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Abstract: This work presents a novel method for simulating the behavior of solid objects with the
Lattice Boltzmann Method (LBM). To introduce and validate our proposed framework, comparative
studies are performed for computing the static equilibrium of isotropic materials. Remembering that
the LBM has strong theoretical foundations in the Boltzmann equation; this latter is firstly adjusted to
solid motions, through its Boltzmann-Vlasov special case. This is indeed the case when combined
with a suitable mean-field external force term to set a reliable solid framework. Secondly, a library
is built and plugged on the top of the well-known Parallel Lattice Boltzmann Solver (PaLaBoS)
library. Numerical implementations based on the previous equation of motion for solids are led in
a non-intrusive manner so as to present results with an easy and flawless reproducibility. A newly
designed Lattice Boltzmann Method for Solids (LBMS) is exhibited through a few key algorithms,
showing the overall operation plus the major improvements. Efficiency, robustness and accuracy of
the proposed approach are illustrated and contrasted with a commercial Finite Element Analysis
(FEA) software. The obtained results reveal considerable potential concerning static and further
dynamic simulations involving solid constitutive laws within the LBM formalism.

Keywords: Lattice Boltzmann Method for solids; solid static equilibrium; Vlasov–Maxwell equation;
mean-field external force term

1. Introduction
1.1. Background

The Lattice Boltzmann Method (LBM) has proven to be an efficient and reliable method
for Computational Fluid Dynamics (CFD) for several decades now. Historically, it follows
the seminal work of Frisch [1] on the use of Lattice Gas Cellular Automata (LGCA) for
simulating the Navier-Stokes equations. This work was a remarkable breakthrough, as
it proposed simulating fluids at the particle level on an Eulerian grid using interaction
rules. Unfortunately, this came at the cost of computation time to overcome the numerical
statistical noise due to the Boolean formulation of particle interactions. Decades before,
Bhatnagar, Gross and Krook achieved a linearization of the collision operator of the Boltz-
mann Equation (BE) [2] that allows for the reduction in the complexity of the equation by
avoiding the implementation of an integral collision model. Macnamara [3] and Succi [4]
proposed using discretized versions of the Boltzmann equation to overcome the LGCA’
limitations, and gave birth to the so-called Lattice Boltzmann Method. Following this line
of thought, Karlin et al. proposed a Lattice Boltzmann-BGK Equation (LBGKE) with an
optimized local equilibrium and proved the H-theorem for it [5].

A large amount of work was since done in the LBM field, and recent years saw
some remarkable improvements for the numerical simulation of high Reynolds numbers
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fluids, with for example, the lattice-kinetic theory [6]. One can also mention the Multiple
Relaxation Times (MRT) LBM which also allows better stability of the method for high
Reynolds numbers, using a multiple-relaxation time term [7]. Such matrix collision operator
was first introduced by [8]. All these new insights are relevant for simulating high Reynolds
number fluids, but also to open up on the idea of modifying the collision operator. Indeed,
the collision operator is key in the method as it embeds the majority of the physics to
be simulated.

The simulation of multi-component flows is another important research interest in
the LBM field. This represents one of the major interests of the method: the LBM is
conceptually relatively straightforward as it describes particle physics on a mesoscopic
scale. However, the main challenge to overcome is the interface definition which can be
sorted roughly into four categories. The first category, called color-gradient method [9], has
been developed for two-phase flows. It consists in adding a perturbation to the linearized
collision operator to make the pressure tensor locally anisotropic near a fluid-fluid interface.
This results in surface tension at interfaces while retaining the compatibility with the
Navier-Stokes Equations (NSE) in non-interface regions. The second category is based on
the introduction of an inter-particle potential [10]. It allows the simulation of multi-phase
and multi-component immiscible fluids with different masses at constant temperature,
with a high efficiency. The third category can simulate hydrodynamics of phase separation
and two-phase flow [11]. The principle is to use a non-ideal pressure tensor in the collision
operator to ensure thermodynamic consistency. The goal of this approach is to improve
physical consistency. The fourth category takes into account molecular interactions [12,13]
for the simulation of incompressible two-phase flows. A review of multi-phase LBM is
proposed in [14]. It gives a comprehensive overview of the methods and the associated
algorithmic aspects.

The idea of combining specifically adapted collision operators and the multi-phase
approach leads to the question of the possibility of simulating solid matter with the LBM.
In fact, the multi-phase LBM is of great interest, as it may simplify the notion of contact.
As an example, the work of Chiappini et al. [15] applied the multi-phase method to the
simulation of ligament break-up and gives insight into its potential in bio-mechanical soft
tissue simulations.

1.2. The Need for a LBM for Solids

The efforts to construct top-down collision operators able to simulate many physical
complex behaviors started when the LBM raised from the LGCA, with works from Succi
et al. [16,17]. Some pioneering attempts, by Chopard et al. for example [18], in solid
simulations using the LBM have been performed, with good application results on fractures
and fragmentation for a solid body. These simulations used a distribution of forces rather
than a distribution of particles as is usually the case with the LBM. Such distributions of
forces bring two disadvantages. The mass conservation can not be recovered anymore.
Secondly, since distributions are no more scalars but composed of vectors, it brings a large
computational cost. Despite these limitations and the inability to fully recover the linear
elastic equations, this work showed that the LBM is a good candidate when it comes to
simulating the decohesion of the material.

Alternative approaches for solid simulations exist with the LBM. They can be classified
into two main categories: those dealing with velocity distribution functions [19–21] and
those working with displacement distribution functions [22] in order to recover the Sophie-
Germain equation [23]. In these previous works, the LBM is more often used as a numerical
solver and the underlying link with the particles’ dynamic is lost.

Other works combined the lattice-spring method and the LBM for Fluid Structure
Interaction (FSI) [24]. For instance, Ref. [25] is dedicated to the hemodynamic simulation
in deformable blood vessels. However, the combination of two different methods with
different coordinate systems complicates the simulation. In addition, pure viscoelastic
wave propagation simulations using the LBM have been proposed [26–28]. All these works
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highlight the potential of the LBM for simulating FSI in a lot of applications requiring the
use of an Eulerian grid.

Indeed, simulating solids in an Eulerian framework, as in the LBM, is intricate and
limited. The main limitation is certainly the loss of the initial configuration, which is not
required for fluid simulations, but mandatory for solid simulations. Kamrin et al. [29]
proposed the so-called “reference map” to compute finite-difference simulations of large
solid-like deformations. They highlighted the fact that this reference map can simplify the
simulation of fluid/solid interactions, as both materials have a similar Eulerian expression.

The benefits of being able to simulate solids are keys in solving FSI problems and
simulation of specific constitutive laws in the LBM framework. The advantage of Eulerian
framework is principally the absence of a deformable mesh. Moreover, interest in the LBM
for the simulation based on medical imaging data [30] and biological phenomena [31] has
been highlighted. It appears that the use of the LBM framework allows for the simulation
of various problems based on what constitutes raw data in many biomedical applications,
i.e., medical images.

This work proposes an LBM for the simulation of solids, retaining the link with
particles. It is mainly based on the use of the Boltzmann–Vlasov equation (see Section 5.2),
which is a special case of the Boltzmann equation. To be more specific, only its restriction
to static equilibrium, through dedicated force terms, is tested here. The aim is to introduce
the newly proposed method in detail and to present some numerical implementations for
its first validation.

The work is organized as follows. Section 2 describes our model of LBM for solid
aiming static equilibrium simulations. Section 3 presents numerical implementations
and key algorithms of the method, and the integration in the Parallel Lattice Boltzmann
Solver (PaLaBoS) [32] framework. Section 4 is dedicated to benchmarks and comparisons
with Finite Element Analysis (FEA) using COMSOL software [33], in order to validate
the method. Section 5 discusses the results and their openings, and Section 6 concludes
the paper.

2. Lattice Boltzmann Method for Solids
2.1. Lattice Boltzmann Method

The BE [34] describes the evolution of particles in the phase space and can be written
as:

∂ f
∂t

+ ξ · ∇x( f ) + g · ∇ξ( f ) = Ω( f , f ), (1)

where g is the force field felt by particles, like gravity for mass particles, and the distribution
f corresponds to the statistical distribution of particles over the phase space; so ξ is the
particles speed, and Ω is the collision-interaction operator representing the interactions
between particles.

Using the trapezoidal rule and a change of variable ( f i to f̂ i see Equation (A2) in
Appendix A), a second-order discretization of the BE is done. Then, the time evolution
can be simulated by a succession of the collision step and streaming step, described by the
following famous equations which forms the core of the LBM and read:

f i
c(x, t) = f i

s(x, t)− ∆tω
(

f i
s(x, t)− f (eq)

i (x, t)
)
− ∆t

(
1− ω

2

)
gi(x, t), (2)

f i
s(x + ξi∆t, t + ∆t) = f i

c(x, t). (3)

where the superscript c and s stands for collision and streaming, f i and respectively gi
are the discretization over the velocity space of f and g · ∇ξ( f ) respectively, through a
projection on the Hermite basis. ∆t is the increment of time chosen, ξi is the result of the
Gauss–Hermite quadrature, f (eq)

i is the discretized equilibrium distribution function and ω
is the invert of the relaxation time for the system to converge toward the equilibrium. One
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might also note that in Equation (2) using a negative sign in the factor with the term gi is
not the most common convention, so readers should be careful to avoid sign mistakes.

