes in 2D using CRP. The proposed research method
allows for high accuracy in determining displacements of the object’s control points ex-
pressed, even in sub-millimeter values. The presented method consists of a geometric
system utilizing different camera positions and is mainly dedicated to indoor applications.
The high accuracy was confirmed by a comparative study evaluating the displacements
of the single-name points placed in a test stand using micrometers with a resolution of
0.01 mm. The root-means-square (RMS) values of the differences between the predefined
and evaluated displacements in the two directions (local X and Y) are 0.11 and 0.02 mm,
which closely predisposes this approach to metrological tasks. However, relatively small
entities placed in a limited space were assessed in this case. A comparative study on the
influence of control points number on CRP positioning is explained in [13]. Nevertheless,
the studied solution concerns aerial photogrammetry using unmanned aerial vehicles
(UAV). The obtained accuracies vary within a few centimeters, allowing for the solution
to map the displacements of natural objects of considerable size (for example, open-pit
mines, geotechnical structures, slopes, or embankments) [14]. All previously cited works,
together with [15], confirm the usefulness of photogrammetric methods in industrial solu-
tions, which require the exact determination of the examined geometry elements. Recently,
low-cost solutions have also become very popular in the precise dimensioning of things [16].
This approach uses inexpensive devices and technologies, competing with well-known,
classic solutions provided by recognized manufacturers. The study [17] presented a low-
cost CRP system for imaging building façades. Such a system uses a specially designed
measuring set employing a camera with a laser distance meter, making it possible to con-
duct measurements with millimeter-level accuracy. The authors used the self-developed
software to assess the impact of various uncertainties (including camera calibration errors)
on the surveying results. In this case, a crucial factor was recognizing the measurement
set’s geometrical parameters, which determines the absolute accuracy of the derived object
model. CRP is also successfully used together with other techniques for remote detection
of object geometry [18], such as TLS. An example of such integration in archaeological
applications is shown in [19]. The presented approach allows for accurately mapping
objects in 3D, treating precisely determined geometric data (distances between points) as a
significant enhancement of a point cloud. A similar integration of data from remote sensing
imaging and numerical terrain models is presented in [20]. In the accurate and reliable
determination of the geometric parameters of engineering objects using photogrammetry,
a crucial role is played not only by the instrumental aspect but, perhaps above all, the
methodological attitude. Developing an optimal strategy for acquiring, processing, and
analyzing measurement results is the pivotal problem of modern geomatics. The issues
mentioned above motivated the authors to develop and test a CRP method based on ad-
justing the spatial control network located either on a test object or in its proximity. The
article analyzes the accuracy of the proposed method based on previous surveying, such as
a linear control network using a measuring tape with a precision of ±1 mm. Such accuracy
can hardly be obtained by employing a common total-station, especially since targeting
and measuring distances to object edges, corners, and other characteristic points are always
problematic, especially while executing reflectorless surveys. We have demonstrated the
accuracy of object dimensioning based on the proposed innovative photo-point network
deployment using only the minimum required number of two stereo images.

2. Materials and Methods

The developed procedure is based on the classic stereo-pair of pictures taken for a
test site using a popular camera. The control network consisting of linear values has been
marked directly on the object, the points of which represent its characteristic elements. The
control points gain Cartesian coordinates expressed in the local system encompassing the
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pictured entity as well as the pixel coordinates determined for the left and right photograph.
Then, the measured linear elements of the control network related to the local coordinates
of the selected points are adjusted by the least-squares method employing the Gauss-
Markov model [21]. The adjusted positions of the control points are then used to set out
the orientation and distortion parameters both for the left and right image, respectively.
For the resulting center projections, the accuracy assessment is carried out considering the
estimated errors in determining their parameters. As a result, the photogrammetrically
derived linear elements of the control network are compared with the actual measures
derived from the direct object survey.

To verify the developed method, we took control measurements in the university
classroom, assuming an office desk with some auxiliary elements. The control network
oriented in the local XYZ coordinate encompassed all its characteristic points (object
vertices). All linear components were measured three times with a surveying tape, thus
determining their values with ± 1 mm precision. The 3D linear network established on the
investigated object consisted of 12 points joined by 40 distances. Then, using a professional
mirror-reflex camera, a Canon EOS 500D [22], two photos were taken covering the item
from its left and right side (Figures 1 and 2).

The key technical parameters of the camera used are presented in Table 1 [23].
It should be added that the camera is commonly available on the market, emphasizing

the low-cost feature of the presented method. For the experiment, the photos were taken
using the classic indoor shooting program at short distances to the subject (portrait function
at a fixed focal length, f /2 aperture, shutter speed 1: 200 s, ISO 400, no flash).

