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Abstract: It is vital to improve the stability of the power system by accurately identifying the modal
parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time.
A new method based on empirical mode decomposition (EMD), stochastic subspace identification
(SSI), and Prony algorithms, called synthetical modal parameters identification (SMPI) method,
is developed by efficiently matching the modal parameters of DLFO which are acquired from
the SSI and Prony algorithm. In this approach, EMD is used for denoising the raw oscillation
signals thereby enhancing the noise resistance, and then using the SSI and Prony algorithms to
identify the precise modal parameters assisted by parameter matching. It is demonstrated that the
proposed SMPI method holds great accuracy in identifying full modal parameters including natural
frequencies, damping ratios, amplitudes, and phase angles with simulated signals with known modal
parameters and real-time signals from some power system case studies. The strategy of SMPI has
effectively overcome the weakness of a single approach, and the identification results are promising
to heighten the stabilization of power systems. Besides, SMPI shows the potential to troubleshoot
in different fields, such as construction, aeronautics, and marine, for its satisfactory robustness and
generalization ability.

Keywords: low-frequency oscillations; modal identification; stochastic subspace identification; Prony;
parameter matching

1. Introduction

The safety of the electric power supply affects national economy and social devel-
opment, while the key to the safe operation of the power system lies in the stability of
the system [1]. During the operation of the interconnected power system, oscillations
frequently occur, where the low-frequency oscillation (LFO) is a detrimental fault threat-
ening the stability of the system, which refers to the relative swing between the rotors
of generators running in parallel in power systems under disturbance, and leads to an
incessant oscillation within 0.1~2.5 Hz for lack of damping [2,3]. The 1996 system blackout
in the Western Electricity Coordinating Council (WECC) system makes people aware of
the importance of monitoring and controlling the LFO [4]. The first step to analyze LFO is
modal identification, which acquires the modal parameters of the oscillations for taking
suitable measures to enhance the stability of the system.

LFO mode identification methodology can be mainly divided into the analysis based
on numerical solutions and that based on measured signals. The traditional linearization
method is to identify these low-frequency modes through eigenvalue analysis, which
requires a lot of information about the modeling of the system, lacking satisfactory precision.
With the help of the wide area measurement system (WAMS) and phase measurement
unit (PMU), the operation data of the power grid with a high-precision time scale can be
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transmitted to the control center, realizing the real-time data collection and monitoring of
wide-area power grid [5]. The methods of analyzing the measured data and identifying
the LFO mode primarily include fast Fourier transform (FFT) [6], wavelet transform [7],
Prony [8], stochastic subspace identification (SSI) [9], auto-regressive and moving average
(ARMA) [10], Hilbert–Huang Transform (HHT) [11], and so forth. FFT cannot analyze the
damping characteristics and local characteristics, so it is not suitable for nonlinear and
non-stationary signals. Wavelet transform has the problems of frequency overlap and
adaptive basis selection and is only suitable for transient and non-stationary signals. Both
Prony and SSI have problems with estimation of order and sensitivity to noise which bring
in false modes when analyzing the oscillation signal of the non-stationary power system.
The ARMA model method establishes a mathematical model for ordered discrete random
data to obtain the inherent parameters of the system, whereas it is easily affected by noise
and still has the problem of order determination as Prony and SSI. Although the HHT
algorithm is suitable for non-stationary and nonlinear signals, it is affected by the end effect.
These methods mentioned above have a certain ability to identify partial modal parameters,
but the accuracy of identification is unacceptable yet.

The damped low-frequency oscillation (DLFO) signal is one of the most common
transient signal forms, which is often related to mechanical and circuit faults, especially in
the power system. To solve the problems of insufficient precision and parameters in modal
identification of DLFO, the synthetical modal parameters identification (SMPI) method,
a comprehensive method, is presented by integrating the advantages of empirical mode
decomposition (EMD), SSI, and Prony. In the SMPI method, the DLFO signals are, firstly,
decomposed into several intrinsic mode functions (IMF) to filter high-frequency noise by
EMD. Then, the Prony and SSI approaches are adopted to identify the modal parameters
of the filtered signals after EMD, respectively. Lastly, the proposed parameters matching
method is developed to match the accurate modal parameters of DLFO in line with the
similar frequencies recognized by SSI and Prony and avoid the difficulty of estimation of
model order. The proposed SMPI method is demonstrated by implementing case studies.

