The Effect of Probiotics on Intestinal Tight Junction Protein Expression in Animal Models: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Inclusion and Exclusion Criteria
2.3. Quality Assessment Methodology
2.4. Data Analysis
3. Results
3.1. Data Set
3.2. Evaluation of the Collected Studies
3.3. Effect of Probiotics Administration on TJP Expression
3.4. Moderator Analysis
3.5. Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Yun, H.S.; Kim, S.H.; Jeon, W.M. Prevention of inflammatory bowel disease using fermented milk including probiotics. Korea J. Dairy Sci. Technol. 2010, 28, 25–30. [Google Scholar]
- Ahn, S.I.; Cho, S.B.; Choi, N.J. Effect of dietary probiotics on colon length in an inflammatory bowel disease–induced murine model: A meta-analysis. J. Dairy Sci. 2020, 103, 1807–1819. [Google Scholar] [CrossRef] [PubMed]
- Bjarnason, I.; Sission, G.; Hayee, B. A randomised, double-blind, placebo-controlled trial of multi-strain probiotics in patients with asymptomatic ulcerative colitis and Crohn’s disease. Inflammophamacology 2019, 27, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Hegazy, S.K.; El-Bedewy, M.M. Effect of probiotics on pro-inflammatory cytokines and NF-κB activation in ulcerative colitis. World J. Gastrointerol. 2010, 16, 4145–4151. [Google Scholar] [CrossRef]
- Karimi, O.; Peña, A.S.; van Bodegraven, A.A. Probiotics (VSL#3) in arthralgia in patients with ulcerative colits and Crohn’s disease: A pilot study. Drugs Today 2005, 41, 453–459. [Google Scholar]
- Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124, 837–848. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.M.; Rossi, O.; Meijerink, M.; van Baarlen, P. Microbes and health sackler colloquium: Epithelial crosstalk at the microbiota-mucosal interface. Proc. Natl. Acad. Sci. USA 2010, 108, 4607–4614. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef]
- Shen, L.; Weber, C.R.; Raleigh, D.R.; Yu, D.; Turner, J.R. Tight junction pore and leak pathways: A dynamic duo. Ann. Rev. Physiol. 2011, 73, 283–309. [Google Scholar] [CrossRef] [Green Version]
- Schneeberger, E.E.; Lynch, R.D. The tight junction: A multifunctional complex. Am. J. Physiol. Cell Physiol. 2004, 286, 1213–1228. [Google Scholar] [CrossRef] [PubMed]
- Cereijido, M.; Anderson, J.M. Tight Junctions; CRC Press: New York, NY, USA; Washington, DC, USA, 2003. [Google Scholar]
- Morita, K.; Miyachi, Y. Tight junctions in the skin. J. Dermatol. Sci. 2003, 31, 81–89. [Google Scholar] [CrossRef]
- Al-Sadi, R.; Khatib, K.; Guo, S.; Ye, D.; Youssef, M.; Ma, T. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G1054–G1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H. Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases. Intest. Res. 2015, 13, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Haskins, J.; Gu, L.; Wittchen, E.S.; Hibbard, J.; Stevenson, B.R. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell. Biol. 1998, 141, 199–208. [Google Scholar] [CrossRef]
- Umeda, K.; Matsui, T.; Nakayama, M.; Furuse, K.; Sasaki, H.; Furuse, M.; Tsukita, S. Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J. Biol. Chem. 2004, 279, 44785–44794. [Google Scholar] [CrossRef] [Green Version]
- Ulluwshewa, D.; Anderson, R.C.; McBabb, W.C.; Moughan, P.J.; Wells, J.M.; Roy, N.C. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 2011, 141, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Jeon, E.J.; Park, M.S.; Han, J.K.; Kim, J.Y.; Ahn, S.I. Effect of intestinal tight junction protein expression on growth performance for eco-friendly broiler production: Meta-analysis. Korean J. Org. Agric. 2021, 29, 125–136. [Google Scholar]
- Page, M.J.; Mckenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Kmet, L.M.; Lee, R.C.; Cook, L.S. Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields; Health Technology Assessement Unit, Alberta Heritage Foundation for Medical Research: Dhaka, AB, Canada, 2004. [Google Scholar]
- Phan, H.L.; Le, T.H.; Lim, J.M.; Hwang, C.H.; Koo, K.I. Effectiveness of augmented reality in stroke rehabilitation: A Meta-Analysis. Appl. Sci. 2022, 12, 1848. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Hong, G.; Huang, C.; Qian, W.; Bai, T.; Song, J.; Song, Y.; Hou, X. Probiotic mixtures with aerobic constituent promoted the recovery of multibarriers in DSS-induced chronic colitis. Life Sci. 2020, 240, 117089. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, E.; Morita, H.; Tanabe, S. Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo. J. Dairy Sci. 2009, 92, 2400–2408. [Google Scholar] [CrossRef] [PubMed]
