Comparison of the Concentrations of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-ray Fluorescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Sampling
2.2. Heavy Metal Content Analysis Using XRF
XRF Analysis
2.3. Data Analysis
3. Results
3.1. Descriptive Analysis
3.2. Correlation and Regression Analysis of Heavy Metals between Three Institutes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, B.W.; Jeon, J.M.; Lee, H.S. The Characteristics of PM2.5 and Trace Elements in the Vicinity of Steel Industrial Complex. J. Korean Soc. Environ. Technol. 2018, 19, 18–29. [Google Scholar] [CrossRef]
- Hsiao, W.W.; Mo, Z.-Y.; Fang, M.; Shi, X.-m.; Wang, F. Cytotoxicity of PM2. 5 and PM2. 5–10 ambient air pollutants assessed by the MTT and the Comet assays. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 2000, 471, 45–55. [Google Scholar] [CrossRef]
- Choi, J.-H.; Kim, J.-S.; Kim, Y.-C.; Kim, Y.-S.; Chung, N.-H.; Cho, M.-H. Comparative study of PM2.5-and PM10-induced oxidative stress in rat lung epithelial cells. J. Vet. Sci. 2004, 5, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Environmental Protection Agency (US EPA). Cadmium Compounds. 2000. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/cadmium-compounds.pdf (accessed on 23 April 2022).
- US Environmental Protection Agency (US EPA). Chromium Compounds. 2000. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/chromium-compounds.pdf (accessed on 23 April 2022).
- Ministry of Environment of Korea. No. 10615; South Korea: Air Quality Standards: Clean Air Conservation Act. Ministry of Environment of Korea: Sejong-si, Korea, 2018. [Google Scholar]
- Cho, C.C.; Hsieh, W.Y.; Tsai, C.H.; Chen, C.Y.; Chang, H.F.; Lin, C.S. In Vitro and In Vivo Experimental Studies of PM(2.5) on Disease Progression. Int. J. Environ. Res. Public Health 2018, 15, 1380. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.; Tang, M. Biological effects of airborne fine particulate matter (PM(2.5)) exposure on pulmonary immune system. Environ. Toxicol. Pharmacol. 2018, 60, 195–201. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Lee, M.; Schwartz, J.; Wang, Y.; Dominici, F.; Zanobetti, A. Long-term effect of fine particulate matter on hospitalization with dementia. Environ. Pollut. 2019, 254 Pt A, 112926. [Google Scholar] [CrossRef]
- Chen, H.; Kwong, J.C.; Copes, R.; Tu, K.; Villeneuve, P.J.; van Donkelaar, A.; Hystad, P.; Martin, R.V.; Murray, B.J.; Jessiman, B.; et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study. Lancet 2017, 389, 718–726. [Google Scholar] [CrossRef]
- Kioumourtzoglou, M.A.; Schwartz, J.D.; Weisskopf, M.G.; Melly, S.J.; Wang, Y.; Dominici, F.; Zanobetti, A. Long-term PM2.5 Exposure and Neurological Hospital Admissions in the Northeastern United States. Environ. Health Perspect. 2016, 124, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Block, M.L.; Elder, A.; Auten, R.L.; Bilbo, S.D.; Chen, H.; Chen, J.C.; Cory-Slechta, D.A.; Costa, D.; Diaz-Sanchez, D.; Dorman, D.C.; et al. The outdoor air pollution and brain health workshop. Neurotoxicology 2012, 33, 972–984. [Google Scholar] [CrossRef] [Green Version]
- Ru, M.; Brauer, M.; Lamarque, J.F.; Shindell, D. Exploration of the Global Burden of Dementia Attributable to PM2.5: What Do We Know Based on Current Evidence? Geohealth 2021, 5, e2020GH000356. [Google Scholar] [CrossRef] [PubMed]
- Oudin, A.; Segersson, D.; Adolfsson, R.; Forsberg, B. Association between air pollution from residential wood burning and dementia incidence in a longitudinal study in Northern Sweden. PLoS ONE 2018, 13, e0198283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemery, B. Metal toxicity and the respiratory tract. Eur. Respir. J. 1990, 3, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Shih, R.A.; Hu, H.; Weisskopf, M.G.; Schwartz, B.S. Cumulative lead dose and cognitive function in adults: A review of studies that measured both blood lead and bone lead. Environ. Health Perspect. 2007, 115, 483–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin Mi, H.; Lee Seung, K.; Kim Kyong, H.; Choi Jae, W. Correlation between Dementia and Lead, Cadmium, Mercury, and Manganese Concentrations in the Blood. J. Environ. Health Sci. 2020, 46, 267–275. [Google Scholar]
- Tellez-Plaza, M.; Guallar, E.; Navas-Acien, A. Environmental metals and cardiovascular disease. BMJ 2018, 362, k3435. [Google Scholar] [CrossRef]
- Alissa, E.M.; Ferns, G.A. Heavy Metal Poisoning and Cardiovascular Disease. J. Toxicol. 2011, 2011, 870125. [Google Scholar] [CrossRef]
- Yang, A.-M.; Lo, K.; Zheng, T.-Z.; Yang, J.-L.; Bai, Y.-N.; Feng, Y.-Q.; Cheng, N.; Liu, S.-M. Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Dis. Transl. Med. 2020, 6, 251–259. [Google Scholar] [CrossRef]
- Health and Safety Executive (HSE). Health and Safety Executive (HSE). Health effects from exposure to lead. In The Control of Lead at Work Regulations 2002 (CLAW); HSE: Bootle, UK, 2002. Available online: https://www.hse.gov.uk/lead/health-effects.htm#:~:text=The%20occupational%20exposure%20limit%20for,limit%20is%2050%20%CE%BCg%2Fdl (accessed on 22 April 2022).