In what follows, Section 2 introduces the theory and methods of SMPI including the
EMD, SSI, and Prony algorithm. In Section 3, SMPI is employed to identify the modal
parameters of an ideal simulated DLFO signal to verify the effectiveness of the proposed
algorithm. To validate the robustness of the method, the simulated signal under lower SNR
is identified by SMPI in Section 4. In Section 5, to verify the generalization ability of SMPI,
a real-time DLFO signal in the power system is taken as the subject of modal identification.
Section 6 summarizes the conclusions of this study.

2. Synthetical Modal Parameters Identification (SMPI) Method

This paper focuses on the theory and methods of SMPI proposed for modal parameter
identification of DLFO in power systems. According to previous research, the SSI method
is weak in identifying amplitude and phase angle of non-stationary signals [5], and the
computation of damping ratio is inaccurate by the Prony approach [12]. Besides sensitivity
to noise, estimation of model order is a difficulty for SSI and Prony. Under-estimating
model order would lead to the omission of dominant modes of the original signal, while
over-estimation of the model order would bring in fictitious modes, especially with the
amount of noise.

Accordingly, it is impracticable to utilize a single algorithm to obtain the full modal
parameter of DLFO. Addressing this problem, this paper has presented a comprehensive
method, i.e., the SMPI method, based on the parameter matching approach which fully
makes use of the strengths of SSI approach and Prony method, to find out full modal
parameters. In addition, SMPI can handily avoid the difficulty of estimating model orders.
The described synthetical modal parameters identification method is shown in Figure 1.
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As Figure 1 shows, in the developed SMPI method, the raw signals are initially
denoising by EMD. And the filtered signals are put into modal identification with Prony
and SSI, respectively. Prony calculates natural frequencies, amplitudes, and phase angles of
the signals, while SSI extracts frequencies and damping ratios. In respect of the same natural
frequencies, all true modal parameters of DLFO, involving natural frequencies, damping
ratios, amplitudes, and phase angles, are matched finally. The detailed implementations of
EMD, SSI, and Prony approaches will be presented in the following parts.

2.1. Empirical Mode Decomposition (EMD) Method

In essence, the EMD method [13] is widely used in signal pre-processing, which
eliminates high-frequency noise from the raw signal by filtering. The procedure of EMD
functioned in denoising the oscillation signal is described as follows:

Step 1: Derivative the input signal x(t) and extract its extreme value (minimum value
and maximum value).

Step 2: Fit the upper and lower envelopes of x(t) with cubic spline interpolation func-
tion, and get the maximum value emax(t) and minimum value emin(t) of the envelope curve.

Step 3: Calculate the mean value m(t) of the upper and lower envelope curves as
Equation (1), and then subtract m(t) from x(t) to obtain the residual r(t) as Equation (2).

m(t) =
1
2
(emax(t) + emin(t)) (1)
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r(t) = x(t)−m(t) (2)

Step 4: Determine whether r(t) meets IMF conditions: (a) The number of local extrema,
that is, the total number of local minima and local maxima, and the number of zero crossings
differ by at most one; (b) The mean value of the upper and lower envelopes constructed
from the local extrema is zero [13].

Step 5: If the IMF condition is met, take r(t) as one of the IMF components decomposed
from x(t), and go to Step 6; If the condition is not met, take r(t) as the new input signal and
repeat Step 1 to Step 5 until the condition is met.

Step 6: Determine whether the stop screening condition is met, that is, the residual r(t)
is monotonous or a constant. If the condition is met, go to Step 8. If the condition is not
met, go to Step 7.

Step 7: Take the difference between x(t) and r(t) as the new input signal, and repeat
Step 1 to Step 6.

xnew(t) = x(t)− r(t) (3)

Step 8: Reshape the original signal into a new signal cEMD(t) which consisted of total
n IMFs ci(t) and the last residual rn(t) as Equation (4).

cEMD(t) =
n

∑
i=1

ci(t) + rn(t) (4)