- Hagihara, M.; Kuroki, Y.; Ariyoshi, T.; Higashi, S.; Fukuda, K.; Yamashita, R.; Matsumoto, A.; Mori, T.; Mimura, K.; Yamaguchi, N.; et al. Clostridium butyricum modulates the microbiome to protect intestinal barrier function in mice with antibiotic-induced dysbiosis. iScience 2020, 23, 100772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Li, R.; Jiang, Y.; Zhao, F.; Yu, Z.; Wang, Y.; Dong, Z.; Liu, P.; Li, X. Bifidobacterium breve ATCC15700 pretreatment prevents alcoholic liver disease through modulating gut microbiota in mice exposed to chronic alcohol intake. Funct. Food. 2020, 72, 104045. [Google Scholar] [CrossRef]
- Jin, J.; Wu, S.; Xie, Y.; Liu, H.; Gao, X.; Zhang, H. Live and heat-killed cells of Lactobacillus plantarum Zhang-LL ease symptoms of chronic ulcerative colitis induced by dextran sulfate sodium in rats. J. Funct. Food. 2020, 71, 103994. [Google Scholar] [CrossRef]
- Chen, R.C.; Xu, L.M.; Du, S.J.; Huang, S.S.; Wu, H.; Dong, J.J.; Huang, J.R.; Wang, X.D.; Feng, W.K.; Chen, Y.P. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding. Toxicol. Lett. 2016, 241, 103–110. [Google Scholar] [CrossRef]
- Xin, J.; Wang, H.; Sun, N.; Bughio, S.; Zeng, D.; Li, L.; Wang, Y.; Khalique, A.; Zeng, Y.; Pan, K.; et al. Probiotic alleviate fluoride-induced memory impairment by reconstructing gut microbiota in mice. Ecotoxicol. Environ. Saf. 2021, 215, 112108. [Google Scholar] [CrossRef]
- Bao, C.L.; Liu, S.Z.; Shang, Z.D.; Liu, Y.J.; Wang, J.; Zhang, W.X.; Dong, B.; Cao, Y.H. Bacillus amyloliquefaciens TL106 protects mice against enterohaemorrhagic Escherichia coli O157:H7-induced intestinal disease through improving immune response, intestinal barrier function and gut microbiota. J. Appl. Micorbiol. 2021, 131, 470–484. [Google Scholar] [CrossRef]
- Orlando, A.; Linsalata, M.; Biano, G.; Notarnicola, M.; d’Attoma, B.; Scavo, M.P.; Tafaro, A.; Russo, F. Lactobacillus rhamnosus GG protects the epithelial barrier of Wistar rats from the pepsin-trypsin-digested gliadin (PTG)-induced enteropathy. Nutrients 2018, 10, 1698. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.J.; Woo, J.Y.; Ahn, Y.T.; Shim, J.H.; Huh, C.S.; Im, S.H.; Han, M.J.; Kim, D.H. The probiotic mixture IRT5 ameliorates age-dependent colitis in rats. Int. Immunopharmacol. 2015, 26, 416–422. [Google Scholar] [CrossRef]
- Sheng, K.; He, S.; Sun, M.; Zhang, G.; Kong, X.; Wang, J.; Wang, Y. Synbiotic supplementation containing Bifidobacterium infantis and Xylooligosaccharides alleviates dextran sulfate sodium-induced ulcerative colitis. Food Funct. 2020, 11, 3964. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yang, Y.; Liu, J.; Awan, F.; Lu, C.; Liu, Y. Inhibition of Aeromonas hydrophila-induced intestinal inflammation and mucosal barrier function damage in crucian carp by oral administration of Lactococcus lactis. Fish Shellfish Immunol. 2018, 83, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Shin, J.S.; Lee, W.S.; Rhee, Y.K.; Cho, C.W.; Hong, H.D.; Lee, K.T. Anti-colitis effect of Lactobacillus sakei K040706 via suppression of inflammatory responses in the dextran sulfate sodium-induced colitis mice model. J. Funct. Food. 2017, 29, 256–268. [Google Scholar] [CrossRef]
- Rokana, N.; Singh, R.; Mallappa, R.H.; Batish, V.K.; Grover, B.S. Modulation of intestinal barrier function to ameliorate Salmonella infection in mice by oral administration of fermented milks produced with Lactobacillus plantarum MTCC 5690—A probiotic strain of Indian gut origin. J. Med. Microbiol. 2016, 65, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Liu, S.; Lu, H.; He, X.; Sun, L.; Chen, L.; Wei, M.; Gao, F.; Jiang, H. Homocysteine aggravates intestinal epithelial barrier dysfunction in rats with experimental uremia. Kidney Blood Press Res. 2018, 43, 1516–1528. [Google Scholar] [CrossRef]
- Menningen, R.; Nolte, K.; Rijken, E.; Utech, M.; Loeffler, B.; Senninger, N.; Bruewer, M. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G1140–G1149. [Google Scholar]
- Wang, J.; Chen, H.; Yang, B.; Gu, Z.; Zhang, H.; Chen, W.; Chen, Y.Q. Lactobacillus plantarum ZS2058 produces CLA to ameliorate DSS-induced acute colitis in mice. RSC Adv. 2016, 6, 14457. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, Y.; Lyu, X.; Wang, J.; Wang, Y.; Yang, R. Prevention and Curation of DSS-Induced IBD in Mice with Bacillus Subtilis Fermented Milk via Inhibition of the Inflammatory Responses and Regulation of the Intestinal flora. PREPRINT (Version 1). Available online: https://www.semanticscholar.org/paper/Prevention-and-Curation-of-DSS-induced-IBD%C2%A0in-Mice-Zhang-Tong/5e21d04dcd3eed9f049c0fdf7c0d01397c7a6d0a (accessed on 5 November 2020).