The change of variable used in the Equation (A3) also has an impact on the macroscopic
variable. With the use of Equation (A2), one can compute:

q

∑
i=0

f i = ρ, (4)

q

∑
i=0

ξi f i = ρ̂v = ρv− ∆t
2

gi, (5)

q

∑
i=0

(ξi − v)⊗ (ξi − v) f i = Π̂ = p(0) −
(

1 +
∆tω

2

)
Π(1) − ∆t

2
(g ⊗ v + v⊗ g). (6)

In the last expression, Π(1) is given by Equation (A27). These previous sums justify the
correctional terms in the macroscopic speed and the “lattice viscosity” that has to be
compensated when fitting the physical cinematic viscosity with the collision frequency
ω = 2cs

2

cs2+2ν
. In the previous formula, cs is the celerity of sound and is obtained by cs

2 = 1
3 Rθ,

where θ is the temperature.
Using Guo’s approach [35], the projection of the forcing term on the Hermite basis at

second order reads:

gi =
wiρ

cs2 ξi · g +
wiρ

2cs4

[
(v · ξi)ξi −

v
cs−2

]
· g. (7)

2.2. LBM for Solids

As Shan and Chen [10] specified, the non-local contribution of the collision-interaction
operator should be integrated in a LBM scheme through its equivalent external force.
Further argumentation about this assumption is detailed as an opening in the discussions
of this paper (see Section 5.2). Therefore, we suggest using an external force related to the
solid’s Cauchy stress tensor, via its divergence:

g =
1
ρ
∇x · (σ). (8)

It is worth noting that this expression is completely generic and might be applied theoreti-
cally to any constitutive law. More details about the constitutive law and material properties
chosen for this study are detailed in Section 3. Moreover, the numerical evaluation of the
divergence remains a critical part of the process.

Because the aim of the study is to define a framework for the use of Lattice Boltzmann
Method for Solids (LBMS), it is necessary to validate it. Thus, as a first study, a validation
of the static equilibrium of a solid is suggested. The static equilibrium of a solid is reached
when there is no more relative movement inside the solid. Therefore, we naturally suggest
introducing a zero-macroscopic speed equilibrium function, to ensure the convergence
toward static equilibrium. Then, the equilibrium distribution function is simply given by:

f (eq)
i (ρ, v = 0) = wiρ. (9)

This expression of the equilibrium distribution function is similar to those used in
classical LBM for fluids when a null speed is imposed.

Using this model and through the numerical Chapman-Enskog expansion, we recover
the undefined equation of static equilibrium:

∂tρ = 0, (10)

∇x · (σ) = 0. (11)
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As a reminder, the Chapman–Enskog expansion studies the LBGKE by order of
perturbation. Recombining equations obtained by order of perturbation, the macroscopic
equations solved numerically by the LBM scheme are recovered.

3. Numerical Implementations and Algorithms

In this section, the key algorithms are presented in order to understand the suggested
method from a technical point of view. Details are given in such manner to catch on relevant
arithmetic specific to the Lattice Boltzmann Method for Solids in a two-dimensional space.

3.1. Mechanical Introduction for Implementations

As a first study and implementation, solid cases that are as simple as possible are
considered to build functions. So, the infinitesimal strain theory framework is used. Thus,
it is possible to simply use linearized strains, i.e., the linearized strain tensor ε. Moreover,
to keep a low complexity level, we consider the isotropic linear elastic constitutive relation-
ship. In this framework, the Eulerian and Lagrangian descriptions can be considered as
equivalent, yielding true Cauchy stresses σ.

The main idea of the proposed method is to incorporate the stress divergence tensor
of a solid behavior as an external force. To test this proposal and only this one (not
other assumptions like the collision-less operator introduced in the discussion, which is
more related to dynamics), we examine this proposition as a first study. Some of these
requirements are further developed in Section 4 in order to set this static framework
thoroughly.

3.2. General Implementation Approach

To carry out a program which is manageable, robust and easy to install, multiple
considerations have to be taken into account. First, a user-friendly implementation seems
to be mandatory and permits the community to develop new functions or interfaces.
Secondly, seeking for robustness is obvious and leads to correct simulation results, but code
efficiency is not directly required. Thirdly, working with a light environment is greatly
appreciated, i.e., with few dependencies allowing a fast installation on different platforms.
All of these requirements will enable reproducibility of following results.

These objectives are mainly reached using C++ language and the well-known PaLa-
BoS [32] library. Hence, we decided to build an additional library which is plugged on top
of PaLaBoS, i.e., which uses only PaLaBoS as dependence: the LBMS library. The LBMS
library is, thus, an easily accessible setup. This strategy leads to a non-intrusive coding
task where solid classes and solid objects are called beside PaLaBoS without modifying its
functions or methods. The LBMS library algorithms and the results presented here show
their ability to solve solid static equilibrium with the LBM. Library source code is available
online [36], and main used numerical ingredients and scheme properties are thus freely
accessible. Moreover, we refer the readers to Section 4 for more numerical details.

3.3. Additional Solid Routines

In order to not modify the classic LBM loop, additional independent solid routines are
inserted into existing steps. This approach leads to appending new local operations across
the lattice alongside the standard collide and stream stages, see Equations (2) and (3). They
are executed at each time iteration. Algorithms are presented, taking into account a lattice
structure composed by several blocks, where each independent structure can be calculated
on a specific core processor as PaLaBoS does. For that purpose, quantities are expressed in
physical units.

In solid mechanics [37,38], discrete displacement values are the unknown variables of
the system to solve. We use time integration to retrieve this required displacement from
velocity, as detailed in Algorithm 1. Once the displacement tensor field U is recovered, the
strain tensor field E is obtained from the displacement by numerical differentiation. One
should remark that even if the equilibrium velocity is set to zero for our static state, it does
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not imply that before reaching the “static convergence” the velocity is null in the domain.
This emphasis the necessity of the Algorithm 1 in the numerical process. The stress tensor
field Σ is, thus, deducted with a given solid constitutive law, see Algorithm 2. A body force
is then added to each cell thanks to the stress divergence tensor field ∇x · (Σ) determined
in Algorithm 3. Previous tensor fields are defined over the whole lattice, i.e., using lattice
global coordinates Gx and Gy in a two-dimensional space.

Algorithm 1: Displacement Routine [Physical Units]
Input : Macroscopic velocity field v and time increment ∆t
Result: Macroscopic displacement tensor field U
for b← 0 to BlockLattice.Count()-1 do

Gx
p ← BlockLattice[b].GetBlockLatticeGlobalPositionX() ; // Get current

lattice position X

Gy
p ← BlockLattice[b].GetBlockLatticeGlobalPositionY() ; // Get current

lattice position Y

for x ← 0 to BlockLattice[b].GetNx()-1 do
for y← 0 to BlockLattice[b].GetNy()-1 do

Gx ← x + Gx
p ; // Current cell global position X

Gy ← y + Gy
p ; // Current cell global position Y

U[Gx, Gy] += vcell × ∆t ; // Time integration

end
end

end

Algorithm 2: Strain and Stress Routine [Physical Units]
Input : Macroscopic displacement tensor field U, space discretization ∆x and solid

constitutive law C
Result: Macroscopic strain and stress tensor fields: E and Σ

for b← 0 to BlockLattice.Count()-1 do
Gx

p ← BlockLattice[b].GetBlockLatticeGlobalPositionX() ; // Get current

lattice position X

Gy
p ← BlockLattice[b].GetBlockLatticeGlobalPositionY() ; // Get current

lattice position Y

for x ← 0 to BlockLattice[b].GetNx()-1 do
for y← 0 to BlockLattice[b].GetNy()-1 do

Gx ← x + Gx
p ; // Current cell global position X

Gy ← y + Gy
p ; // Current cell global position Y

P← BlockLattice[b].GetCellVicinityParameters(x, y) ; // Vicinity

parameters

E[Gx, Gy] = ComputeStrainFromDisplacement(U, ∆x, P) ; // Strain

computation

Σ[Gx, Gy] = ComputeStressFromStrain(E[Gx, Gy], C) ; // Stress

computation with solid constitutive law C

end
end

end
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Algorithm 3: Body Force Routine [Physical Units]
Input : Macroscopic stress tensor field Σ and space discretization ∆x
Result: Macroscopic stress divergence tensor field ∇x · (Σ)
for b← 0 to BlockLattice.Count()-1 do

Gx
p ← BlockLattice[b].GetBlockLatticeGlobalPositionX() ; // Get current

lattice position X

Gy
p ← BlockLattice[b].GetBlockLatticeGlobalPositionY() ; // Get current

lattice position Y

for x ← 0 to BlockLattice[b].GetNx()-1 do
for y← 0 to BlockLattice[b].GetNy()-1 do

Gx ← x + Gx
p ; // Current cell global position X

Gy ← y + Gy
p ; // Current cell global position Y

P← BlockLattice[b].GetCellVicinityParameters(x, y) ; // Vicinity

parameters

∇x · (Σ)[Gx, Gy] = ComputeStressDivergenceFromStress(Σ, ∆x, P) ;
// ∇x · (Σ)[Gx , Gy] computation

BlockLattice[b](x, y).ApplyLatticeBodyForce(∇x · (Σ)[Gx, Gy]) ; // Apply

lattice body force to the current cell

end
end

end

These three routines allow the computation of required tensor fields over the lattice
domain. They describe solid variables for each lattice cell at time t. In a two-dimensional
space, the displacement tensor field has the form referenced in Equation (A36). In addition,
considering mechanical applications with symmetric strain and stress tensors, strain and
stress tensor fields are defined in Eqautions (A37) and (A38), respectively. Thus, body force
applied to the whole lattice with number of nodes Nx and Ny at each time iteration can be
expressed as:

∇x · (Σ) =



∇x · (Σ)[0, 0] = ∇x · (σ)0,0 =

 ∂σxx
∂X +

∂σxy
∂Y

∂σxy
∂X +

∂σyy
∂Y


0,0

. . . ∇x · (σ)0,Ny−1 =

 ∂σxx
∂X +

∂σxy
∂Y

∂σxy
∂X +

∂σyy
∂Y


0,Ny−1

...
. . .

...