2.2. Stochastic Subspace Identification (SSI) Approach

The SSI is an identification method based on discrete state space equations of linear
systems, which calculates partial modal parameters [14]. The SSI is split into covariance-
driven SSI and data-driven SSI [15]. The covariance-driven SSI uses the covariance as a
statistic to describe the data correlation [16], while the data-driven SSI projects the line
space of the “future” onto the line space of the “past” to describe the data correlation [17,18].
In this paper, we utilize the covariance-driven SSI for its strength in noise resistance and
data processing accuracy [19], which is based on a discrete-time state space model, takes the
covariance as the statistic, and uses the singular value decomposition (SVD) to obtain the
state matrix and its eigenvalues, and, finally, gains the modal parameters of the system [20].
The subspace involved in this method refers to the state space model of a multi-degree-of-
freedom system [19,21]. The state model of SSI is [22]{

xs(k+1) = Axs(k) + wk
yk = Cxs(k) + vk

(5)

where k is the time instant, i.e., the sampling point number of the discrete signal; vector xs
is the state vector of the discrete-time system; vector yk is the system output vector at time
instant k; matrix A is the state matrix of the discrete-time state space equation; matrix C is
the system output matrix, also called the observation matrix; and wk is the process noise
and vk is the measurement noise at time instant k with zero mean.

The measured data yk, i.e., the system output vector, are constructed into the Hankel
matrix, as shown in the following equation [14]:

H = Y0/2M−1 =
1√
N



y0 y1 · · · yN−1
y1 y2 · · · yN
· · · · · · · · · · · ·

yM−1 yM · · · yM+N−2
yM yM+1 · · · yM+N−1

yM+1 yM+2 · · · yM+N
· · · · · · · · · · · ·

y2M−1 y2M · · · y2M+N−2


=

Y0/M−1

YM/2M−1
=

(
Yp

Y f

)
(6)
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where the number of row blocks is 2M; the number of columns is N which is the number of
measured data as well; and Yp = Y0/M−1 and Y f = YM/2M−1 denote the past and future parts,
respectively, of the block Hankel matrix. Since the number of rows in each row block yk
is l (the number of measured points), and the number of columns is 1, the matrix Y0/2M−1
consists of 2M × l rows and N columns.

The amount of measured data is limited, i.e., N is not infinite in actual measurement
conditions. According to the Hankel matrix obtained above, the covariance of the output
vector can be constructed as [19]

RM =
1
N

N−1

∑
k=0

yk+MyT
k (7)

The Hankel matrix in Equation (6) can be converted to the Toeplitz matrix as [23].

T1/M = Y f YT
p =


RM RM−1 · · · R1

RM+1 RM · · · R2
· · · · · · · · · · · ·

R2M−1 R2M−2 · · · RM

 (8)

To obtain the state matrix A, the observable matrix OM should be determined. Singular
value decomposition (SVD) is used to perform the above factorization, i.e.,

T1/M = USVT =
(

U1 U2
)( S1 0

0 S2 = 0

)(
VT

1
VT

2

)
= U1S1VT

1 (9)

where matrix U1 and V1 are orthogonal matrices; matrix S1 is a diagonal matrix composed
of positive singular matrices. The number of singular values of the S1 matrix is 2m, which
is the rank of the S1 matrix; m is the order of the system.

T1/M can be divided as
T1/M=OMΓM (10)

where OM is the observable matrix and ΓM is the extended observability matrix.
The matrices OM and ΓM are expressed by{

OM=U1S1/2
1

ΓM=I−1S1/2
1 VT

1
(11)

where I is the unit matrix.
The output matrix C of the system can be obtained by the front l row of matrix OM.

C = OM(1 : l) (12)

The state matrix A can be calculated as follows:

A=S−1/2
1 UT

1 T2/M+1V1S−1/2
1 (13)

The state matrix A and output matrix C are both identified from all measured signals
rather than one single signal. Hence, the modal parameters can be attained through the
eigen decomposition of the state matrix A as follows:

A = ψΛψ−1 (14)

where ψ is the complex eigenvector matrix and Λ = diag(µ1, µ2, . . . , µm) is a diagonal matrix
composed of the eigenvalues of the system µm.
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The eigenvalues of the system λm can be calculated from the eigenvalues of the state
matrix A:

λm=
lnµm

∆t
(15)

where ∆t is the time interval.
According to the above principle, the modal frequency fs and damping ratio ξs corre-

sponding to each eigenvalue can be calculated by f s=
√
|λm|

2π

ξs=− λm+λ∗m
2
√

λmλ∗m

(16)

2.3. Prony Algorithm

The Prony algorithm is a mathematical model in which equally spaced sampled data is
represented by a linear combination of complex exponential functions [24]. The LFO mode
can also be represented by a complex exponential function, so Prony can be applied to
LFO. The Prony algorithm is fast and reliable, which does not depend on the mathematical
model of the system [25,26].