- Feng, G.; Zeng, M.; Huang, M.; Zhu., S.; Guo., W.; Wu, H. Protective effect of biogenic polyphosphate nanoparticles from Synechococcus sp. PCC 7002 on dextran sodium sulphate-induced colitis in mice. Food Funct. 2019, 10, 1007. [Google Scholar] [CrossRef]
- Oh, N.S.; Lee, J.Y.; Kim, Y.T.; Kim, S.H.; Lee, J.H. Cancer-protective effect of a synbiotic combination between Lactobacillus gasseri 505 and a Cudrania tricuspidata leaf extract on colitis associated colorectal cancer. Gut Microbes. 2020, 12, 1785803. [Google Scholar] [CrossRef]
- Li, N.; Pang, B.; Li, J.; Liu, G.; Xu, X.; Shao, D.; Jiang, C.; Yang, B.; Shi, J. Mechanisms for Lactobacillus rhamnosus treatment of intestinal infection by drug-resistant Escherichia coli. Food Funct. 2020, 11, 4428. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Hong, K.; Yu, L.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. 2021. The roles of different Bacteroides fragilis strains in protecting against DSS-induced ulcerative colitis and related functional genes. Food Funct. 2021, 12, 8300–8313. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Guandalini, S.; Zhao, D.H.; Jiang, M. Antinociceptive effect of VSL#3 on visceral hypersensitivity in a rat model of irritable bowel syndrome: A possible action through nitric oxide pathway and enhance barrier function. Mol. Cell Biochem. 2012, 362, 43–53. [Google Scholar] [PubMed]
- Martín, R.; Chain, F.; Miquel, S.; Natividad, J.M.; Sokol, N.M.; Verdu, E.F.; Langella, P.; Bermúdez-Humarán, L.G. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation. Hum. Vaccin Immunother. 2014, 10, 1611–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Li, Y.; Wan, Y.; Hu, T.; Liu, L.; Yang, S.; Gong, Z.; Zeng, Q.; Wei, Y.; Yang, W.; et al. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front. Microbiol. 2019, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Biagioli, M.; Laghi, L.; Carino, A.; Cipriani, S.; Distrutti, E.; Marchianò, S.; Parolin, C.; Scarpelli, P.; Vitalli, B.; Florucci, S. Metabolic variability of a multispecies probiotic preparation impacts on the anti-inflammatory activity. Front. Pharmacol. 2017, 28, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Nogales, A.; Algieri, F.; Garrido-Mesa, J.; Vezza, T.; Utrilla, M.P.; Chueca, N.; Fernández-Caballero, J.A.; García, F.; Rodríguez-Cabezas, M.E.; Gálvez, J. The administration of Escherichia coli Nissle 1917 ameliorates development of DSS-induced colitis in mice. Front. Pharmacol. 2018, 9, 468. [Google Scholar] [CrossRef]
- Dai, C.; Zhao, D.H.; Jiang, M. VSL#3 probiotics regulate the intestinal epithelial barrier in vivo and in vitro via the p38 and ERK signaling pathways. Int. J. Mol. Med. 2012, 29, 202–208. [Google Scholar]
- Esposito, G.; Pesce, M.; Seguella, L.; Lu, J.; Corpetti, C.; del Re, A.; de Palma, F.D.E.; Esposito, G.; Sanseverino, W.; Sarnelli, G. Engineered Lactobacillus paracasei producing palmitoylethanolamide (PEA) prevents colitis in mice. Int. J. Mol. Sci. 2021, 22, 2945. [Google Scholar] [CrossRef]
- Fábrega, M.J.; Rodriguez-Nogales, A.; Garrido-Mesa, J.; Algieri, F.; Badía, J.; Giménez, R.; Gálvez, J.; Baldomà, L. Intestinal anti-inflammatory effects of outer membrane vesicles from Escherichia coli Nissle 1917 in DSS-experimental colitis in mice. Front. Microbiol. 2017, 8, 1274. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Kim, D.H.; Lee, K.W. Homeostasis effects of fermented Maillard reaction products by Lactobacillus gasseri 4M13 in dextran sulfate sodium-induced colitis mice. J. Sci. Food Agric. 2021, 102, 434–444. [Google Scholar] [CrossRef]