All mathematical operations were performed using Mathcad v. 15.0 software (PTC—
https://www.mathcad.com–accessed on 28 April 2022; previously known as Mathsoft) by
programming appropriate calculation worksheets.
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Figure 1. The left stereo picture with the 3D precise linear network on the object (the points 1,…,12, 

A, B, C, D represent characteristic vertices of the object; X, Y, Z define a local 3D coordinate system; 

x,y represent pixel image coordinates, while h is the object’s approximate height). 

Figure 1. The left stereo picture with the 3D precise linear network on the object (the points 1, . . . , 12,
A, B, C, D represent characteristic vertices of the object; X, Y, Z define a local 3D coordinate system; x,
y represent pixel image coordinates, while h is the object’s approximate height).
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Figure 2. The right stereo picture with 3D precise linear network on the object (the points 1,…,12 

and A, B, C, D represent characteristic vertices of the object; X, Y, Z define a local 3D coordinate 
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Figure 2. The right stereo picture with 3D precise linear network on the object (the points 1, . . . , 12
and A, B, C, D represent characteristic vertices of the object; X, Y, Z define a local 3D coordinate
system; x, y represent pixel image coordinates).

Table 1. Key technical parameters of the camera Canon EOS 500D.

Parameter Description

Type Digital AF/AE SLR camera with built-in flash
Recording media SD memory card, SDHC memory card

Image type JPEG, RAW (14-bit, Canon original)
Image sensor type CMOS sensor
Image sensor size 22.3 × 14.9 mm

Resolution Effective pixels: approx. 15.10 MPx
Total pixels: approx. 15.50 MPx

Color filter system RGB primary color filter
Low-pass filter Fixed position in front of the image sensor
Focus modes Servo mode; Auto-focus; Manual focus

Exposure control

Full Auto, Portrait, Landscape,
Close-up, Sports, Night Portrait, Flash Off,

Creative Auto, Program), shutter-priority AE,
aperture-priority AE, auto depth-of-field AE, manual

exposure, E-TTL II autoflash, movie shooting

3. Results

As is shown in Figures 1 and 2, the reference frame X, Y, Z is connected with the
network, assuming the Z-axis passes through point 1 perpendicularly to the plane with
points 1, 2, and 4. The axis Y is parallel to the section |1–2|, and the third orthogonal
axis X is parallel to |1–4|. Hence, the three connecting reference sections with network
points 1, 2 and 4 obtained the following coordinates: 1 (0, 0, h), 2 (0, |1–2|, h), 4 (|1–4|, 0,
h). The sections |1–2| and |1–4| represent measured distances between points 1 and 2
as well as 1 and 4, respectively. The value h is the approximate height of the object. The
approximate coordinates X, Z, Y of all remaining points 3, 5, . . . , 12 are computed by
solving the network consisting of 40 measured distances between all points.

To evaluate the proposed approach, we consider an example 3D network presented
in Figure 3, which exemplifies a standard spatial network used in land surveying. The
observational linear equation of the measured spatial distances between any two spatial
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network points P (XP, YP, ZP) and Q (XQ, YQ, ZQ) is based on the well-known formula
used in three-dimensional surveying [24]:

v = −XQ−XP
s0

dXP −
YQ−YP

s0
dYP −

ZQ−ZP
s0

dZP

+
XQ−XP

s0
dXQ +

YQ−YP
s0

dYQ +
ZQ−ZP

s0
dZQ − (s− s0), σs

(1)

where: dXP, dYP, dZP, and dXQ, dYQ, dZQ are corrections of the approximate coordinates
XP, YP, ZP and XQ, YQ, ZQ of the points P and Q, respectively, v is the random error
of distance measurement s with zero value expectation and known standard deviation
equaling σs = 1 mm, s0 is an approximate value of the measured distance s:

s0 =
√
(XQ − XP)

2 + (YQ −YP)
2 + (ZQ − ZP)

2 (2)
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The Gauss-Markov observational model [21,25] for all measured spatial distance
observations s1, s2, . . . , sn, n = 40, (Figures 1 and 2) is completed regarding the Equation (3):

v = Ax− (s− s0), Σs (3)

where: x—vector of unknown corrections: dY2, dX3, dY3, dZ3, dX4, dY4, dX5, dY5, dZ5,
. . . , dX12, dY12, dZ12, v—vector of unknown observational error residuals v1, v2, . . . , vn,
A-known design matrix, s—vector of observations s1, s2, . . . , sn, s0—vector of approximate
values of observations s0,1, s0,2, . . . , s0,n, σs—diagonal covariance matrix of observations s,
composed from standard deviations σs,1, σs,2, . . . , σs,n.

In the adjustment, the network is connected with the reference frame by three coor-
dinates, X1, Y1, Z1 of point 1, two coordinates X2, Z2 of point 2, and one coordinate Z4
of point 4. These coordinates are constant; it means dX1 = dY1 = dZ1 = 0, dX2 = dZ2 = 0,
dZ4 = 0.