Given a complex-valued data sequence x(n), n = 0, 1, . . . , N − 1, based on N original
data, the traditional Prony method fits an exponential model to the data in the least-squares
sense, and estimates x̂(n) [27–29], as

x̂(n) =
p

∑
i=1

Aiejθi e(αi+j2π fi)∆t =
p

∑
i=1

bizn
i n = 0,1, · · · , N− 1 (17)

where p is equal to the order of system; j is the imaginary unit; the subscript i denotes the
i-th mode; Ai, fi, θi and αi signify amplitude, frequency, initial phase, and damping factor,
respectively; bi and zi are the i-th residue and polynomial root, correspondingly; and ∆t is
the time interval.

Considering the linear prediction model is
x(p)

x(p+1)
...

x(N−1)

 =


x(p−1) x(p−2) · · · x(0)

x(p) x(p−1) · · · x(1)
...

...
. . .

...
x(N−2) x(N−3) · · · x(N−p−1)




a1
a2
...

ap

 (18)

which can be denoted as d = Da, where a is the vector of coefficients, and p is the polynomial
order assumed to be known a priori.

Estimation of a is obtained by solving Equation (18) in the least-squares sense as

â =
(

DHD
)−1

DHd (19)

where DH is the complex-conjugate transpose of D.
Using the previously estimated coefficients, the roots of the characteristic polynomial

expressed as
zp−

(
a1zp−1 + a2zp−2 + . . . + apz0

)
= 0 (20)

where each root zi, i = 1, . . . , p, is a discrete-time approximation of its respective continuous-
time eigenvalue in the Z-domain.

The i-th mode frequency is calculated as

f p(i) = arctan[Im(zi)/Re(zi)]/(2π∆t) i = 1,. . . ,p (21)
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Using the polynomial roots, zi, the linear regression model given by
x(0)
x(1)

...
x(N−1)

 =


1 1 · · · 1
z1

1 z1
2 · · · z1

p
...

...
. . .

...
zN−1

1 zN−1
2 · · · zN−1

p




b1
b2
...

bp

 (22)

which can be denoted as x = Vb, where V is a Vandermonde matrix.
Using the least square method, vector b is estimated as

^
b =

(
VHV

)−1
VHx (23)

The i-th mode frequency, amplitude, and initial phase are, respectively, calculated as
Ap(i) = |bi|
θp(i) = arctan[Im(bi)/Re(bi)]

f b(i) = arctan[Im(zi)/Re(zi)]/(2ß∆t)
i = 1,. . . ,p (24)

2.4. Parameter Matching Approach

The Prony algorithm only extracts precisely natural frequencies, amplitudes, and
phase angles of DLFO, while SSI accurately obtains natural frequencies and damping
ratios. Due to noise interference and overestimation of order, algorithms often identify
modes containing false information, i.e., false modes (or fictitious modes). In line with the
features of SSI and Prony, it is needed to execute parameter matching to search for the exact
amplitudes, phase angles, and damping ratios according to the similar frequencies from SSI
and Prony. In respect of the previous investigation, there is no such method that integrates
SSI with Prony to identify the full modal parameters of DLFO accurately.

The steps for this technique are as follows:
Step 1: Calculate the dimensions ds and dp of the frequency fs acquired by SSI and the

frequency fp computed by Prony, respectively;
Step 2: Determine whether the number of iterations si is less than or equal to ds. If not

met the condition, the modal parameter result, i.e., the successful matched frequencies fmi,
damped ratios ξmi, phase angles θmi and Ami will be output; if the condition is met, jump to
Step 3;

Step 3: Calculate the absolute error ∆f, the minimum absolute error ∆fmin, and the
relative error δf between fs and fp;

Step 4: Determine whether the number of iterations pi is less than or equal to dp. If the
condition is not met, go to Step 2, carrying out the next iteration; if the condition is met,
determine whether the parameter matching conditions are fulfilled in Step 5;

Step 5: Determine whether fp(i) meets the matching condition, that is, the number of
successful matching js is less than ds, and the relative error δf(pi) is less than the allowable
error value εa, and the absolute error ∆fpi is just the minimum value ∆fmin. If the condition
is not met, go to Step 4 to carry out the next iteration; if the condition is met, go to Step 6 to
carry out the parameter matching; and

Step 6: Matching parameters, that is, fmi = fs(si), ξmi = ξs(si), θmi = θp(pi), Ami = Ap(pi).
After completing a round of pairing, return to Step 4 to carry out the next iteration.