∇x · (σ)Nx−1,0 =

 ∂σxx
∂X +

∂σxy
∂Y

∂σxy
∂X +

∂σyy
∂Y


Nx−1,0

. . . ∇x · (σ)Nx−1,Ny−1 =

 ∂σxx
∂X +

∂σxy
∂Y

∂σxy
∂X +

∂σyy
∂Y


Nx−1,Ny−1


, (12)

where ∇x · (Σ) tensor field is space-time dependent and remains equivalent to a gravi-
tational force in terms of dimensional units. A lattice node (Gx, Gy) is subject to a force
estimated partly thanks to a solid constitutive law. This force is then processed depending
on lattice units via the call of ApplyLatticeBodyForce() that incorporates forces into lattice
descriptors in order to modify distribution functions when colliding step is executed.

In addition to this general implementation, a particular attention should be paid the
interfaces and boundary conditions. Indeed, the numerical method used should be able
to capture the displacement and stress continuity or discontinuity, according to the given
problem. The strain and stress divergence are calculated, in this paper, with high order finite
difference schemes which are constructed on the cell’s local vicinity. However, the presented
methodology remains general and is true for others numerical schemes able to capture
derivatives accurately. Presented numerical operations are local across lattice nodes and
allow parallel computing thanks to independent arithmetic. With GetCellVicinityParameters()
function, information of boundaries and lattice block frontiers are retrieved so as to adapt
numerical derivative scheme topology to a specific cell.
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3.4. Finite Difference Schemes

We seek for a robust numerical method to evaluate precisely first derivatives of
displacement so that a correct strain state is obtained, and the same is requested for stress
divergence. Firstly, evaluations that will not amplify non-desired oscillations like local
scheme patterns are preferred. Weighted Essentially Non-Oscillatory (WENO) [39] schemes
were especially developed with this idea. Secondly, we aim to design schemes with small
truncation errors in order to minimize deviation during iterations so as to get an acceptable
solid static equilibrium. Furthermore, versatile schemes able to capture behavior along
boundaries are clearly better suited.

A programming task was performed, taking into account the successive use of different
finite difference models as we move away from boundaries. Both forward and backward
formulations are thus adopted; we refer the reader to library sources [36] for more details.
For instance, around internal lattice nodes, a central difference scheme with a O

(
∆x4)

truncation error is built, see Equation (13). The first derivative along the first spatial
direction X of any function Q with discrete values over the lattice can be expressed as:

∂Q(Gx, Gy)

∂X
=

Q(Gx − 2, Gy)− 8Q(Gx − 1, Gy) + 8Q(Gx + 1, Gy)−Q(Gx + 2, Gy)

12∆x
+O

(
∆x4

)
, (13)

where (Gx, Gy) denotes a specific lattice node in lattice global coordinates. Since this
previous scheme uses a two-neighborhood environment, application near boundaries
cannot be applied in this study.

3.5. Proposed Solid Equilibrium and Colliding Step

As we aim to study static equilibrium state, we suggest using Equation (9), in order to
relax towards a solid equilibrium. Moreover, the use of the Bhatnagar, Gross and Krook
(BGK) collision operator, enhances the numerical stability and avoid some unwanted
mechanical waves or issues near boundaries. This last point is further developed in the
next Section 3.6. However, our BGK collision operator for solids differs by its equilibrium
distribution from the usual one used in CFD.

We tried to reach the static equilibrium through the BGK operator considering an
equilibrium distribution without macroscopic speed. A simple distribution that does
not depend on temperature, and ideally where matter does not move at the microscopic
scale level, is targeted. However, for arithmetic reasons, mass is not concentrated on the
cell’s first discretized distribution function. The following numerical tests proved the
functionality of the proposed distribution functions at solid equilibrium. From there, for
each cell composing the lattice, distribution at solid static equilibrium for a classic D2q9
scheme can be defined by (see Equation (9)):

f (eq)
i

,sld(ρ(x, t), v) = f (eq)
i (ρ(x, t), 0) = wiρ(x, t) =


4
9 ρ(x, t) if i = 0,
1
9 ρ(x, t) if i ∈ [1, . . . , 4],
1

36 ρ(x, t) if i ∈ [5, . . . , 8],

(14)

where f (eq)
i

,sld represents a discrete value i of f (eq) ,sld for a cell node (Gx, Gy). The presented
distribution is applied both for initial conditions and equilibrium during time iterations.
Hence, the proposed equilibrium only varies in space and time through density, and does
not depend on the solid constitutive law chosen. Thus, mass conservation is assured at
solid equilibrium thanks to the summation of Gauss–Hermite weights wi. One can also
note that in Equation (14) the common choice of cs

2 = 1
3 is chosen. However, in this special

case of solid static equilibrium, the equations are of diffusion type. In such a case, the
sound celerity can be chosen freely since the BGK or Two Relaxation Times (TRT) operators
are unconditionally stable [40].

The colliding step (see Equation (2)) is then modified to include the above suggested
solid equilibrium and related force calculated from stress divergence. For instance, consid-
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ering an internal node, not on boundaries, the discretized collision operator is expressed
by:

Ω
(

f i(Gx, Gy, t), f (eq)
i

,sld
)
= −ω

(
f i(Gx, Gy, t)− f (eq)

i
,sld) + si(Gx, Gy, t

)
, ∀i ∈ [0, . . . , 8]. (15)

Observe that f i(Gx, Gy, t) and f (eq)
i

,sld depends on space and time whereas f (eq)
i

,sld is
also dependent on lattice scheme properties. Moreover, si(Gx, Gy, t) represents the lattice
source term related to a body force for a node (Gx, Gy) at time t applied on distribution, see
Algorithm 3. si(Gx, Gy, t) is also scheme dependent because its computation is based, for
instance, on Gauss-Hermite weights wi. Different force implementations exist for LBM. All
the following illustrated results are made using the Guo approach [35], see Equations (2)
and (7). This choice was made in the name of simplicity, even if it known to be related
to some physical inconsistency, whereas the same remark is true independently for some
collision operators [41].

Related new objects and class methods are incorporated next to existing PaLaBoS
dynamics and called when a solid study is requested. As we mentioned before, non-
intrusive coding work allows for the addition of new solid objects without modifying initial
PaLaBoS sources enabling the interoperability between different libraries.

3.6. Proposed Modifications for Solid Boundary Conditions

To deal with solids in an LBM framework, it is easier to work on existing boundary
conditions. Indeed, solid behavior near domain frontiers must be identified. Our numerical
approach can be explained as follows. First, numerical runs have pointed out non-desired
stress concentration issues in corners or along borders, yielding to important gradients
skewing external forces values. Secondly, we aim to distinguish the boundary behavior
from the internal one.

Even though, this boundary behavior has not been clearly determined, we aim to
suggest a patch treatment for solid matter. For all boundary nodes, we decide to relax them
independently toward an equilibrium through Algorithm 4, just before the colliding step.
Hence, an additional relaxation parameter ωc is introduced. In other words, along domain
borders, a double colliding step is thus, applied in a cascade manner, including one with
external force. In practice, we opt for 0.80 < ωc ≤ 1 to relax with efficiency.

Concerning non-zero velocity boundary conditions, ωc is specially chosen to be equal
to 1. Indeed, in a solid, no particles are streamed at constrained boundary interfaces.
Stress divergence must act as a body force in internal nodes and shall alone govern inner
behavior. This can be physically interpreted as if non-zero velocity boundary conditions
being immediately converted into solid forces during iterations.

Although, all of these conditions are not perfect and subject to improvement, indeed
works on highly accurate boundary conditions on the moving surface [42] could be ex-
ploited. Yet, the simple and perfectible boundary conditions used here lead to correct
results, see Section 4. For more details concerning the implementation, see the available
source code [36].

Algorithm 4: Boundary Conditions’ Routine

Input : Boundary relaxation parameter ωc and solid equilibrium f (eq) ,sld

Result: Modification of distribution functions f i(Gx, Gy, t) on boundaries
for b← 0 to BoundaryCell.Count()-1 do

BoundaryCell[b].RelaxBoundaryCell(ωc, f (eq) ,sld) ; // Relax current boundary

cell

end

3.7. LBMS: Loop to Solve Solid Static Equilibrium

Lattice Boltzmann loop is slightly reorganized including above presented additional
routines and modifications to perform solid simulations. Main steps are fulfilled by execut-
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ing in sequence the displacement routine, strain and stress routine, body force routine and
finally the special solid boundary task.

To demonstrate the capacity of the present LBM to solve solid static equilibrium, we
decide to assign specific boundary conditions. The function SetBoundaryConditions() sets
a zero-velocity condition along related frontiers. In solids, it is similar to fixed boundary
conditions if zero velocity does not evolve throughout the simulation time. On the other
hand, SetBoundaryVelocity() applies a classic velocity condition, which is reduced to zero
when variable MaxIterationBoundaryCondition is reached. Expected solid static equilibrium
is achieved after several supplementary loops. Previous setup exhibits good results for
solids, therefore, this is carried out in Section 4.

Solid relaxation parameter ω is defined to be very small, to simulate a non-collision
condition. Practically, parametric numerical runs revealed that influence of the relaxation
parameter can be neglected if ω ∈ [0, . . . , 1] far from domain borders. Indeed, ω = 0.01
and ω = 1 give almost the same results. This can be explained by the fact there exists a
balance between stress divergence and relaxing term due to the truncated diffusive term
which scales with the diffusion coefficient, here 1

3

(
1
2 −

1
ω

)
.

We refer the readers, in particular, to the C++ main file Article.cpp included in LBMS
library which contains all the needed exhaustive details for Algorithm 5. Since presented
algorithms are based on library sources, useful additional comprehension can be retrieved
from this repository.