- Tulyeu, J.; Kumagai, H.; Jimbo, E.; Watanabe, S.; Yokoyama, K.; Cui, L.; Osaka, H.; Mieno, M.; Yamagata, T. Probiotics prevents sensitization to oral antigen and subsequent increases in intestinal tight junction permeability in juvenile–young adult rats. Microorganisms 2019, 7, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, S.; Park, H.; Seo, E.; Kim, J.; Kim, B.K.; Choi, I.S.; Huh, C.S. Anti-inflammatory and gut microbiota modulatory effect of Lactobacillus rhamnosus strain LDTM 7511 in a dextran sulfate sodium-induced colitis murine model. Microorganisms 2020, 8, 845. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Nogales, A.; Algeri, F.; Garrido-Mesa, J.; Vezza, T.; Utrilla, M.P.; Cheeca, N.; Garcia, F.; Olivares, M.; Rodríguez-Cabezas, M.; Gálvez, E. Differential intestinal anti-inflammatory effects of Lactobacillus ermentum and Lactobacillus salivariusin DSS mouse colitis: Impact on micro RNAs expression and microbiota composition. J. Mol. Nutr. Food Res. 2017, 61, 1700144. [Google Scholar] [CrossRef] [PubMed]
- Vanhaecke, T.; Aubert, P.; Grohard, P.A.; Durand, T.; Hulin, P.; Paul-Gilloteaux, P.; Fournier, A.; Docagne, F.; Ligneul, A.; Fressange-Mazda, C.; et al. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats. Neurogastroenterol. Motil. 2017, 29, e13069. [Google Scholar] [CrossRef] [PubMed]
- Ukena, S.N.; Singh, A.; Dringenverg, U.; Engelhardt, R.; Seidler, U.; Hansen, W.; Bleich, A.; Bruder, D.; Franzke, A.; Rogler, G.; et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS ONE 2007, 2, e1308. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; LV, Y.; Chen, Q.; Feng, J.; Zhao, X. Lactobacillus plantarum restores intestinal permeability disrupted by salmonella infection in newly hatched chicks. Sci. Rep. 2018, 8, 2229. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Zhang, Y.Y.; He, A.Q.; Li, K.Y.; Gao, S.Y.; Liu, G. Lactobacillus acidophilus alleviates pouchitis after ileal pouch-anal anastomosis in rats. World J. Gastroenterol. 2017, 23, 4735–4743. [Google Scholar] [CrossRef]
- Zhou, Y.K.; Qin, H.L.; Zhang, M.; Shen, T.Y.; Chen, H.Q.; Ma, Y.L.; Chu, Z.X.; Zhang, P.; Liu, Z.H. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice. World J. Gastroenterol. 2012, 18, 3977–3991. [Google Scholar] [CrossRef]
- Zakostelska, Z.; Kverka, M.; Klimesova, K.; Rossmann, P.; Mrazek, J.; Kopecny, J.; Hornova, M.; Srutkova, D.; Hudcovic, T.; Ridl, J.; et al. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS ONE 2011, 6, e27961. [Google Scholar] [CrossRef]
- Chen, X.; Fu, Y.; Wang, L.; Qian, W.; Zhang, F.; Hou, X. Bifidobacterium longum and VSL#3® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment. Dev. Comp. Immunol. 2019, 92, 77–86. [Google Scholar]
- Xu, C.; Yan, S.; Guo, Y.; Qiao, L.; Ma, L.; Dou, X.; Zhang, B. Lactobacillus casei ATCC 393 alleviates enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction via TLRs/mast cells pathway. Life Sci. 2020, 244, 117281. [Google Scholar] [CrossRef]
- Kim, W.K.; Jang, Y.J.; Seo, B.; Han, D.H.; Park, S.; Ko, G. Administration of Lactobacillus paracasei strains improves immunomodulation and changes the composition of gut microbiota leading to improvement of colitis in mice. J. Func. Food. 2019, 52, 565–575. [Google Scholar] [CrossRef]