The flowchart of parameter matching of DLFO through the SMPI method describes
the detailed process of the steps above as Figure 2.
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3. Validation of SMPI with Simulated Signals

To verify the performance of the method in modal identification, a simulated signal
with known modal parameters is identified with SMPI in this section.

3.1. Test of the Simulated Signal

The ideal simulated signal close to the DLFO of the power system is constructed for
verifying the effectiveness of SMPI, as

y=2e−0.12t · cos(2ß · 0.33t− 1.5ß)
+4e−0.13t · cos(2ß · 0.78t + 0.5ß)
+6e−0.71t · cos(2ß · 1.00t + 1.5ß)

(25)

which is a synthetic signal consisting of three dominant modes, and the three oscillation
frequency ranges are all within the frequency range (0.1–2.5 Hz) of the LFO of the power
system introduced previously. And its true modal parameters are shown in Table 1.

Table 1. Modal parameters of the ideal simulated signal.

True Modes Frequency (Hz) Amplitude (µm) Damping Ratio Phase Angle (Rad)

1 0.33 2 0.0579 1.5708
2 0.78 4 0.0265 1.5708
3 1.00 6 0.1130 −1.5708

To further simulate the real oscillation signal, Gaussian white noise at 30 dB SNR is
added into the simulated signal as Figure 3, and it will be referred to as signal A.
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Figure 3. Simulated signal A with Gaussian white noise at 30 dB SNR.

3.2. Oscillation Signal Denoising

In this subsection, the EMD method is utilized to filter and smooth the DLFO signal
with noise. The simulated signal with Gaussian white noise is decomposed into many
IMFs with different mode orders and a residual r (i.e., the last IMF in Figure 4) by EMD.
After eliminating higher-order noise and trend term components, five effective IMFs and a
residual signal are exacted as Figure 5.
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Figure 4. All IMFs of signal A obtained by EMD.

After denoising, the new signal cEMD(t) is reconstructed by IMFs and r. The compari-
son of the synthesized signal by EMD cEMD(t) with the original signal with noise (i.e., signal
A) is displayed in Figure 6.

The curve of cEMD(t) is smooth and extremely coincidence with that of signal A, which
indicates that EMD has filtered high-frequency noise and retained dominant modes of
the original signals. cEMD(t) is conducive to modal identification by SSI and Prony in the
next subsection.
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Figure 6. Comparison of the synthesized signal by EMD with signal A.

3.3. Modal Parameters Identification with SSI and Prony

In this section, the modal parameters of DLFO signal A are identified in respect of SSI
and Prony approaches. Firstly, SSI is adopted to calculate the frequencies and damping
ratios of cEMD(t) and the results are displayed in Table 2.

Table 2. Modal parameters of signal A identified with SSI approach.

Modes Frequency (Hz) Damping Ratio

1 0.3318 0.0589
2 0.7807 0.0258
3 1.0072 0.1119
4 2.0134 0.0104

As shown in Table 2, there are four model orders identified by SSI, including one false
mode (the last one). And only frequencies and damping ratios have been recognized from
each model order, lacking other modal parameters. Subsequently, it is necessary to identify
more modal parameters of cEMD(t), i.e., amplitudes and phase angles in another way. After
Prony analysis, the frequencies, amplitudes, and phase angles of the first 99 modes are
attained in Table 3.



Appl. Sci. 2022, 12, 4668 11 of 21

Table 3. Modal parameters of signal A identified with Prony approach.

Modes Frequency (Hz) Amplitude (µm) Phase Angle (Rad)

1 0.3305 2.0785 1.5942
2 0.7808 3.9976 1.6011
3 1.0069 5.7695 −1.5118
4 1.9077 0.0179 −0.1935
5 2.4386 0.0354 −0.6599
...

...
...

...
99 49.4514 0.0014 −2.7861

Although Prony has identified other more modal parameters, amplitude, and phase
angle in addition to frequency, compared with SSI analysis, there were still a large number
of false modes.