Algorithm 5: LBMS Loop
Input : Static equilibrium problem (isotropic materials)
Result: Solved static equilibrium state and related macroscopic variables
Initialization (see library sources [36]) ; // Other necessary initializations

Lattice.SetPeriodicity(false) ; // Periodicity = false

Lattice.InitializeAtSolidEquilibrium( f (eq) ,sld) ; // Solid equilibrium at t = 0

Lattice.SetBoundaryConditions() ; // Set fixed boundary conditions

Lattice.SetBoundaryVelocity() ; // Set velocity boundary condition

Lattice.Execute(Algorithm 1) ; // Compute displacement field

Lattice.Execute(Algorithm 2) ; // Compute strain field and stress field

for i← 0 to (i× ∆t) < MaxStudyTime do
Lattice.Execute(Algorithm 3) ; // Apply lattice body force

Lattice.Execute(Algorithm 4) ; // Relax boundaries

Lattice.Collide() ; // Standard PaLaBoS colliding step

Lattice.Stream() ; // Standard PaLaBoS streaming step

if i = MaxIterationBoundaryCondition then
Lattice.UnsetBoundaryVelocity() ; // Set velocity boundary condition to zero

end
Lattice.Execute(Algorithm 1) ; // Compute displacement field

Lattice.Execute(Algorithm 2) ; // Compute strain field and stress field

end

3.8. Proposed Method and Algorithms in a Nutshell

To sum up, in order to extend the LBM to solid static equilibrium, the proposed method
is to apply the LBM formalism through the Algorithm 5 (leading to the LBMS). Algorithm 5
itself relies on the previous Algorithms 1–4 and consequently on Equations (2)–(9). In
addition to this generic method, a constitutive law needs to be added to close the system.
In our following validation, a linear isotropic elastic behaviour is used which leads to the
Equation (16), and which is further detailed in the following section.
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4. Validations and Benchmarks

To validate the previous physical interpretations, LBMS developments and C++ algo-
rithms, results are compared with an FEA software. The reference model must be accurate
and faithful under mechanical framework assumptions. These validations are performed in
a two-dimensional space for simplicity and clarity using a deformable solid body. Through-
out this section, all numerical values are given in the International System of Units (SI) base
units if units are not mentioned.

4.1. Mechanical Framework

A strict mechanical framework must be defined so as to identify with fidelity com-
monalities between the two different approaches in terms of results. To do that, a necessary
mechanical background is fixed in this section. This background sets the mechanical
assumptions and study properties for both methods enabling relevant comparison.

4.1.1. Mechanical Prerequisites

We resume some aspects partially developed in Section 3.1 concerning isotropic linear
elastic materials, Eulerian and Lagrangian frameworks. Details are given to highlight with
preciseness the type of matter used and useful assumptions to validate the LBMS.

Firstly, we point out that the stress–strain relation of such isotropic materials is straight-
forward and well known. This solid behavior is determined with respect to the classic
Hooke’s law given in Equation (16) for a lattice node (Gx, Gy). Thus, stress can be deter-
mined from the strain with only two scalar values, and these two tensors are symmetric:

Σ[Gx, Gy] = C : E[Gx, Gy] = λ Tr
(
E[Gx, Gy]

)
I + 2µE[Gx, Gy]. (16)

where C is the corresponding fourth-order isotropic stiffness tensor. Moreover, λ and µ are
the Lamé coefficients. As mentioned above, E and Σ are the strain and stress tensor fields
defined over the whole lattice.

Secondly, we want to superimpose the deformed configuration and the initial one. In
order to do that, the involved displacement field must be small in terms of its norm. The
material solid structure is then considered motionless during its transformation whereas
the body remains deformable. In fact, all mechanical tensors such as displacement, stress,
and strain are computed considering initial configuration, thus simplifying the problem.
Furthermore, to be able to consider linearized strains, deformation must represent less than
1% of a solid characteristic dimension.

Thirdly, in our process, distinction between the two different descriptions, i.e., Eu-
lerian description (a.k.a. spatial coordinates) and Lagrangian description (a.k.a. material
coordinates) does not apply. The Lagrange approach is widely preferred for solids where
materials move with the coordinate system including elements. Basically, it can be ex-
plained by the fact that no matter passes from one element to another. On the other hand, in
CFD, the mesh or lattice is fixed. Because the lattice structure is supposed to be stationary
throughout time, this no-distinction assumption can be made freely. In substance, the con-
sidered trajectories of solid particles can be insignificant, thus allowing for the merging of
these two descriptions. Furthermore, all stresses are assumed to be true, i.e., no differences
arise from the deformation gradient, which is reduced to the identity matrix [43].

4.1.2. Mechanical Study

The comparison study setup is quite simple. All borders are affected with fixed
boundary conditions except one where displacement is imposed; see Figure 1 for more
details. This enforced displacement is formulated as follows:

u = 0X− 0.002Y, (17)

where numerical values are expressed in SI base units. X and Y represent first and second
vectors of the space basis respectively. The Lamé coefficients are classically retrieved from



Appl. Sci. 2022, 12, 4627 12 of 40

material properties, mostly thanks to Young’s modulus E and Poisson’s ratio ν. Then,
we define three cut lines in order to post-process results with parametric curves so as to
compare fields with thoroughness, i.e., thanks to C1, C2 and C3.

Figure 1. Mechanical study for LBMS approach validation. Black frontiers are fixed boundary
conditions. A displacement is imposed across the vector u described with black, as is depicted on the
left. Solid material properties are defined through Young’s modulus E and Poisson’s ratio ν. Blue
oriented curves C1, C2 and C3 are used for post-processing. All dimensions are given in meters.

4.1.3. LBMS: Setup

Taking into account the previously targeted mechanical study, a lattice characterized
by a D2q9 scheme is sampled with a resolution of 200 nodes per meter, yielding a suit-
able discretization. In this spirit, a mesh convergence study was made and it shows an
improvement of the solution quality when lattice becomes finer; see Figures A1 and A2
for more details. A forced lattice descriptor is adopted in order to manage discrete force
values. In all the following cases, a density of ρ = 1000 is affected to any cells regardless of
the matter’s nature.

To simulate an imposed displacement condition, a velocity boundary condition is
applied during a certain amount of time and then reduced to zero. The previous process
allows solid equilibrium to be reached which is established after a couple of supplementary
iterations following the change in value of imposed macroscopic speed. Displacement field
is then stable and no longer evolves, producing next presented results. These results can
be all retrieved and re-simulated freely from the C++ main file Article.cpp included in the
sources of the LBMS library.

We aim to keep the initial configuration as close to the deformed one in order to
compute fields onto the same lattice geometry regardless of the transformation. Further-
more, throughout the iterative LBMS process, error accumulation is prevented by using a
linear behavior implicating linearized strains: 1% of deformation is, thus, the maximum
amplitude that we allow ourselves for model validation.

4.1.4. COMSOL: Setup

A benchmark, i.e., a mechanical study which is accurate under assumptions presented
above, has to be carefully established. For that purpose, we choose COMSOL [33] as the
FEA preprocessor and solver for its simplicity of use. However, some simulation options
remain important to set even to resolve a standard static problem.

As mentioned above, linearized strains are assumed and in the way forced by default.
Because displacement is considered non-existent, all stresses are supposed to be true.
Hence, computed Cauchy stress can be directly compared with the tensor field Σ from the
proposed LBMS approach. A plane stress assumption is made so as to simulate a very
thin plate. Although, stress–strain relation of this hypothesis is slightly different than the
Hooke’s law presented previously; we keep this in mind when investigating results.

A standard extra fine triangular mesh is generated with fully integrated elements
using cubic shape functions. This setup enables accurate computations of the solution at
boundary interfaces or areas subject to stress concentration. More formally, we want a
reliable solution that can be examined in detail, e.g., near discontinuities produced by the
imposed displacement.
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Concerning nearly incompressible materials [37,38,43] later presented in this work, we
use a hybrid element approach, i.e., a mixed formulation that avoids volumetric locking for
fully integrated elements. Other methods exist to solve this issue, see e.g., [44]. Indeed, due
to the constant pressure inside triangles, this numerical phenomenon can arise and may
distort the solution. In any cases, the mesh discretization and nature of shape functions
further secure the simulation reliability avoiding other locking difficulties. Used triangular
elements are rich enough to represent a correct result. Another solution would be to
mesh with reduced integration elements where volumetric locking problem does not exist;
however, an hourglass control then becomes necessary.

4.2. Results Comparison with Commercial Software

Reference FEA studies and associated LBMS simulations are compared with 2D plots
and curves. Parametric numerical analysis is led so as to show performance details among a
wide range of isotropic materials, i.e., ν ∈ [−0.99, . . . , 0.49] and E ∈ [2× 103, . . . , 2× 1011].
They show the undeniable capability of the LBM to solve solid mechanics cases.

4.2.1. Case E = 200 GPa, ν = 0.15

Firstly, we decide to illustrate a specific case, i.e., with material properties E = 200 GPa,
ν = 0.15. This example shows typical results of our presented framework. Figure 2 contrasts
the reference study with the proposed LBMS study. Strong similarities and likenesses are
observed between the two different approaches. Displacement extremum values remain
consistent across the lattice and are directly correlated with the related FEA study. More
locally, field values are practically identical and same solid behavior is exhibited. However,
we notice unwanted small oscillations of the displacement field arising from the used finite
difference scheme. As we mentioned above, WENO schemes may certainly improve the
solution quality. In addition, these perturbations can be drastically reduced by setting a
smoother loading profile. Figure 3 shows us the deformed shape and displacement field
magnitude of the lattice computed with our LBMS approach.

(a) (b)

(c) (d)

Figure 2. 2D results comparison of displacement field for case E = 200 GPa, ν = 0.15 per field
component. (a) Displacement along X axis, with LBMS. (b) Displacement along Y axis, with LBMS.
(c) Displacement along X axis, with COMSOL. (d) Displacement along Y axis, with COMSOL.
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(a) (b)

Figure 3. Deformed solid for case E = 200 GPa, ν = 0.15 amplified 5 times with its distorted underlying
lattice. Color mapping shows magnitude of displacement field. (a) Overall view of the deformed
solid. (b) Detailed view along loading.