- Zhang, B.; Li, C.; Wang, X.; Liu, C.; Zhou, H.; Mai, K.; He, G. Administration of commensal Shewanella sp. MR-7 ameliorates lipopolysaccharide-induced intestine dysfunction in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2020, 102, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Guerra, G.; Soares, J.; Santos, K.; Rolim, F.; Assis, P.; Araújo, D.; de Araújo Júnior, R.F.; Carcia, V.B.; de Araújo, A.A.; et al. Lactobacillus rhamnosus EM1107 in goat milk matrix modulates intestinal inflammation involving NF-κB p65 and SOCs-1 in an acid-induced colitis model. J. Funct. Food. 2018, 50, 78–92. [Google Scholar] [CrossRef]
- Luo, R.; Zhang, J.; Zhang, X.; Zhou, Z.; Zhang, W.; Zhu, Z.; Liu, H.; Wang, L.; Zhong, Z.; Fu, H.; et al. Bacillus subtilis HH2 ameliorates TNBS-induced colitis by modulating gut microbiota composition and improving intestinal barrier function in rabbit model. J. Funct. Food. 2020, 74, 104167. [Google Scholar] [CrossRef]
- Zeng, L.; Tan, J.; Xue, M.; Liu, L.; Wang, M.; Liang, L.; Deng, J.; Chen, W.; Chen, Y. An engineering probiotic producing defensin-5 ameliorating dextran sodium sulfate-induced mice colitis via inhibiting NF-kB pathway. J. Transl. Med. 2020, 18, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Becker, B.J.; Egger, M. The funnel plot. In Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments; Rothstein, H.R., Sutton, A.J., Borenstein, M., Eds.; Wiley: Chichester, UK, 2005; pp. 75–98. [Google Scholar]
- De Sousa Abreu, R.; Penalva, L.O.; Marcotte, E.M.; Vogel, C. Global signatures of protein and mRNA expression levels. Mol. BioSyst. 2009, 5, 1512–1526. [Google Scholar] [CrossRef] [Green Version]
- Din, A.U.; Hassan, A.; Zhu, Y.; Zhang, K.; Wang, Y.; Li, T.; Wang, Y.; Wang, G. Inhibitory Effect of Bifidobacterium Bifidum ATCC 29521 on colitis and its mechanism. J. Nutr. Biochem. 2020, 79, 108353. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Osaka, T.; Moriyama, E.; Date, Y.; Kikuchi, J.; Tsuneda, S. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol. Rep. 2015, 3, e12327. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, M.C.; Bistritz, L.; Meddings, J.B. Alterations in intestinal permeability. Gut 2006, 55, 1512–1520. [Google Scholar] [CrossRef] [Green Version]
- Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, B.; Sang, L.; Wang, Y.; Tong, J.; Zhang, D.; Wang, B. The protective effect of VSL#3 on intestinal permeability in a rat model of alcoholic intestinal injury. BMC Gastroenterol. 2013, 13, 151–158. [Google Scholar] [PubMed] [Green Version]
- Caffarelli, C.; Cavagni, G.; Menzies, I.S.; Bertolini, P.; Atherton, D.J. Elimination diet and intestinal permeability in atopic eczema: A preliminary study. Clin. Exp. Allergy. 1993, 23, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Laudat, A.; Arnaud, P.; Napoly, A.; Brion, F. The intestinal permeability test applied to the diagnosis of food allergy in pediatrics. West Indian Med. J. 1994, 43, 87–88. [Google Scholar] [PubMed]
- Cho, U.M.; Hwang, H.S. Anti-inflammatory effects of rebaudioside A in LPS stimulated RAW264.7 macrophage cells. J. Soc. Cosmet. Sci. Korea. 2017, 43, 157–164. [Google Scholar]
- Gupta, P.; Andrew, H.; Kirschner, B.S.; Guandalini, S. Is Lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open-label study. J. Pediatr. Gastroenterol. Nutr. 2000, 31, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Karcaewski, J.; Troost, F.J.; Konings, I.; Dekker, J.; Kleerebezem, M.; Brummer, R.J.M.; Wells, J.M. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G851–G859. [Google Scholar] [CrossRef] [Green Version]