To avoid missing dominant modes, the number of model orders is set relatively higher
in this study, so the false modes are generated owing to the over-estimation of model order,
which is difficult to determine in SSI and Prony. Therefore, it is needed to extract the true
modes from the trivial modes through a novel method.

With respect of Tables 2 and 3, SSI has recognized 4 modes while 99 modes have
been found by Prony. Although false modes exist in Tables 2 and 3, the true modes of
DLFO exist as well. Besides, identified frequencies are both displayed in these two tables
except for damping ratios, amplitudes, and phase angles. Therefore, the key to seek for
each true model order is to match two sets of the results of identified modal parameters
in Tables 2 and 3 according to the principle of the similar frequency. This work will be
completed in the next subsection.

3.4. Parameter Matching

According to the modal parameter identification results obtained by the SSI and
Prony algorithm, they are paired with each other according to the principle of the similar
frequency, whose detailed procedure has been illustrated in Section 2.4.

If the relative error between fs and fp is less than 0.005, it is accepted that fs is one of
the natural frequencies of DLFO, and then the corresponding modal parameters can be
found with respect to the natural frequencies. Using parameter matching, there are three
sets of similar frequencies have been matched successfully, that is, 0.3318 Hz, 0.7807 Hz,
and 1.0072 Hz which have been determined as natural frequencies of DLFO. And other
corresponding modal parameters are the modal parameters of true modes in these three
groups, respectively, summarized in Table 4.

Table 4. Modal parameters matching results of signal A.

True Modes Frequency (Hz) Amplitude (µm) Damping Ratio Phase Angle (Rad)

1 0.3318 2.0785 0.0589 1.5942
2 0.7807 3.9976 0.0258 1.6011
3 1.0072 5.7695 0.1119 −1.5118

3.5. Validation of Identified Results

Substituting the matching results in Table 4 into the classic decaying oscillation signal
mathematical equation [30,31], the governing equation of three components in DLFO is

Xi = Aie(−2πf iξi∆t)cos(
√

1− ξ2
i · 2πf i∆t + θi)i= 1, 2, 3 (26)

In which the subscript i indicates the i-th dominant mode and Xi is the i-th dominant
component.

In light of Equation (26), the three components of DLFO signal A are reconstructed as
Figure 7.
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Figure 7. Dominant components of signal A identified by SMPI.

The three signal components are superimposed to obtain a synthesized signal after
SMPI as Equation (27).

Y = ∑ Xmi (27)

where Y is the synthesized signal with SMPI.
Subsequently, the comparison between Y and cEMD(t) is shown in Figure 8. And

the comparison of estimated modal parameters of SMPI with true modal parameters is
described in Table 5.
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Figure 8. Comparison of the signal Y and cEMD(t).

In light of Table 5, the value of estimated modal parameters is very close to that of
true modal parameters, and the relative errors between them are comparatively small. The
frequencies calculated by SMPI are all within 1% relative error. And the relative error of
damping ratios and phase angles are less than 3% and 4%, respectively. As for the relative
error of amplitude, the smallest is less than 0.1%, and the biggest one is not more than 4%.

As Figure 8, the curve of signal Y synthesized with the identified results of SMPI is
found in good coincidence with that of cEMD(t), whose dominant modal parameters have
been extracted successfully.
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Table 5. Comparison of estimated modal parameters of SMPI with true modal parameters.

Modal Parameters True Modes True Value Estimated Value Relative Error

Frequency (Hz)
1 0.33 0.3318 0.0055
2 0.78 0.7807 0.0009
3 1.00 1.0072 0.0072

Amplitude (µm)
1 2.00 2.0785 0.0392
2 4.00 3.9976 0.0006
3 6.00 5.7695 0.0384

Damping ratio
1 0.0579 0.0589 0.0167
2 0.0265 0.0258 0.0252
3 0.1130 0.1119 0.0098

Phase angle (rad)
1 1.5708 1.5942 0.0149
2 1.5708 1.6011 0.0193
3 −1.5708 −1.5118 0.0375

4. Robustness Test of SMPI under Lower SNR

To verify the robustness of SMPI, the Gaussian white noise in the ideal simulated
signal increased to 20 dB SNR. The new signal will be referred to as signal B following and
its curve is illustrated in Figure 9.
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Figure 9. Simulated signal with Gaussian white noise at 20 dB SNR.