Figures 4 and A3 depict the Von Mises stress distribution along cutting curves C1 and
C2, respectively (see Figure 1 for more details concerning C1 and C2). Comparing stress
values between different codes is often very sensitive. Because we solve for displacement
in an FEA approach, stresses values are strongly dependent on the computed displacement
field accuracy. Plotted curves show a similar global behavior and the same order of
magnitude (no more than 15% of difference in Figure A3), although Figure 4 has a striking
match with the reference study. These first results lead to the proposed method having an
interesting potential.
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Figure 4. Von Mises stress along cutting curve C2 for case E = 200 GPa, ν = 0.15.

4.2.2. Poisson’s Ratio Sensitivity

To evaluate the reliability of the proposed method, parametric studies are led with
various values of ν with a fixed E = 200 GPa. For that purpose several curves are analyzed
to illustrate the capability of our LBMS method to simulate a wide range of Poisson’s
ratios. Figures 5, A4, A6 and A11 exhibit results with negative ν whereas Figures A5, A7,
A10 and A12 present positive ones. For ν ∈ [−0.50, . . . , 0.35] results are satisfying and
replicate expected displacement field with a good accuracy and credibility. Concerning
highly auxetic materials and nearly incompressible solids, results are mixed. Among all
ratios, the general trend still remains analogous. Detailed views along cutting curve C2
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are provided in Figures A8 and A9 for the first displacement direction and in Figures A13
and A14 for the second one.
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Figure 5. Second displacement components along cutting curve C1 for negative Poisson’s ratios.

The results shown are acceptable in terms of matching with the reference study.
Differences between curves are more pronounced when poisson’s ratio is moving away
from zero. Further detailed explanations are presented in Section 5.

4.2.3. Young’s Modulus Sensitivity

Like in the previous part, we perform a parametric study involving Young’s modulus.
Poisson’s ratio is set to zero, leading to λ = 0. Thus, the isotropic law is modified and
therefore the Poisson effect does not exist for this particular case. Figures A15 and A16
illustrate the first displacement coordinate along cutting curves C1 and C2 respectively. In
the same way, Figures A17 and A18 depict the second displacement coordinate.

At boundaries, displacement is imposed, thus yielding to identical curves no matter
is the material stiffness. Indeed, E acts as a stress factor into studied isotropic law (see
Equation (16)), i.e., only stresses are subject to change. Young’s modulus can be viewed as
a convergence coefficient during iterations. Investigations are made to demonstrate the
insensitivity and stability of LBMS with various modulus. To go further, we remark that the
first component of displacement partly arises from intense shear stress at the frontiers of
the velocity condition. A non-constant shear stress along second basis direction produces a
non-zero stress divergence, i.e., contributing to its first component and hence yielding a
displacement even if ν = 0.

4.2.4. Triangular Loading: Case E = 200 GPa, ν = 0.15

To exhibit robustness of the LBMS method and its ability to compute solid static
equilibrium, a last example is illustrated with a different boundary condition. We resume
the previous case in Section 4.2.1, but a right-angled triangular imposed displacement is
applied (with the maximum displacement localized at the right of the considered problem)
instead straight one (see Figure 1). Figure 6 presents the 2D results compared with the
reference study. In general, the displacement field is consistent and replicates the expected
solid behavior with fidelity. In detail, minor errors are detected in field values leading to
the same conclusions as above. Additional curves are given in Figures A19 and A20 for
Von Mises stress and in Figures 7, A21–A23 for displacement components along cutting
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curves C2 and C3. Plots are in total concordance with the related FEA study despite slight
deviations when displacement is important.

(a) (b)

(c) (d)

Figure 6. 2D results comparison of displacement field for case E = 200 GPa, ν = 0.15 per field
component and with a triangular loading profile. (a) Displacement along X axis, with LBMS. (b) Dis-
placement along Y axis, with LBMS. (c) Displacement along X axis, with COMSOL. (d) Displacement
along Y axis, with COMSOL.
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Figure 7. The first displacement component along cutting curve C2 for case E = 200 GPa, ν = 0.15
with triangular loading.

5. Discussions and Outlooks
5.1. Obtained Results and Discussion

In addition to the global curves matching, which gives a qualitative validation, a
quantitative analysis is provided. Thus, Table 1 shows the Root Mean Square Error (RMSE)
and Normalized Root Mean Square Error (NRMSE) between the computed results with the
LBMS and FEA, presented through Figures 4, 5 and 7. The results show a great precision of
the LBMS compared to the FEA method, and this is for a large number of study cases. This
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precision illustrates the fidelity of the LBMS. The numerical errors obtained are far lower
than the amplitude of the computed fields, which yields only a few percents of error. These
errors values tend to quantitatively validate the presented approach.

The numerical tests highlight the stability and accuracy of the suggested methods in a
very broad range of mechanical parameters. This large range allows us to conclude that
the current method could be applied to numerous constitutive laws, and not only to the
isotropic linear elasticity. This wide range tends to support the theoretical development
presented in this study, especially the incorporation of the stress divergence as a mean-field
force.

Table 1. RMSE and NRMSE of the displacement and Von Mises stress obtained for different study
cases.

Loading Curve Field E (GPa) ν RMSE NRMSE

Rectangular C2 (Figure 4) Von Mises stress 200 0.15 7.37× 107 3.77%

Rectangular C1 (Figure 5) Displacement Y 200 −0.99 1.52× 10−5 5.01%

Rectangular C1 (Figure 5) Displacement Y 200 −0.5 4.41× 10−6 1.66%

Rectangular C1 (Figure 5) Displacement Y 200 0.0 1.23× 10−5 5.50%

Triangular C2 (Figure 7) Displacement X 200 0.15 1.52× 10−5 2.01%

Concerning the introduced boundary conditions for solids, some work remains in
order to enhance adaptation for solids. Currently, it has been pointed out that fixed
conditions are far from perfect and suitable for accurate computation near concerned areas:
impreciseness on fields can arise due to this modeling issue.

Light differences with reference plots may have several explanations. First and fore-
most, the LBMS method detains an iterative process so as to arrive at solid static equilibrium;
thus, the finite difference scheme accuracy could play an important role concerning quality
of the calculated results. Moreover, we point out some post-processing issues which may
be at the origin of the errors. Indeed, along cutting curves, the FEA displacement field
is mainly interpolated whereas the LBMS field hardly is. All of these considerations can
cause additional deviations from the reference study and may explain some of illustrated
differences.

Other slight errors may be generated by the non-differentiation between Eulerian and
Lagrangian frameworks. Several iterations are needed to reach the equilibrium state (i.e.,
when stress divergence tends towards a null vector), yielding completely different pipelines
between FEA and LBMS. Furthermore, as mentioned above in Section 4.1.4, the used plane
stress assumption for two-dimensional reference studies might trigger some of the shown
deviations in curve plots, especially for non-zero Poisson’s ratios. Indeed, thin plates are
usually modeled with a plane stress hypothesis, but this approach is softly inconsistent
with the one used to produce illustrated LBMS runs, i.e., a plane strain assignment. For all
of these reasons, extra investigations seem to be mandatory to fit calculated reference fields
with better accuracy.

All these achievements seem promising in terms of the use of the Boltzmann–Vlasov
approach for solid dynamics. It is also worth noting that the mass of the system is always
conserved. Indeed, the intrinsic advantages of the LBM are preserved by the LBMS
(macroscopic equations recovered from the statistical moments, locality, simplicity, etc.).
In contrast to previous attempts to cope with solid behavior with the LBM, our approach
does not require statistical distribution of forces [18,45] nor springs [24]. Both bring more
complexity, heavier computations, are further away from the Boltzmann theory, and are
less prone to FSI coupling.

For our validation case, we do not have an analytical solution due to boundary
conditions issues. A simpler test case is not easily achievable in a two dimensional domain.
Concerning numerical correlations, the standard FEA solution is completely approved by



Appl. Sci. 2022, 12, 4627 18 of 40

the mechanical community and hence serves as a reference solution. We further point out
that both methods (i.e., LBMS and FEA) are truly different and must be compared carefully,
see Table 2 for more details. Our proposed LBMS method is not very competitive in terms
of computational time, because it was developed to evolve to solve complex FSI dynamic
problems. In these mechanical cases, FEA runs are time-consuming calculations and the
previously explained trend could be drastically reversed. On the other hand, the LBM
approach can trade its “locality” for an improved computational time in steady-state cases
as it has been illustrated in [40]. However, because our focus is on FSI dynamic problems,
the latter approach was not used here. However, it contributes to the explanation of the
limited computational time competitiveness of the suggested method.

Table 2. Comparison between LBMS and standard FEA methods to compute a solid static equilibrium.
Because LBMS method is intrinsically dynamic, results are not competitive for static studies.

Method Computation
Time (s) Iterations Dependencies FSI Ready? Is Dynamic?

LBMS 150 49,000 PaLaBoS Yes Yes

FEA 8 N/A FEM solver No No

5.2. Considerations about the Vlasov Equation

Despite the previous attempts of LBM for solids mentioned in Section 1.1, to the best of
the authors’ knowledge, none of them use the physical representation of the particles of the
Boltzmann equation. Indeed, the method previously used to derive an LBM–like method is
considering the LBM equation as a pure mathematical framework to solve a set of Partial
Differential Equations (PDE)s, without relying on the original fluid-based historical method.
These previous mathematical methods found a set of advection–relaxation equations for
new variables that are equivalent to a given macroscopic model. Such mathematical
approaches contrast with the suggested method. We propose keeping this link between
particles and the Boltzmann method. To do so, we find the similarities between plasma and
solids. In both cases, the motion of particles is almost not subject to collisions: in the plasma
case, the Knudsen number is large Kn� 1 and particles are collisionless in the free-flight
regime; whereas in solids Kn→ 0 and particles are collisionless, because a particle does not
move freely without interacting with the surrounding particles. Even if these two regimes
should not be confused, they share some physical and mathematical concepts resulting in
the fact that in both cases the collision term in the Boltzmann equation vanishes. Such a
collisionless Boltzmann equation is called a Vlasov equation [46].