- Health and Safety Executive (HSE). Cadmium and You Working with Cadmium: Are You at Risk? 2011. Available online: https://www.hse.gov.uk/pubns/indg391.pdf (accessed on 23 April 2022).
- Health and Safety Executive (HSE). Nickel and You Working with Nickel—Are You at Risk. In The Control of Substances Hazardous to Health (COSHH) Regulations; HSE: Bootle, UK, 2013. Available online: https://www.hse.gov.uk/pubns/indg351.pdf (accessed on 21 April 2022).
- Niu, J.; Liberda, E.N.; Qu, S.; Guo, X.; Li, X.; Zhang, J.; Meng, J.; Yan, B.; Li, N.; Zhong, M.; et al. The role of metal components in the cardiovascular effects of PM2.5. PLoS ONE 2013, 8, e83782. [Google Scholar] [CrossRef]
- Liang, R.; Yin, P.; Wang, L.; Li, Y.; Liu, J.; Liu, Y.; You, J.; Qi, J.; Zhou, M. Acute effect of fine particulate matters on daily cardiovascular disease mortality in seven cities of China. Chin. J. Epidemiol. 2017, 38, 283–289. [Google Scholar]
- Shi, L.; Wu, X.; Danesh Yazdi, M.; Braun, D.; Abu Awad, Y.; Wei, Y.; Liu, P.; Di, Q.; Wang, Y.; Schwartz, J.; et al. Long-term effects of PM2·5 on neurological disorders in the American Medicare population: A longitudinal cohort study. Lancet Planet. Health 2020, 4, e557–e565. [Google Scholar] [CrossRef]
- Zacco, A.; Resola, S.; Lucchini, R.; Albini, E.; Zimmerman, N.; Guazzetti, S.; Bontempi, E. Analysis of settled dust with X-ray Fluorescence for exposure assessment of metals in the province of Brescia, Italy. J. Environ. Monit. 2009, 11, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.-H.; Kim, G.; Kim, Y.-J.; Park, K. Determination of Heavy Metal Distribution in PM10 During Asian Dust and Local Pollution Events Using Laser Induced Breakdown Spectroscopy (LIBS). Aerosol Sci. Technol. 2012, 46, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, S.; Levesque, C.; Wiseman, C.L.S.; Rasmussen, P.E. Quantification and Characterization of Metals in Ultrafine Road Dust Particles. Atmosphere 2021, 12, 1564. [Google Scholar] [CrossRef]
- Olesik, J.W. ICP-OES Capabilities, Developments, Limitations, and Any Potential Challengers? 2020. Available online: https://www.spectroscopyonline.com/view/icp-oes-capabilities-developments-limitations-and-any-potential-challengers (accessed on 22 April 2022).
- Portable Analytical Solutions (PAS). Taking It to the Limit: An Essential Guide to XRF Detection Limits. 2022. Available online: https://www.portableas.com/news/xrf-detection-limits-guide/ (accessed on 21 April 2022).
- Gaines, P. Compare ICP-OES and XRF for Determination of Metal Composition in Catalyst Powder Samples. Christiansburg, VA 24073. 2022. Available online: https://www.inorganicventures.com/advice/compare-icp-oes-and-xrf-for-determination-of-metal-composition-in-catalyst-powder-samples (accessed on 20 April 2022).