The least-squares solution of the Gauss-Markov model (8): vT∑ −1
s v = min is given by

well-known formulas [21,26]:

x = ΣxATΣ−1
s (s− s0), (4)

where the equations:

Σx = (ATΣ−1
s A)

−1
(5)

Σv = Σs −AΣxAT (6)

represent the covariance matrices of x and v, respectively.
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The maximal value of the standard deviations σX, σY, σZ of the adjusted coordinates
Y2 + dY2, X3 + dX3 Y3 + dY3, Z3 + dZ3, X4 + dX4, Y4 + dY4, X5 + dX5, Y5 + dY5, Z5 + dZ5 . . .
X12 + dX12, Y12 + dY12, Z12 + Z12, taken from diagonal elements of the covariance matrix (5)
is equal to 1.2 mm.

The adjusted positions of the network point 1, 2, . . . , 12 are used as so-called control
points for the determination of the orientation and distortion parameters of the left and
right stereo photos in the object reference frame (X, Y, Z).

3.1. Accuracy of the Photogrammetric Intersection
The Photogrammetric Central Projection

The photogrammetric central projection is a projection of the three-dimensional object
space (X, Y, Z) onto a two-dimensional image plane (x, y) (Figures 1 and 2). The central
projection equations (X, Y, Z) → (x, y) are given by following [26,27]:

x = x0− fs
r11(X−X0)+r12(Y−Y0)+r13(Z−Z0)
r31(X−X0)+r32(Y−Y0)+r33(Z−Z0)

−[k1((x− x0)
2 + (y− y0)

2) + k2((x− x0)
2 + (y− y0)

2)
2
](x− x0)

−k3[3(x− x0)
2 + (y− y0)

2]− 2k4(x− x0)(y− y0)

(7)

y = y0+ fs
r21(X−X0)+r22(Y−Y0)+r23(Z−Z0)
r31(X−X0)+r32(Y−Y0)+r33(Z−Z0)

−[k1((x− x0)
2 + (y− y0)

2) + k2((x− x0)
2 + (y− y0)

2)
2
](y− y0)

−2k3(x− x0)(y− y0)− k4[(x− x0)
2 + 3(y− y0)

2]

(8)

where X, Y, Z are the coordinates of an object point P; x, y are the pixel image coordinates
of the projected point P; Y0, Y0, Z0 are the coordinates of the central projection point O; x0,
y0 are the image pixel coordinates of the central point O; k1, k2, k3, k4, are parameters of the
camera distortion, fs = f /s, f is the focal length of the camera, s is the CCD cell size of the
camera, whilst: r11 r12 r13

r21 r22 r23
r31 r32 r33

 =

 cos φ cos κ cos ω sin κ + sin ω sin φ cos κ sin ω sin κ − cos ω sin φ cos κ
− cos φ sin κ cos ω cos κ − sin ω sin φ sin κ sin ω cos κ + cos ω sin φ sin κ

sin φ − sin ω cos φ cos ω cos φ

 (9)

is the matrix of rotation (ω, ϕ,
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is the matrix of rotation (ω,φ,ϰ) of the object reference frame (X, Y, Z) related to the camera 

reference frame (Yk, Yk, Zk). The frame’s origin (Yk, Yk, Zk) is the central projection point 

O, the axes Yk, Yk run parallel to the sections of the CCD frame, and Zk is perpendicular to 

the CCD frame. The six parameters Y0, Y0, Z0, ω, φ, ϰ define the external orientation of the 
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three parameters x0, y0, f = fss define the internal orientation of the image referring to the
camera reference frame (Yk, Yk, Zk).

3.2. The Photogrammetric Spatial Resection

The photogrammetric spatial resection method allows for determining orientation
(Y0, Y0, Z0, ω, ϕ,
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, x0, y0, fs) and distortion (k1, k2, k3, k4) parameters of an image based

on the known control points deployed on the object [28]. In the case of the left image,
the 13 orientation and distortion parameters were computed by solving the set of 22
Equations (7) and (8) for eleven visible control points 1, 2, . . . , 12 (Figure 1) by the least-
squares method. The camera’s determined position (Y0, Y0, Z0) in the left (L) is shown in
Figure 3. The pixel coordinates xcomp, ycomp of the control points computed after adjustment
according to the Equations (7) and (8) are not right equal to the measured values x, y. The
residual mean squares (RMS) of the obtained pixel coordinates residuals εx = x − xcomp,
εy = y − ycomp are equal to 1.8 and 2.0 in pixels, respectively.

In the case of the right image, the 13 orientation and distortion parameters were
computed by solving a set of 22 Equations (7) and (8) for eleven visible control points 1, 2,
. . . , 12 (Figure 2) by the least-squares method. The camera’s determined position (Y0, Y0,
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Z0) in the right (R) is shown in Figure 4. The RMS for obtained pixel coordinates residuals
εx = x − xcomp, εy = y − ycomp are equal 1.3 and 1.6 in pixel values, respectively.
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Due to the nonlinear least-squares problem, the approximate values of the parameters
were computed using the Direct Linear Transformation (DLT) method [29].