The five effective IMFs and a residual signal are extracted by EMD to eliminate high-
frequency noise as Figure 10, and the comparison of the synthesized signal cEMD(t) with
signal B in Figure 11.

The curve of cEMD(t) is smooth and extremely coincidence with that of signal B, which
indicates that cEMD(t) has retained the dominant modes of the original DLFO signal. And
cEMD(t) is conducive to modal identification by SSI and Prony following.

Using the SSI method and Prony algorithm to identify cEMD(t), the estimated modal
parameters are shown in Tables 6 and 7, respectively.

To extract the true modes from the trivial modes, the parameter matching method is
applied to match the full modal parameters in the similar frequency of Tables 6 and 7, and
the matching results are displayed in Table 8.
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Figure 10. Effective IMFs and a residual signal of signal B.
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Figure 11. Comparison of cEMD(t) with signal B.

Table 6. Modal parameters of signal B identified with SSI approach.

Modes Frequency (Hz) Damping Ratio

1 0.3306 0.0607
2 0.7813 0.0270
3 1.0083 0.1124
4 2.1442 0.0214

Table 7. Modal parameters of signal B identified with Prony approach of signal B.

Modes Frequency (Hz) Amplitude (µm) Phase Angle (Rad)

1 0.3275 2.0790 1.7038
2 0.7804 4.3000 1.6164
3 1.0129 6.1616 −1.5975
4 1.6755 0.0614 −2.9024
5 2.3345 0.0218 2.8943
...

...
...

...
99 49.4658 0.0018 −2.7895
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Table 8. Modal parameters matching results of signal B.

True Modes Frequency (Hz) Amplitude (µm) Damping Ratio Phase Angle (Rad)

1 0.3306 2.0790 0.0607 1.7038
2 0.7813 4.3000 0.0270 1.6164
3 1.0083 6.1616 0.1124 −1.5975

As shown in Table 8, there are three dominant components. In light of Equation (26),
the three components of signal B are reconstructed as Figure 12.
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Figure 12. Dominant components of signal B identified by SMPI.

The three signal components are superimposed to obtain a synthesized signal after
SMPI as Equation (27). Subsequently, the comparison between Y and cEMD(t) is shown in
Figure 13. And the comparison of estimated modal parameters of SMPI with true modal
parameters is described in Table 9.
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Table 9. Comparison of estimated modal parameters of SMPI with true modal parameters.

Modal Parameters True Mode True Value Estimated Value Relative Error

Frequency (Hz)
1 0.33 0.3306 0.0017
2 0.78 0.7813 0.0017
3 1.00 1.0083 0.0083

Amplitude (µm)
1 2.00 2.0790 0.0395
2 4.00 4.3000 0.750
3 6.00 6.1616 0.269

Damping ratio
1 0.0579 0.0607 0.0492
2 0.0265 0.0270 0.0192
3 0.1130 0.1124 0.0050

Phase angle (rad)
1 1.5708 1.7038 0.0846
2 1.5708 1.6164 0.0290
3 −1.5708 −1.5975 0.0170

In light of Table 9, the value of estimated modal parameters is close to that of true
modal parameters, and the relative errors between them are comparatively small as well.
The frequencies calculated by SMPI are still all within 1% relative error. While the rel-
ative errors of amplitude, damping ratio, and phase angle are less than 8%, 5%, and
8.5%, respectively.

Although the relative errors have increased in a sense, due to the introduction of more
noise, the curve fitted by the identified results of SMPI is consistent with the curve of the
original simulated signal whose main oscillating features are obtained without omission in
Figure 13. Hence, the proposed SMPI method has shown satisfactory robustness under the
condition of noise with different SNRs.

5. Generalization Ability Test of SMPI with Real-Time Signals

To test the effectiveness in modal identification of real-time DLFO signals, SMPI
is adopted to identify a set of sampling signals from a power system, whose sampling
frequency is 100 Hz, the sampling time is 20 s and sampling points is 2000, as shown in
Figure 14.
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Figure 14. Real-time signal in the power system.