- Mowat, C.; Cole, A.; Windsor, A.; Ahmad, T.; Arnott, I.; Driscoll, R.; Mitton, S.; Orchard, T.; Rutter, M.; Younge, L.; et al. Guidelines for the management of inflammatory bowel disease in adults. Gut 2011, 60, 571–607. [Google Scholar] [CrossRef] [Green Version]
- White, R.; Atherly, T.; Guard, B.; Rossi, G.; Wang, C.; Mosher, C.; Webb, C.; Hill, S.; Ackermann, M.; Sciabarra, P.; et al. Randomized, controlled trial evaluating the effect of multi-strain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease. Gut Microb. 2017, 8, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Fleiss, J.L. Analysis of data from multiclinic trials. Control Clin. Trials. 1986, 7, 267–275. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. British Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drucker, A.M.; Fleming, P.; Chan, A.W. Research techniques made simple: Assessing risk of bias in systematic reviews. J. Invest. Dermatol. 2016, 136, e109–e114. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H. The meta-analysis. J. Rheum. Dis. 2015, 22, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Sutton, A.J. Publication bias. In The Hand Book of Research Synthesis and Meta-Analysis; Hedges, L.V., Valentine, J.C., Eds.; Russell Sage Foundation: New York, NY, USA, 2009; pp. 435–452. [Google Scholar]
- Celentano, D.D.; Szklo, M. Epidemiology and Public Policy. In Gordis Epidemiology, 6th ed.; Elesvier: Philadelphia, PA, USA, 2019; pp. 377–394. [Google Scholar]
- Shi, L.; Lin, L. The trim-and-fill method for publication bias: Practical guidelines and recommendations based on a large database of meta-analyses. Medicines 2019, 98, e15987. [Google Scholar] [CrossRef] [PubMed]
Authors | Animal (Strain) | n | Induced Chemical 1 | Treated Time (d) | Probiotics 2 | Administration Form | Analytical Items 3 | TJP Evaluation 4 |
---|---|---|---|---|---|---|---|---|
Chen et al. [23] | Mouse (C57Bl/6) | 10 | DSS | 12 | Mixed culture | Gavage | Occludin, ZO-1 | Western blot |
Miyauchi et al. [24] | Mouse (Balb/c) | 3 | DSS | 3 | L. rhamnosus OLL2838 | Gavage | ZO-1 | Western blot |
Hagihara et al. [25] | Mouse (ICR) | 5 | DSS | 42 | C. butyricum MIYAIRI588 | Gavage | Claudin, Occludin, ZO-1 | Western blot |
Tian et al. [26] | Mouse (C57Bl/6) | 10 | DSS | 42 | B. breve | Gavage | Claudin, Occludin, ZO-1 | Western blot |
Jin et al. [27] | Rat (Sprague-Dawley) | 8 | DSS | 21 | L. rhamnosus GG, L. plantarum Zhang LL | Gavage | Claudin, Occludin, ZO-1 | Western blot |
Chen et al. [28] | Mouse (C57Bl/6) | 6 | Alcohol | 10 | L. rhamnosus GG | Gavage | Claudin, Occludin, ZO-1 | qRT-PCR |
Xin et al. [29] | Mouse (ICR) | 36 | Sodium fluoride | 28 | L. johnsonii BS15 | Gavage | Claudin, Occludin, ZO-1 | qRT-PCR |
Bao et al. [30] | Mouse (C57BL/6J) | 10 | E coli O157:H7 | 14 | B. amyloliquefaciens TL106 | Gavage | Claudin, Occludin, ZO-1 | Western blot |
Orlando et al. [31] | Rat (Wistar) | 10 | PTG | 10 | L. rhamnosus GG | Gavage | Claudin, Occludin, ZO-1 | Western blot |
Jeong et al. [32] | Rat (Fisher 344) | 6 | Aging | 56 | Mixed culture (IRT5) | Gavage | Claudin, Occludin, ZO-1 | ELISA |
Sheng et al. [33] | Mouse (C57BL/6J) | 6 | DSS | 21 | B. infantis ATCC 15697 | Gavage | Claudin, Occludin, ZO-1 | qRT-PCR |
Dong et al. [34] | Crucian carp (Carassius carassius) | 80 | A. hydrophila NJ-35 | 7 | L. lactis 16-7 | Diet | Occludin, ZO-1 | qRT-PCR |