In order to find a suitable framework for the use of the Boltzmann equation for solids,
it is possible to note that, at rest (at thermodynamic equilibrium), a particle distribution
having a low temperature could be described by a Dirac distribution (omitting all quantum
effects). Then, the solid matter at rest condition can be seen as a combination of motionless
point mass, and without a large energy perturbation, the molecular interactions can be lin-
earized. Starting from this state, a small vibration of one edge of the network will propagate
freely. This situation can be described by the Vlasov equation of Dirac distribution centered
on the velocity of the the surrounding particles, f (x, ξ, t) = ρδv(ξ) . Then, the evolution of
the particles described by this equation is a propagation of the particles without further
modifications induced by the collisions.

The interesting idea behind the Vlasov equation for our purpose is that complex
systems with few collisions and strong interactions can be modeled by a Vlasov equation.
Plus, these strong interactions are incorporated through the mean-field external forces term,
which is the concept used in Equation (8). Therefore, considering the Vlasov equation
of Dirac distribution with a mean-field divergence of Cauchy’s stress, we obtained the
following mesoscopic model:
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∂ f
∂t

(x, ξ, t) + ξ · ∇x( f ) + g · ∇ξ( f ) = 0, (18)

f (x, ξ, t) = ρδv(ξ), (19)

g =
1
ρ
∇x · (σ). (20)

Then, using the passage formula for the two firsts moments (1, ξ), the desired macro-
scopic system of the undefined equation of motion for solids is obtained from a theoretical
point of view:

∂t(ρ) +∇x · ρv = 0, (21)

∂t(ρv) +∇x · (ρv⊗ v) = ∇x · (σ). (22)

Thus, the Boltzmann–Vlasov equation leading to the previous system of equations
seems suitable for rigid matter simulations.

Several remarks arise from these previous equations. This approach remains general
for any constitutive law. Thus, the use of the Dirac distribution is somehow closer to the
conventional representations of solid lattices: particles are not moving freely through the
solid. In addition, the current discussion about the Vlasov equation for solids, is certainly
presenting a working framework; however, the founding of this Vlasov equation requires a
mathematical proof which is left for future work. Instead, we test here numerically some of
the assumptions relative to this framework that are restricted to static equilibrium.

5.3. Global Outlook and Proposed Improvements

C++ programmed classes and methods integrated into LBMS library can be drastically
enhanced, i.e., mostly for efficiency purposes. Although the library is robust, computation
time might be substantially reduced if other guidelines are adopted.

For presented cases, tens or hundreds of seconds are necessary to reach the illustrated
static equilibrium assuming sequential runs on an Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50
GHz, thus, involving a few tens of thousands of LBMS iterations. In contrast, a couple
of seconds are enough to COMSOL even if the mesh is modeled very fine, because a
standard static resolution is requested. Effectively, the involved computation times are
hardly comparable because the methods are very different. In fact, LBMS is naturally
dynamic due to its roots coming from the LBM and thus it requires an evaluation of the
solid state at each time iteration. Concerning lattice discretization, additional experiments
should be conducted in order to discover space convergence properties and effects.

Thanks to the pointed reproducibility of the depicted numerical results, complements
to existing objects can be made freely in order to improve calculation efficiency. However,
here stands one of the great strengths of the LBM: parallel computing can be seen as
one of the main advantages of LBM. The LBM is intrinsically efficient and adapted to
massive parallel computing, especially on Graphics Processing Unit (GPU) because of its
architecture. In fact, a GPU detains hundreds or thousands of cores capable of doing very
fast executions despite management of few instructions and small caches.

Finite difference schemes are playing an important role; in fact, they define external
forces to be applied at each iteration for each cell. Upgrading abilities to treat mechanical
singularities and enhancing accuracy under high field variation are part of the future work.
For example, corners demand a special therapy because cell vicinity is restricted. Another
possible way is to use robust mean-field forces as already implemented into the Shan-Chen
approach [10]. Moreover, as mentioned above, WENO schemes could help us.

Another advantage of the LBM compared to FEA, is this ease of moving from lower
to higher dimensions. The transition from the 2D modeling to the 3D and 4D modeling
is implied in the method. Then, LBMS extension to 3D should be straightforward and
large-scale studies can be led from now on. Such computations permit a better comparison
of the complex geometries with current methods usually dedicated to solving mechanical
problems. The door is thus wide open in terms of further intensive analysis or significant
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studies. In addition, the parallelized strategy by blocks remains unchanged for solids.
However, depending on the used finite difference schemes, some complementary properties
are needed for block envelopes.

Furthermore, for the broad range of Young’s modulus and Poisson’s ratios simulated,
the presented method must be compared with non-linear constitutive laws, to confirm
its potentiality and generality. Based on the strength of the presented results, a very
straightforward extension is to investigate quasi-static dynamic problems. Of course, this
eventuality could only be viable if the computation time of the LBMS is more deeply
characterized.

Only the static equilibrium has been compared to existing methods. Because this static
equilibrium has been reached for different relaxation time, in particular for ω = 0.01; solid
dynamics with the Boltzmann–Vlasov equation seems a natural next step. The numerical
stability for the relaxation parameter ω < 0.25 is already unconventional LBM and supports
the theoretical developments introduced here.

Validation of the dynamic behavior requires additional work, especially for the refer-
ence mechanical study. Indeed, the transitional state before reaching static equilibrium is
hard to confirm taking into account the actual state of our research and LBM groundwork
for solids.

As we mentioned before, the goal of the solid behavior with the LBM, might also be
investigated through the research of an appropriate equilibrium distribution function. To
go further with that idea, if ω = 1, we also observe that (see Equation (15)):

Ω
(

f i(Gx, Gy, t), f (eq)
i

,sld, si(Gx, Gy, t)
)
= −ω f i(Gx, Gy, t) + ω

(
f (eq)

i
,sld + si(Gx, Gy, t)

)
, ∀i ∈ [0, . . . , 8]. (23)

This latter formulation yields a new form of solid equilibrium where solid body forces
are integrated into the equilibrium function; thus, the stress divergence term may be
integrated into the BGK operator if the relaxation parameter is equal to 1. Moreover, such
an approach may looks like an artifact because with ω = 1, the LBM is equivalent to a
particular Finite Difference Method (FDM), with more complex boundary conditions. Thus,
the previous equilibrium distribution deserves further dedicated investigations, beyond
the work.

Of course, many applications are plausible from the next development of the LBMS,
especially regarding the interface and boundary conditions. By solving the solid interface,
the motion and deformation of solids under the action of forces and contact problems
between two solids could be achieved. Then, the solid–liquid interface leads to FSI in order
to study the behavior of a solid product immersed in a liquid. A recent publication [47],
illustrates the fact that a unified theory is needed to solve complex FSI phenomena, taking
into consideration both fluid and solid characteristics with LBM.

6. Conclusions

We have introduced in this work a new method to solve solid static equilibriums
from standard LBM. Our strategy depicts promising results concerning the static state of
isotropic materials. The presented plots and figures illustrate well the efficiency of the
presented method. Such a task is achieved thanks to detailed developments and a robust
framework. In fact, the presented method is secured with a theory groundwork and then
implemented using classical programming tools.

A first key contribution was introduced thanks to theoretical developments around the
Boltzmann–Vlasov equation. Furthermore, the stress tensor divergence was introduced as
a mean-field force term. These two considerations allowed for the building of a theoretical
framework to deal with solids, with the LBM. This framework is unprecedented and is
very unique compared to previous works on the subject.

Furthermore, we produced new programmed objects included in a user-friendly
research library. Although this implementation is not optimal, the developed classes and
methods are robust enough and trustworthy concerning the conclusions given on plots
and figures. On the other hand, the adopted general implementation approach detains
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several advantages. Non-invasive coding work permits the reproduction of results with
a bewildering ease. Likewise, a light program environment enables easy-way additions
for future improvements. Moreover, the standard LBM main loop is still not modified,
i.e., only additional routines to treat solids are added. Basically, this means the colliding-
streaming strategy is kept without compromise; only the dynamic related to solids is
adjusted. Previous abilities, among others, allowed for modeling of fluids and solids in the
same framework.

The shown results are validated through comparative plots including a large range
of parametric studies. They clearly prove the credibility of the proposed approach. Fur-
thermore, for a significant number of plotted data, the matching with reference analysis
is impressive. In all cases, exhibited mapped fields are globally consistent and replicate
a real solid matter’s comportment. The great precision of the results, not only highlights
the capacity of the method to capture isotropic elasticity but is also allows us to imagine a
complete confirmation of the general theory developed. Moreover, the reliable and stable
results obtained at very high relaxation time (ω ≤ 0.01) show the strength of the theory
and the perspectives for solid dynamics.

Despite the promising illustrated results contrasted with reference studies, a lot of
work still needs to be done to exploit the presented potential of the LBMS. Several aspects
still require further afterthought so as to simulate proper solid behaviors. Indeed, modeling
solids with LBM is still a challenge among scientific communities even though advances
are presented in this work. This work also tries to answer to increasing expectations in
numerical simulation fields.

Beyond all these obtained results, LBMS seems very promising to simulate solids in an
Eulerian framework. This work aims to bring new tools to push the limits of computational
mechanics even further. Biomechanics is facing difficulties such as large deformations,
non-linear behaviors, complex geometries and FSI. Standard approaches have several
drawbacks in solving previously involved physics. LBM methods are, thus, naturally better
suited to tackle these mentioned difficulties.

The solid–solid contact problem is another perspective of the LBMS. It seems that the
formulation of contacts is less difficult on the geometrical aspect in an Eulerian framework
but will be more complex regarding formulation of the interaction equations between
different objects.