Totally nine IMFs and a residual have been decomposed from the real-time signal
in the power system polluted by noise in the process of the EMD method, as shown in
Figure 15. After EMD denoising, the four effective IMFs and a residual signal are extracted
as Figure 16.
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The comparison of the synthesized signal by EMD with the real-time signals is in
Figure 17. The curve of cEMD(t) fits the oscillating features of the polluted real-time signals
smoothly, which illustrates that the EMD method is workable in the signal pre-process.

Afterward, the SSI and Prony algorithms are utilized to purchase the modal parameters
of the synthesized signal after EMD denoising, and their identification results are presented
in Tables 10 and 11.

There are many high-frequency fictitious modes so the parameter matching method is
carried out to filter out the true modes, and the matching results are displayed in Table 12.
There are two dominant components of the real-time signal, and they can be reconstructed
as shown in Figure 18.
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Table 10. Modal parameters of real-time signal identified with SSI approach.

Modes Frequency (Hz) Damping Ratio

1 0.5390 0.0089
2 0.9811 0.0891
3 14.7210 0.0583
4 26.8585 0.0607
5 35.5469 0.0573
6 38.2654 0.0120
7 45.5538 0.0124

Table 11. Modal parameters of real-time signal identified with Prony approach.

Modes Frequency (Hz) Amplitude (µm) Phase Angle (Rad)

1 0.5397 0.0579 2.7909
2 0.9778 0.3053 1.8003
3 1.6909 0.3829 −3.1258
4 2.2648 0.0343 1.7157
5 2.6177 0.0217 2.0594
...

...
...

...
98 49.6196 0.0339 1.7125

Table 12. Modal parameters matching results of real-time signal.

True Modes Frequency (Hz) Amplitude (µm) Damping Ratio Phase Angle (Rad)

1 0.5390 0.0579 0.0089 2.7909
2 0.9811 0.3053 0.0891 1.8003

These two dominant components of real-time signal are superimposed to obtain a
synthesized signal Y after SMPI as Equation (27). Subsequently, the comparison between Y
and cEMD(t) is shown in Figure 19.

Given that the signal sampling is unstable and the algorithm needs a certain conver-
gence process at the beginning, there are a few errors Y and cEMD(t) of the real-time signal.
After 0.6 s, the relative errors are controlled well and gradually decrease, owing to the abil-
ity of SMPI to fast convergence and the stability of signal sampling. In Figure 19, the curve
of signal Y synthesized with the identified results of SMPI is found in good coincidence
with that of cEMD(t), whose dominant modal parameters have been extracted successfully.
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In other words, the developed SMPI is a practicable tool, which holds the general-
ization ability to identify the full modal parameters including frequency, damping ratio,
amplitude, and phase angle of DLFO real-time signal in the power system.
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6. Conclusions

To solve the problems of insufficient precision and parameters in modal identification
of damped low-frequency oscillation (DLFO), a comprehensive method, called synthetical
modal parameters identification (SMPI) method, is presented by integrating the advantages
of empirical mode decomposition (EMD), stochastic subspace identification (SSI) and Prony
algorithm assisted by parameter matching. In the SMPI method, the DLFO signals are,
firstly, denoised by EMD. Afterward, the Prony and SSI approaches are adopted to identify
the modal parameters of the filtered signals after EMD, respectively. Lastly, the proposed
parameters matching method is developed to match the accurate modal parameters of
DLFO in line with the similar frequencies recognized by SSI and Prony, and avoid the
difficulty of estimation of model order. The proposed SMPI method is demonstrated by
ideal simulated signals with known modal parameters and real-time signals from power
system case studies. The primary conclusions are as follows:
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(1) To solve the problem that SSI and Prony are both sensitive to noise, EMD shows
the potential to denoise the original DLFO signals and cut down the occurrence of
fictitious modes to some extent, enhancing the accuracy of modal identification;

(2) Integrating the strengths of Prony and SSI by the parameter matching method is
capable of purchasing precise and full modal parameters of DLFO, and handily
avoiding the difficulty of estimating model orders in Prony and SSI; and

(3) Through the case studies on simulated signals with known modal parameters and real-
time signals from some power systems, it is demonstrated that SMPI holds satisfactory
precision, robustness, and generalization ability.

This study on the proposed SMPI method is conducive to improve the stability of
the power system by controlling and even avoiding the oscillation in time. Furthermore,
SMPI shows the potential for prognostics and health management in different condi-
tions and fields, such as construction, aeronautics and marine for its robustness and
generalization ability.
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