- Enamorado-Báez, S.M.; Abril, J.M.; Gómez-Guzmán, J.M. Determination of 25 Trace Element Concentrations in Biological Reference Materials by ICP-MS following Different Microwave-Assisted Acid Digestion Methods Based on Scaling Masses of Digested Samples. ISRN Anal. Chem. 2013, 2013, 851713. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Abdullah, P.; Wood, A.; Hamza, M.; Othman, M. Determination of Some Trace Elements in Marine Sediment using ICP-MS and XRF (A Comparative Study). Orient. J. Chem. 2013, 29, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Rasmussen, P.E.; Wheeler, A.; Williams, R.; Chénier, M. Evaluation of airborne particulate matter and metals data in personal, indoor and outdoor environments using ED-XRF and ICP-MS and co-located duplicate samples. Atmos. Environ. 2010, 44, 235–245. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Dugandzic, R.; Hassan, N.; Murimboh, J.; Gregoire, D.C. Challenges in quantifying airborne metal concentrations in residential environments. Can. J. Anal. Sci. Spectrosc. 2006, 51, 513555. [Google Scholar]
- Cho, S.; Chartier, R.T.; Mortimer, K.; Dherani, M.; Tafatatha, T. A Personal particulate matter exposure monitor to support household air pollution exposure and health studies. In Proceedings of the 2016 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 13–16 October 2016; pp. 817–818. [Google Scholar]
- Lee, Y.; Song, M.; Kim, E.; Oh, S.-H.; Park, C.; Choi, W.; Lee, T.; Shon, Z.-H.; Bae, M.-S. Source Identification of PM2.5 Major Elemental Components at the Harbor Industrial Area in Busan: Comparison of Trace Elemental Concentrations Using Two XRFs. J. Korean Soc. Atmos. Environ. 2020, 36, 216–227. [Google Scholar] [CrossRef]
- Matter, I.A.P. Determination of Metals in Ambient Particulate Matter Using Proton Induced X-ray Emission (Pixe) Spectroscopy; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1999.
- Kim, K.-D. Evaluation of Gypsums in Terms of Major and Toxic Trace Elements by ICP/OES and XRF Analysis. J. Korea Soc. Environ. Anal. 2009, 12, 1–5. [Google Scholar]
- Bonizzoni, L.; Galli, A.; Gondola, M.; Martini, M. Comparison between XRF, TXRF, and PXRF analyses for provenance classification of archaeological bricks. X-ray Spectrom. 2013, 42, 262–267. [Google Scholar] [CrossRef]
- Kang, C.M.; Achilleos, S.; Lawrence, J.; Wolfson, J.M.; Koutrakis, P. Interlab comparison of elemental analysis for low ambient urban PM2.5 levels. Environ. Sci. Technol. 2014, 48, 12150–12156. [Google Scholar] [CrossRef] [PubMed]
- Onat, B.; Sahin, U.A.; Akyuz, T. Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmos. Pollut. Res. 2013, 4, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fang, F.; Lin, Y.; Wang, Y.; Kuang, Y.; Wu, M. Heavy metal contamination and health risks of indoor dust around Xinqiao Mining Area, Tongling, China. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 46–56. [Google Scholar] [CrossRef]