Seo et al. [35] | Mouse (ICR) | 8 | DSS | 12 | L. sakei K040706 | Gavage | Claudin, Occludin, ZO-1 | qRT-PCR |
Rokana et al. [36] | Mouse (Swiss Albino) | 8 | S. Typhimurium LT2 | 7 | L. plantarum MTCC 5690, S. thermophilus, | Gavage | Claudin, Occludin, ZO-1 | qRT-PCR |
Liang et al. [37] | Rat (Sprague-Dawley) | 10 | Aadenine, Homocysteine | 30 | Mixed culture (VSL#3) | Gavage | Claudin, Occludin, ZO-1 | Western blot |
Mennigen et al. [38] | Mouse (Balb/c) | 6 | DSS | 7 | Mixed culture (VSL#3) | Gavage | Claudin, Occludin, ZO-1 | Western blot |
Wang et al. [39] | Mouse (C57BL/6J) | 8 | DSS | 14 | L. plantarum ZS2058, L. plantarum ST-III | Gavage | ZO-1 | qRT-PCR |
Zhang et al. [40] | Mouse (C57BL/6J) | 5 | DSS | 21 | B. subtilis JNFE0126 | Gavage | ZO-1 | Western blot |
Feng et al. [41] | Mouse (C57BL/6) | 8 | DSS | 9 | Synechococcus 7002 | Gavage | Occludin, ZO-1 | Western blot |
Oh et al. [42] | Mouse (C57BL/6) | 10 | DSS | 70 | L. gasseri 505 | Gavage | Occludin, ZO-1 | Western blot |
Li et al. [43] | Mouse (Kunming) | 9 | E. coli QBQ009 | 7 | L. rhamnosus SHA113 | Gavage | Occludin, ZO-1 | Western blot |
Wang et al. [44] | Mouse (C57BL/6J) | 10 | DSS | 7 | B. fragilis NCTC9343, B. fragilis FSHCM14E1, 7B. fragilis FJ10SWX11BF | Gavage | Claudin, Occludin, ZO-1 | qRT-PCR |
Dai et al. [45] | Rat (Wistar) | 10 | Acetic acid | 7 | Mixed culture (VSL#3) | Gavage | Occludin, ZO-1 | Western blot |
Martin et al. [46] | Mouse (C57BL/6) | 16 | DNBS | 10 | L. lactis MG1363 | Gavage | Claudin, Occludin, ZO-1 | qRT-PCR |
Gao et al. [47] | Mouse (C57BL/6) | 8 | DSS | 9 | L. rhamnosus GG HM0539 | Gavage | ZO-1 | Western blot |
Biagiolo et al. [48] | Mouse (Balb/c) | 6 | TNBS | 7 | Mixed culture (VSL#3) | Gavage | Occludin | qRT-PCR |
Rodríguez-Nogales et al. [49] | Mouse (C57BL/6J) | 10 | DSS | 26 | E. coli Nissle 1917 | Gavage | Occludin, ZO-1 | qRT-PCR |
Dai et al. [50] | Rat (Wistar) | 10 | DSS | 7 | Mixed culture (VSL#3) | Gavage | Occludin, ZO-1 | Western blot |
Esposito et al. [51] | Mouse (C57BL/6J) | 10 | DSS | 5 | L. paracasei F19 (pLP) | Gavage | Occludin, ZO-1 | Western blot |
Fábrega et al. [52] | Mouse (C57BL/6J) | 9 | DSS | 15 | E. coli Nissle 1917 | Gavage | Occludin, ZO-1 | Western blot |
Jeong et al. [53] | Mouse (C57BL/6N) | 9 | DSS | 7 | L. gasseri 4M13 | Gavage | Occludin, ZO-1 | qRT-PCR |
Tulyeu et al. [54] | Rat (Brown Norway SPF) | 7 | Ovalbumin | 49 | C. butyricum MIYAIRI 588, L. reuteri DSM 17938 | Gavage | Occludin, ZO-1 | qRT-PCR |
Yeo et al. [55] | Mouse (C57BL/6J) | 8 | DSS | 14 | L. rhamnosus LDTM 7511 L. rhamnosus ATCC 53103 | Gavage | Claudin, Occludin, ZO-1 | qRT-PCR |
Rodríguez-Nogales et al. [56] | Mouse (C57BL/6J) | 10 | DSS | 26 | L. salivarius CECT5713 L. fermentum CECT5716 | Gavage | Occludin, ZO-1 | qRT-PCR |
Vanhaecke et al. [57] | Rat (Sprague-Dawley) | 6 | WAS | 14 | L. fermentum CECT 5716 | Gavage | ZO-1 | Western blot |
Ukena et al. [58] | Mouse (Balb/c) | 3 | DSS | 7 | E. coli Nissle 1917 | Gavage | ZO-1 | Western blot |
Wang et al. [59] | Chick (Nick) | 6 | S. typhimurium CVCC542 | 6 | L. plantarum LTC-113 | Gavage | Claudin, Occludin, ZO-1 | qRT-PCR |
Xu et al. [60] | Rat (Sprague-Dawley) | 6 | DSS | 42 | L. acidophilus | Gavage | ZO-1 | Immunohistochemical analysis |
Zhou et al. [61] | Rat (Wistar) | 8 | Bile duct ligation | 10 | L. plantarum CGMCC 1258 | Gavage | Claudin, Occludin, ZO-1 | Western blot |
Zakostelska et al. [62] | Mouse (BALB/c) | 5 | DSS | 21 | L. casei DN-114 001 (HK) | Gavage | Occludin, ZO-1 | qRT-PCR |