3.3. The Photogrammetric Triangulation

The photogrammetric triangulation is a method of simultaneous determination of
the orientation and distortion parameters of the stereo or multi-images as well as the
coordinates X, Y, Z of new so-called tie points located on the object [30]. In our experiment,
we chose only one tie point A (Figures 1 and 2). In this case, the 26 orientation and
distortion parameters of the left and right stereo images plus three coordinates XA, YA,
ZA of the tie point A were computed by solving the set of 48 Equations (7) and (8) by the
least-squares method [31]: 24 equations for twelve visible points on the left image 1, 2, . . . ,
12, A and 24 equations for twelve visible points on the right image 1, 2, . . . , 12, A. The RMS
values for the obtained pixel coordinates residuals εx, εy are equal to 1.5 and 2.1 in pixel
values, respectively. The determined positions of the camera in the left and right positions
concerning the 12 network points are shown in Figure 3.

3.4. The Accuracy of the Photogrammetric Intersection

The photogrammetric intersection is a method of computing the coordinates of object
points based on the spatially oriented stereo or multi-images referenced in the object
reference system X, Y, Z. For example, the coordinates XB, YB, ZB of the new object point B
(Figures 1 and 2) are computed by solving four Equations (7) and (8) by the least-squares
method: two equations for measured pixel coordinates of the projected point B on the left
image (Figure 1) and two equations for projected point B on the right image (Figure 2).
The computed spatial distance between points A (XA, YA, ZA) and B (XB, YB, ZB) is
equal to [(XB − XA)2 + (YB − YA)2 + (ZB − ZA)2]1/2 = 0.210 m. The distance between
relevant points measured by tape is also equal to 0.210 m. So, in this case, the error of the
photogrammetrically measured distance between two points A and B on the object is equal
to 0.000 [m].

In the second example, the distance between points C and D is computed (Figures 1 and 2).
The coordinates of points C and D were computed in the same way as those of point B.
The computed spatial distance between photogrammetrically determined points C (xC, yC,
zC) and D (xD, yD, zD) is equal [(XD − XC)2 + (YD − YC)2 + (ZD − ZC)2]1/2 = 0.989 m. The
distance between these points measured by tape equals 0.990 m. In this experiment, an
error of the photogrammetrically measured distance between two points C and D on the
object equals 1 mm. For clarity, the aforementioned results are summarized in Table 2.
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Table 2. The accuracy of the photogrammetric intersection expressed as the comparison between
subsequent control points measured in different methods.

From
Point

To
Point

Tape Measured
Distance [m]

Photogrammetric
Measured Distance [m]

Residual Value
σ [m]

A B 0.210 0.210 0.000
C D 0.990 0.989 0.001

4. Discussion

Close-range photogrammetry is used in many engineering fields. Employing it for
object dimensioning and assessing displacement values requires developing and testing
an appropriate strategy. In the case of small pieces, more precise control points can be
set out by founding and adjusting a three-dimensional linear network on the object. Our
experiment shows that the adjusted positions of the control points are determined with
high accuracy of about ±1 mm. Furthermore, such a high accuracy refers to the entire 3D
photogrammetric model derived from the control points deployed directly on the examined
structure. Hence, it is possible to achieve desirable measurement uncertainty related to
only two images taken with the non-metric camera Canon EOS 500D.

The proposed approach is progressive and can be freely modified to be integrated with
other surveying technologies. For example, it can be utilized while dimensioning indoor
spaces for the area and volume calculations. Another possibility is to use it in displacement
monitoring, control measurements, or finishing works on a construction site.

In contemporary geomatics, one of the deciding factors when choosing a particular
surveying method is its availability and time consumption. In the discussed case, both
conditions are successfully fulfilled. Using a non-metric, commonly used camera makes
the solution low-cost. Also, data processing is not time-consuming, and the algorithm
can be run on a standard computer. The application is possible for each object, where a
three-dimensional linear network can be established. Such a point deployment can be
possible in different ways by selecting characteristic object points (for example, its vertices
and edges) or projecting light spots using a common laser emitter. The network can be
measured using a tape or hand-held laser distance meter as well as, in case of lesser object
availability, a standard total station offering a reflectorless distance surveying option. In
such a case, however, one should count with a final accuracy lower than 1 mm.

The limitation in using the developed method may be poor lighting conditions on
the site, insufficient resolution of the camera, and the inability to cover the object with a
control network. It can be mentioned that the location of network points may refer to both
characteristic ends of the measured object as well as points marked using available laser
projectors. These items are the subject of further research conducted by the authors.
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