- Thygerson, S.M.; Beard, J.D.; House, M.J.; Smith, R.L.; Burbidge, H.C.; Andrus, K.N.; Weber, F.X.; Chartier, R.; Johnston, J.D. Air-Quality Assessment of On-Site Brick-Kiln Worker Housing in Bhaktapur, Nepal: Chemical Speciation of Indoor and Outdoor PM(2.5) Pollution. Int. J. Environ. Res. Public Health 2019, 16, 4114. [Google Scholar] [CrossRef] [Green Version]
- Tunno, B.J.; Michanowicz, D.R.; Shmool, J.L.C.; Tripathy, S.; Kinnee, E.; Cambal, L.; Chubb, L.; Roper, C.; Clougherty, J.E. Spatial Patterns in Rush-Hour vs. Work-Week Diesel-Related Pollution across a Downtown Core. Int. J. Environ. Res. Public Health 2018, 15, 1968. [Google Scholar] [CrossRef] [Green Version]
Institute #1 | Institute #2 | Institute #3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD | (n = 24 Filters) | (n = 24 Filters) | (n = 24 Filters) | ||||||||||
Detect (%) | Median | P25 | P75 | Detect (%) | Median | P25 | P75 | Detect (%) | Median | P25 | P75 | ||
Al | 8.28 | 100.0 | 12,621.0 | 7701.2 | 17,176.9 | 100.0 | 3467.6 | 2103.8 | 5514.3 | 100.0 | 2898.4 | 1826.3 | 4138.6 |
As | 3.69 | 100.0 | 21.6 | 16.6 | 39.9 | 100.0 | 19.8 | 10.4 | 66.5 | 25.0 | ND | ND | 2.1 |
Ba | 2.12 | 100.0 | 257.2 | 166.2 | 346.8 | 100.0 | 550.1 | 379.3 | 813.8 | 16.7 | ND | ND | ND |
Br | 0.20 | 87.5 | 109.5 | 47.4 | 191.7 | 100.0 | 241.8 | 158.2 | 353.6 | 100.0 | 479.5 | 298.7 | 570.2 |
Ca | 0.50 | 100.0 | 830.9 | 704.3 | 1587.8 | 100.0 | 2749.9 | 1849.9 | 3817.6 | 100.0 | 1751.3 | 1150.9 | 2336.5 |
Cd | 3.23 | 95.8 | 83.5 | 47.6 | 113.8 | 100.0 | 517.3 | 299.4 | 659.1 | 75.0 | ND | ND | 3.4 |
Cl | 1.04 | 100.0 | 3499.6 | 2174.5 | 4167.9 | 100.0 | 1448.2 | 650.8 | 1921.9 | 100.0 | 628.2 | 351.3 | 796.6 |
Cr | 0.12 | 100.0 | 121.3 | 73.3 | 161.7 | 100.0 | 107.1 | 43.3 | 147.6 | 100.0 | 56.2 | 25.5 | 92.4 |
Cs | ND | 100.0 | 37.1 | 27.5 | 56.9 | 100.0 | 225.0 | 138.5 | 337.5 | 37.5 | ND | ND | 50.7 |
Cu | 0.28 | 100.0 | 112.6 | 82.5 | 301.2 | 100.0 | 397.0 | 283.5 | 768.3 | 100.0 | 409.4 | 219.4 | 585.8 |
Fe | 0.45 | 100.0 | 2297.8 | 1442.5 | 4364.2 | 100.0 | 6243.0 | 3207.5 | 10,202.8 | 100.0 | 3685.4 | 2074.5 | 6479.4 |
K | 2.07 | 100.0 | 4603.6 | 2997.7 | 7092.6 | 100.0 | 7939.0 | 4939.6 | 12,151.4 | 100.0 | 4221.2 | 2741.7 | 6522.3 |
Mn | 0.32 | 100.0 | 181.1 | 96.5 | 263.6 | 100.0 | 457.4 | 258.5 | 769.5 | 100.0 | 234.2 | 113.1 | 367.1 |
Ni | 0.6 | 12.5 | ND | ND | ND | 100.0 | 157.0 | 99.4 | 264.6 | 100.0 | 83.0 | 55.0 | 154.3 |
Pb | 0.37 | 100.0 | 255.9 | 163.5 | 406.7 | 100.0 | 562.1 | 360.8 | 941.3 | 100.0 | 521.5 | 295.0 | 789.1 |
Rb | 0.39 | 79.2 | 3.6 | 1.1 | 5.3 | 100.0 | 17.8 | 10.2 | 24.0 | 16.7 | ND | ND | ND |
S | 2.33 | 100.0 | 39,752.0 | 24,926.1 | 59,736.0 | 100.0 | 71,063.0 | 43,553.1 | 107,350.6 | 100.0 | 39,158.0 | 24,333.6 | 58,308.0 |
Sb | 3.04 | 58.3 | 42.7 | ND | 125.7 | 100.0 | 1478.1 | 855.3 | 1883.2 | 41.7 | ND | ND | 35.7 |
Se | 0.29 | 95.8 | 13.6 | 8.5 | 25.0 | 100.0 | 39.8 | 17.5 | 73.1 | 75.0 | 23.5 | 2.0 | 46.1 |
Si | 1.68 | 95.8 | 6930.0 | 3979.1 | 8617.0 | 100.0 | 11,840 | 5741.4 | 16,071.9 | 100.0 | 7744.8 | 3860.2 | 10,276.5 |
Sn | 3.01 | 79.2 | 112.3 | 10.8 | 231.8 | 100.0 | 1108.5 | 641.5 | 1412.4 | 100.0 | 207.5 | 118.3 | 384.1 |