A large spectrum of perspectives is thus opened by the presented method. As dis-
cussed above, quasi-static studies are the next step in investigating computational solid dy-
namics. In contrast, a real dynamic case may still require supplementary efforts. Moreover,
complex solid constitutive laws, such as non-linear ones, must be tested and contrasted
with the adapted reference results. In addition, the extension to 3D should be natural
and in consequence could produce relevant results. In this work, ideas related to solid
distribution functions were given, but they undeniably need further work so as to gain a
deeper comprehension of solid equilibrium. For all of these reasons, we aim to share the
presented advances for the benefit of the community.
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Abbreviations
The following abbreviations are used in this manuscript:

BE Boltzmann Equation
BGK Bhatnagar, Gross and Krook
CFD Computational Fluid Dynamics
FDM Finite Difference Method
FEA Finite Element Analysis
FEM Finite Element Method
FPD Fundamental Principe of the Dynamics
FSI Fluid Structure Interaction
FVM Finite Volume Method
GPU Graphics Processing Unit
LBE Lattice Boltzmann Equation
LBGKE Lattice Boltzmann-BGK Equation
LBM Lattice Boltzmann Method
LBMS Lattice Boltzmann Method for Solids
LGCA Lattice Gas Cellular Automata
MPM Material Point Method
MRT Multiple Relaxation Times
TRT Two Relaxation Times
NRMSE Normalized Root Mean Square Error
NSE Navier-Stokes Equations
NSF Navier-Stokes-Fourier
PaLaBoS Parallel Lattice Boltzmann Solver
PDE Partial Differential Equations
QE Quasi-Equilibrium
REV Representative Elementary Volume
RMSE Root Mean Square Error
SPH Smoothed Particle Hydrodynamics
SI International System of Units
WENO Weighted Essentially Non-Oscillatory
WSS Wall Shear Stress

Nomenclature
ρ mass density
D physical space dimension
f density distribution function over velocity space
ξ microscopic velocity of particles
v macroscopic speed field
u macroscopic displacement field
σ Cauchy stress tensor
ε linearised strain tensor
B left Green-Cauchy strain tensor
H Gibbs-Boltzmann entropy
s entropy
qθ heat flux
r radiation
g mass force field
Ω(.,.) collision operator
ω relaxation frequency
p pressure scalar
I identity square matrix D× D
Π viscous stress tensor
c microscopic velocity in the v frame
θ thermodynamical absolute temperature
x coordinate Eulerian vector field
t time
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Ek kinematic energy
Eint internal energy
Eθ thermal energy
Etot total energy
Ede f deformation energy
ψ collision invariant
w Gauss measure
Hn n-th order Hermite polynomial
ak coordonate on the Hermite basis
Pn n cyclic permutation
ν kinematic viscosity
λ bulk viscosity
κ thermal conductivity
fN truncated density distribution
ξi discretized particles velocity
wi discrete weight of the Gauss quadrature
f i discretized density distribution
f̂ i discretized velocity density distribution function for the numerical scheme
N troncature order over the Hilbert basis
m algebraic precision of the quadrature
q number of discretized speed used in the lattice
δx Dirac distribution centred on x
mk math m
MM matrix transformation from distribution space to moments space
SM diagonal matrix containing the (multiple) relaxation time of each moments
∆t increment of time
∆x increment of space
cs celerity of the sound
I[·] integral operator of a given quantity over the velocity space
f (eq) equilibrium distribution given by the Maxwell-Boltzmann distribution

f (eq)
i discretized equilibrium distribution given by the Maxwell-Boltzmann distribution

gi forcing term projected over the velocity space
sG variance of the Gaussian measure
ε perturbation order
A any extensible physical quantity
R ideal gas constant
EP electrical field
qP electrical charge of a particle
m mass of a particle
C fourth-order stiffness tensor
λ Lamé’s first parameter
µ shear modulus
In symmetric part of the nth-rank identity tensor
E Young’s modulus
ν Poisson’s ratio
C second-order stiffness tensor
x first coordinate of a cell in a block lattice
y second coordinate of a cell in a block lattice
Gx global position x of a cell in the lattice
Gy global position y of a cell in the lattice
X first direction of basis
Y second direction of basis
U displacement tensor field over the whole lattice
E strain tensor field over the whole lattice
Σ stress tensor field over the whole lattice
Nx number of lattice nodes in the first direction
Ny number of lattice nodes in the second direction
Q any function with discrete values over the whole lattice
si source forcing term projected over the velocity space
ωc boundary relaxation parameter
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Appendix A. Chapman–Enskog Expansion for Static Solid Equilibrium

In order to keep the second order accuracy, the following substitution is performed [48]:

1
ω̂

=
1
ω

+
∆t
2

, (A1)

f̂ i(x, t) = f i −
∆t
2

Ωi(t)

= f i +
∆tω

2

(
f i(x, t)− f (eq)

i (x, t)
)
+

∆t
2

gi(x, t)

= f i +
∆tω̂

2− ω̂∆t

(
f i(x, t)− f (eq)

i (x, t)
)
+

∆t
2

gi(x, t),

(A2)

which leads to the discretized version of the BE, i.e., the LBGKE expressed by:

f̂ i(x + ξi∆t, t + ∆t) = f̂ i(x, t)− ∆tω̂
(

f̂ i(x, t)− f (eq)
i (x, t)

)
− ∆t

(
1− ω̂∆t

2

)
gi(x, t) +O

(
∆t3
)

. (A3)

Then, using the Taylor expansion of f̂ i in Equation (A3), we get:

f̂ i(x + ξi∆t, t + ∆t) = f̂ i(x, t) +
∞

∑
m=1

1
m!

[
∆t∂t + ξi∆t · ∇x

]m
f̂ i(x, t)

= f̂ i(x, t)− ∆tω̂
(

f̂ i(x, t)− f (eq)
i (x, t)

)
− ∆t

(
1− ω̂∆t

2

)
gi(x, t) +O

(
∆t3
)

.

(A4)

Therefore, the LBGKE becomes:

∞

∑
m=1

1
m!

[
∆t∂t + ξi∆t · ∇x

]m
f̂ i(x, t) = −∆tω̂

(
f̂ i(x, t)− f (eq)

i (x, t)
)
− ∆t

(
1− ω̂∆t

2

)
gi(x, t). (A5)

The modal decomposition is introduced by the time-scales (ε) power series decompo-
sition such as:

∆t∂t =
∞

∑
k=1

εk∂
(k)
t , (A6)

∆t∇x =ε1∇x
(1), (A7)

f̂ i =
∞

∑
k=0

εk f̂ i
(k), (A8)

gi =
∞

∑
k=1

εkgi
(k) = ε1gi

(1). (A9)

The source term is local, so its perturbation of the distribution function will be brought
through time. furthermore, the source term gi is limited to the first order of perturbation
here.

The previous equation is true for every order εk. So, the three first orders lead to the
following equations:

ε0 : −∆tω̂ f (eq)
i = −∆tω̂ f̂ i

(0), (A10)

ε1 :
[
∂
(1)
t + ξi · ∇x

(1)
]

f̂ i
(0) + ∆t

(
1− ω̂∆t

2

)
gi

(1) = −∆tω̂ f̂ i
(1), (A11)

ε2 :
1
2

[
∂
(1)
t + ξi · ∇x

(1)
]2

f̂ i
(0) + ∂

(2)
t f̂ i

(0) +
[
∂
(1)
t + ξi · ∇x

(1)
]1

f̂ i
(1) = −∆tω̂ f̂ i

(2). (A12)

After simplification and reinjection of previous order, these expressions can be simpli-
fied:



Appl. Sci. 2022, 12, 4627 25 of 40

f (eq)
i = f̂ i

(0), (A13)[
∂
(1)
t + ξi · ∇x

(1)
]

f̂ i
(0) = −∆tω̂ f̂ i

(1) − ∆t
(

1− ω̂∆t
2

)
gi

(1), (A14)

∂
(2)
t f̂ i

(0) +
[
∂
(1)
t + ξi · ∇x

(1)
]1
((

1− ∆tω̂
2

)
f̂ i
(1) − ∆t

2

(
1− ω̂∆t

2

)
gi

(1)
)
= −∆tω̂ f̂ i

(2). (A15)

Since the collision operator conserves mass and momentum, the solvability conditions
are assumed to hold at each order and using the definition of f̂ i (see Equation (A2)), it leads
to:

∑
i

f̂ i
(k) = +

∆t
2 ∑

i
gi

(k) and ∑
i

ξi f̂ i
(k) = +

∆t
2 ∑

i
ξigi

(k) ∀ k ≥ 1. (A16)

Therefore, using Equation (A14) and the passage formula, the moments associated
to 1, ξi and ξi ⊗ ξi are:

∂
(1)
t (ρ) + ∂

(1)
x ·

(
ρv(eq)

)
= −∆t2ω̂

2 ∑
i

gi
(1) −

(
1− ω̂∆t

2

)
∆t ∑

i
gi
(1), (A17)

∂
(1)
t

(
ρv(eq)

)
+ ∂

(1)
x ·

(
ρv(eq) ⊗ v(eq) + p

)
= −∆t

2 ∑
i

ξigi
(1), (A18)

∂
(1)
t

(
ρv(eq) ⊗ v(eq) + p

)
+ ∂

(1)
x ·

(
ρv(eq) ⊗ v(eq) ⊗ v(eq) + P3

(
v(eq) ⊗ p

))
= − 2∆tω̂

2− ω̂∆t
Π(1) − ∆t

2 ∑
i

ξi ⊗ ξigi
(1), (A19)

where v(eq) is the equilibrium speed, i.e., the speed parameter in the equilibrium distribu-
tion function. Similarly, using Equation (A15) the moments yield by the second perturbation
order is:

∂
(2)
t (ρ) + 0 =0, (A20)

∂
(2)
t

(
ρv(eq)

)
+ ∂

(1)
x ·

(
Π(1) + 0

)
=0. (A21)

In order to determine Π(1), let us compute all the terms in Equation (A19). The first
term, using the general relation

∂∗(abc) = ∂∗(bc)a + ∂∗(ac)b− ∂∗(c)ab, (A22)

and p = ρcs
2 I, becomes:

∂
(1)
t

(
ρv(eq) ⊗ v(eq) + p

)
= ∂

(1)
t

(
ρv(eq)

)
⊗ v(eq) + v(eq) ⊗ ∂

(1)
t

(
ρv(eq)

)
− v(eq) ⊗ v(eq)∂

(1)
t (ρ) + cs

2 I∂
(1)
t (ρ). (A23)

Then, reinjecting the temporal derivatives from Equations (A17) and (A18)

∂
(1)
t

(
ρv(eq) ⊗ v(eq) + p

)
=

v(eq) ⊗
[
−∂

(1)
x ·

(
ρv(eq) ⊗ v(eq) + p

)
− ∆t

2 ∑
i

ξigi
(1)

]
+

[
−∂

(1)
x ·

(
ρv(eq) ⊗ v(eq) + p

)
− ∆t

2 ∑
i

ξigi
(1)

]
⊗ v(eq)

− v(eq) ⊗ v(eq)

[
−∂

(1)
x ·

(
ρv(eq)

)
− ∆t

2 ∑
i

gi
(1)

]
+ cs

2 I

[
−∂

(1)
x ·

(
ρv(eq)

)
− ∆t

2 ∑
i

gi
(1)

]
,

(A24)

and using backward the Equation (A22) for the underlined terms, we get:
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∂
(1)
t

(
ρv(eq) ⊗ v(eq) + p

)
= −∂

(1)
x ·

(
ρv(eq) ⊗ v(eq) ⊗ v(eq)

)
− cs

2
(

v(eq) ⊗ ∂
(1)
x (ρ) + ∂

(1)
x (ρ)⊗ v(eq) + I∂

(1)
x ·

(
ρv(eq)

))
− v(eq) ⊗

(
∆t
2 ∑

i
ξigi

(1)

)
−
(

∆t
2 ∑

i
ξigi

(1)

)
⊗ v(eq) − ∆t

2 ∑
i

gi
(1)
(

cs
2 I − v(eq) ⊗ v(eq)

)
.

(A25)

The second term in Equation (A19) is straight-forward and yields:

∂
(1)
x ·

(
ρv(eq) ⊗ v(eq) ⊗ v(eq) + P3

(
v(eq) ⊗ p

))
= ∂

(1)
x ·

(
ρv(eq) ⊗ v(eq) ⊗ v(eq)

)
+ cs

2 I∂
(1)
x ·

(
ρv(eq)

)
+ cs

2
[

ρ∂
(1)
x

(
v(eq)

)
+ ρ∂

(1)
x

(
v(eq)

)T
+ v(eq) ⊗ ∂

(1)
x (ρ) + ∂

(1)
x (ρ)⊗ v(eq)

]
.

(A26)

Then, by summing Equations (A25) and (A26) into Equation (A19), the expression of
the first order non-equilibrium stress tensor is given by:

Π(1) =− (2− ω̂∆t)
4ω̂ ∑

i
ξi ⊗ ξigi

(1) +
(2− ω̂∆t)

4ω̂

[
v(eq) ⊗

(
∑

i
ξigi

(1)

)
+

(
∑

i
ξigi

(1)

)
⊗ v(eq)

]

+
(2− ω̂∆t)

4ω̂ ∑
i

gi
(1)
(

v(eq) ⊗ v(eq) − cs
2 I
)
− (2− ω̂∆t)

2ω̂∆t
cs

2ρ

[
∂
(1)
x

(
v(eq)

)
+ ∂

(1)
x

(
v(eq)

)T
]

.

(A27)

Finally, the global discrete macroscopic equations solved numerically by the LBM
are obtained by recombining the perturbation orders. Thus, considering Equations (A17)
and (A20) (

ε1∂
(1)
t + ε2∂

(2)
t

)
ρ + ε1∂

(1)
x

(
ρv(eq)

)
= −∆t

2 ∑
i

gi
(1), (A28)

and by summing Equations (A18) and (A21)(
ε1∂

(1)
t + ε2∂

(2)
t

)(
ρv(eq)

)
+ε1∂

(1)
x

(
ρv(eq) ⊗ v(eq) + p + Π(1)

)
=− ∆t

2 ∑
i

ξigi
(1).

(A29)

Taking the macroscopic moment equations (Equations (A28) and (A29)) and reversing
the perturbation expansion of the derivatives Equations (A6) and (A7), we obtain the
following macroscopic equation solved:

∂tρ + ∂x

(
ρv(eq)

)
= −∆t

2 ∑
i

gi
(1), (A30)

∂tρv(eq) + ∂x

(
ρv(eq) ⊗ v(eq) + p + Π(1)

)
= −∆t

2 ∑
i

ξigi
(1). (A31)

We keep the numerical evaluation of the external force is here as stress divergence
given by Equation (13). Then, considering this special case for LBMS (∑ gi

(1) = 0,

∑ ξigi
(1) = ∇x · (σ), ∑ ξi ⊗ ξigi

(1) =
(

v(eq) ⊗ ∇x · (σ) +∇x · (σ)⊗ v(eq)
)

), the macro-
scopic equation solved becomes:

∂tρ + ∂x

(
ρv(eq)

)
= 0, (A32)

∂tρv(eq)+∂x

(
ρv(eq) ⊗ v(eq) + p− (2− ω̂∆t)

2ω̂∆t
cs

2ρ

[
∂
(1)
x

(
v(eq)

)
+ ∂

(1)
x

(
v(eq)

)T
])

=−∇x · (σ).
(A33)
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The last equation is nothing else than the undefined equation of the motion. Further-
more, using the static equilibrium (v(eq) = 0) it simplifies to:

∂tρ = 0, (A34)

∇x · (σ) = 0. (A35)

Appendix B. Tensors Details

The used tensors in algorithms are detailed here for symmetric strain and stress
tensors related to 2D applications. They are defined across the whole lattice and thus
contain information for all cells. The displacement tensor field has the following form:

U =


U[0, 0] = u0,0 =

[
ux
uy

]
0,0

. . . u0,Ny−1 =

[
ux
uy

]
0,Ny−1

...
. . .

...

uNx−1,0 =

[
ux
uy

]
Nx−1,0

. . . uNx−1,Ny−1 =

[
ux
uy

]
Nx−1,Ny−1

. (A36)

Then, the strain tensor field is calculated thanks to the displacement one:

E =



E[0, 0] = ε0,0 =

εxx
εyy
εxy


0,0

. . . ε0,Ny−1 =

εxx
εyy
εxy


0,Ny−1

...
. . .

...

εNx−1,0 =

εxx
εyy
εxy


Nx−1,0

. . . εNx−1,Ny−1 =

εxx
εyy
εxy


Nx−1,Ny−1


. (A37)

The stress tensor field is obtained through a constitutive law and reads:

Σ =



Σ[0, 0] = σ0,0 =

σxx
σyy
σxy


0,0

. . . σ0,Ny−1 =

σxx
σyy
σxy


0,Ny−1

...
. . .

...

σNx−1,0 =

σxx
σyy
σxy


Nx−1,0

. . . σNx−1,Ny−1 =

σxx
σyy
σxy


Nx−1,Ny−1


. (A38)
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Appendix C. Curve Plots

Figure A1. Von Mises stress along cutting curve C2 for case E = 200 GPa, ν = 0.15.

Figure A2. Detailed view of Von Mises stress along cutting curve C2 for case E = 200 GPa, ν = 0.15.
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Figure A3. Von Mises stress along cutting curve C1 for case E = 200 GPa, ν = 0.15.
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Figure A4. First displacement components along cutting curve C1 for negative Poisson’s ratios.
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Figure A5. First displacement components along cutting curve C1 for positive Poisson’s ratios.
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Figure A6. First displacement components along cutting curve C2 for negative Poisson’s ratios.



Appl. Sci. 2022, 12, 4627 31 of 40

0 0.2 0.4 0.6 0.8 1
-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

Length cutting curve 2

D
is

pl
ac

em
en

t X

Displacement X along cutting curve 2 for different Poisson’s ratios

Ratio 0.15
Ratio 0.25
Ratio 0.35
Ratio 0.49
Ratio 0.15 LBMS
Ratio 0.25 LBMS
Ratio 0.35 LBMS
Ratio 0.49 LBMS

Figure A7. First displacement components along cutting curve C2 for positive Poisson’s ratios.
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Figure A8. Detailed view of first displacement components along cutting curve C2 for negative
Poisson’s ratios.
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Figure A9. Detailed view of first displacement components along cutting curve C2 for positive
Poisson’s ratios.
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Figure A10. Second displacement component along cutting curve C1 for positive Poisson’s ratios.
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Figure A11. Second displacement components along cutting curve C2 for negative Poisson’s ratios.
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Figure A12. Second displacement components along cutting curve C2 for positive Poisson’s ratios.
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Figure A13. Detailed view of second displacement components along cutting curve C2 for negative
Poisson’s ratios.
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Figure A14. Detailed view of second displacement components along cutting curve C2 for positive
Poisson’s ratios.
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Figure A15. First displacement components along cutting curve C1 for different Young’s modulus.
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Figure A16. First displacement components along cutting curve C2 for different Young’s modulus.
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Figure A17. Second displacement components along cutting curve C1 for different Young’s modulus.
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Figure A18. Second displacement components along cutting curve C2 for different Young’s modulus.
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Figure A19. Von Mises stress along cutting curve C2 for case E = 200 GPa, ν = 0.15 with triangular
loading.
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Figure A20. Von Mises stress along cutting curve C3 for case E = 200 GPa, ν = 0.15 with triangular
loading.
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Figure A21. First displacement components along cutting curve C3 for case E = 200 GPa, ν = 0.15
with triangular loading.
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Figure A22. Second displacement components along cutting curve C2 for case E = 200 GPa, ν = 0.15
with triangular loading.
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Figure A23. Second displacement components along cutting curve C3 for case E = 200 GPa, ν = 0.15
with triangular loading.
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