Sr | 0.34 | 100.0 | 9.5 | 5.9 | 15.2 | 100.0 | 18.6 | 11.2 | 23.7 | 100.0 | 37.1 | 14.7 | 86.0 |
Ti | 5.54 | 100.0 | 1078.1 | 678.5 | 1425.0 | 100.0 | 249.5 | 141.2 | 463.1 | 100.0 | 205.4 | 162.5 | 372.2 |
V | 0.44 | 100.0 | 156.7 | 115.6 | 314.7 | 100.0 | 332.2 | 238.5 | 714.5 | 100.0 | 185.5 | 108.2 | 369.2 |
Zn | 0.41 | 100.0 | 1256 | 708.9 | 1563.0 | 100.0 | 2497.9 | 1478.2 | 3843 | 100.0 | 1504.3 | 920.3 | 2264.8 |
Summary of Simple Regression Analysis | ||||||
---|---|---|---|---|---|---|
Institute #1−Institute #2 | Institute #1−Institute #3 | |||||
Intercept | Slope | R2 | Intercept | Slope | R2 | |
S | 4300 | 0.40 * | 0.999 | 3800 | 0.87 * | 0.999 |
Mn | −0.9 | 0.36 | 0.998 | 11.6 | 0.69 | 0.996 |
Pb | 52.9 | 0.37 * | 0.997 | −2.2 | 0.55 | 0.990 |
Zn | 156.3 | 0.38 * | 0.996 | 170 | 0.63 * | 0.995 |
K | 395.9 | 0.54 * | 0.992 | 487.7 | 0.97 * | 0.990 |
Fe | 4800 | 0.34 * | 0.987 | 334.0 | 0.59 * | 0.988 |
V | 19.1 | 0.42 * | 0.985 | 38.2 | 0.71 * | 0.982 |
Cu | 38.3 | 0.26 * | 0.967 | 64.7 | 0.26 * | 0.930 |
Sn | −140.5 | 0.24 * | 0.945 | −276.3 | 1.63 * | 0.798 |
Ba | −235.7 | 0.87 * | 0.932 | 196.6 | 3.41 | 0.682 |
Cr | −47.3 | 1.68 | 0.921 | −12.9 | 2.38 | 0.971 |
Cs | −50.0 | 0.39 * | 0.913 | 29.7 | 0.18 * | 0.974 |
Sr | 3.9 | 0.34 * | 0.881 | 4.2 | 0.13 * | 0.909 |
Ti | −540.9 | 5.99 | 0.878 | −334.6 | 5.92 | 0.942 |
Cd | 52.4 | 0.07 * | 0.816 | 113.9 | −0.10 * | 0.001 |
Al | −2747.4 | 5.04 | 0.807 | −2140.3 | 6.09 | 0.841 |
Ca | 533.7 | 0.19 * | 0.767 | 196.6 | 0.29 | 0.737 |
Se | −15.2 | 0.79 * | 0.753 | 11.4 | 0.15 * | 0.921 |
As | 4.9 | 0.64 | 0.668 | 35.3 | −0.03 * | 0.000 |
Cl | −1136.4 | 3.82 | 0.641 | 565.3 | 5.40 | 0.521 |
Br | 45.3 ± SE | 0.46 | 0.543 | 84.4 | 0.14 | 0.642 |
Sb | 45.2 ± SE | 0.03 | 0.443 | 70.1 | 1.05 | 0.215 |
Ni | 3.2 ± SE | 0.01 | 0.024 | 2.1 | 0.02 | 0.003 |
Rb | 3.9 ± SE | −0.01 * | 0.009 | 3.5 | 0.08 * | 0.007 |
Si | 11,000 ± SE | −0.07 * | 0.006 | 11,000 | −0.10 * | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Rudasingwa, G.; Cho, S.-H.; McWilliams, A.; Kang, C.-M.; Kim, S.; Kim, S. Comparison of the Concentrations of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-ray Fluorescence. Appl. Sci. 2022, 12, 4572. https://doi.org/10.3390/app12094572
Kim Y, Rudasingwa G, Cho S-H, McWilliams A, Kang C-M, Kim S, Kim S. Comparison of the Concentrations of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-ray Fluorescence. Applied Sciences. 2022; 12(9):4572. https://doi.org/10.3390/app12094572
Chicago/Turabian StyleKim, Yeonjin, Guillaume Rudasingwa, Seung-Hyun Cho, Andrea McWilliams, Choong-Min Kang, Simon Kim, and Sungroul Kim. 2022. "Comparison of the Concentrations of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-ray Fluorescence" Applied Sciences 12, no. 9: 4572. https://doi.org/10.3390/app12094572
APA StyleKim, Y., Rudasingwa, G., Cho, S. -H., McWilliams, A., Kang, C. -M., Kim, S., & Kim, S. (2022). Comparison of the Concentrations of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-ray Fluorescence. Applied Sciences, 12(9), 4572. https://doi.org/10.3390/app12094572