Chen et al. [63] | Mouse (BALB/c) | 6 | TNBS | 7 | B. longum HB5502, Mixed culture (VSL#3) | Gavage | Claudin, Occludin | Western blot |
Xu et al. [64] | Mouse (C57BL/6) | 10 | E. coli K88 | 14 | L. casei ATCC 393 | Gavage | Claudin, Occludin | Western blot |
Kim et al. [65] | Mouse (C57BL/6N) | 8 | DSS | 8 | L. paracasei KBL382 L. paracasei KBL385 | Gavage | Claudin, ZO-1 | qRT-PCR |
Zhang et al. [66] | Turbot (Scophthalmus maximus L.) | 8 | E. coli 055:B5 | 7 | Shewanella sp. MR-7 | Diet | Claudin, Occludin, ZO-1 | qRT-PCR |
Rodrigues et al. [67] | Rat (Wistar) | 8 | Acetic acid | 17 | L. rhamnosus EM1107 | Gavage | ZO-1 | Immunohistochemical analysis |
Luo et al. [68] | Rabbit (New Zealand white) | 4 | TNBS | 5 | B. subtilis HH2 | Gavage | Claudin, Occludin, ZO-1 | Western blot |
Zeng et al. [69] | Mouse (C57BL/6) | 7 | DSS | 7 | L. lactis NZ9000, L. lactis NZ9000SHD-5 | Gavage | Occludin, ZO-1 | qRT-PCR |
Authors | Average Summary Score (%) | Standard Deviation between Reviewer 1 and 2 |
---|---|---|
Chen et al. [23] | 95.9 | 0.009 |
Miyauchi et al. [24] | 86.1 | 0.028 |
Hagihara et al. [25] | 96.2 | 0.088 |
Tian et al. [26] | 79.8 | 0.020 |
Jin et al. [27] | 69.8 | 0.009 |
Chen et al. [28] | 88.5 | 0.017 |
Xin et al. [29] | 78.1 | 0.016 |
Bao et al. [30] | 93.7 | 0.030 |
Orlando et al. [31] | 94.4 | 0.009 |
Jeong et al. [32] | 83.2 | 0.007 |
Sheng et al. [33] | 91.0 | 0.041 |
Dong et al. [34] | 81.8 | 0.043 |
Seo et al. [35] | 87.5 | 0.009 |
Rokana et al. [36] | 98.6 | 0.012 |
Liang et al. [37] | 83.2 | 0.004 |
Mennigen et al. [38] | 75.2 | 0.052 |
Wang et al. [39] | 93.2 | 0.014 |
Zhang et al. [40] | 82.3 | 0.027 |
Feng et al. [41] | 64.0 | 0.033 |
Oh et al. [42] | 89.1 | 0.014 |
Li et al. [43] | 92.6 | 0.007 |
Wang et al. [44] | 77.8 | 0.096 |
Dai et al. [45] | 93.1 | 0.040 |
Martin et al. [46] | 96.6 | 0.019 |
Gao et al. [47] | 78.2 | 0.081 |
Biagiolo et al. [48] | 87.9 | 0.005 |
Rodríguez-Nogales et al. [49] | 94.6 | 0.029 |
Dai et al. [50] | 88.8 | 0.011 |
Esposito et al. [51] | 66.7 | 0.062 |
Fábrega et al. [52] | 78.7 | 0.010 |
Jeong et al. [53] | 72.4 | 0.044 |
Tulyeu et al. [54] | 89.3 | 0.006 |
Yeo et al. [55] | 92.7 | 0.011 |
Rodríguez-Nogales et al. [56] | 76.4 | 0.027 |
Vanhaecke et al. [57] | 93.0 | 0.009 |
Ukena et al. [58] | 95.8 | 0.056 |
Wang et al. [59] | 67.1 | 0.008 |
Xu et al. [60] | 83.5 | 0.097 |
Zhou et al. [61] | 94.2 | 0.023 |
Zakostelska et al. [62] | 80.9 | 0.082 |
Chen et al. [63] | 98.2 | 0.031 |
Xu et al. [64] | 87.2 | 0.010 |
Kim et al. [65] | 94.9 | 0.018 |
Zhang et al. [66] | 65.8 | 0.085 |
Rodrigues et al. [67] | 90.9 | 0.026 |
Luo et al. [68] | 83.7 | 0.006 |
Zeng et al. [69] | 74.8 | 0.081 |
Item 1 | Subgroup | Estimate | SE 3 | p-Value 4 | CI. lb 5 | CI. ub 6 | R2 (%) | |
---|---|---|---|---|---|---|---|---|
Claudin | Probiotics strain | Intercept 2 | 12.3197 | 3.9377 | 0.0018 ** | 4.6020 | 20.0374 | 0.00 |
B. breve | −13.3197 | 5.1349 | 0.0066 ** | −24.0091 | −3.8806 | |||
B. fragilis | −9.8015 | 4.3794 | 0.0252 * | −18.3850 | −1.2181 | |||
B. infantis | −4.3984 | 5.5055 | 0.4243 | −15.1891 | 6.3923 | |||
B. longum | −5.2956 | 5.4295 | 0.3294 | −15.9372 | 5.3459 | |||
B. subtilis | −11.0005 | 5.1768 | 0.0336 * | −21.1469 | −0.8541 | |||
C. butyricum | −6.1354 | 4.8116 | 0.2023 | −15.5660 | 3.2952 | |||
L. casei | −12.7922 | 4.5728 | 0.0052 ** | −21.7547 | −3.8297 | |||
L. johnsonii | −12.2498 | 5.1128 | 0.0166 * | −22.2707 | −2.2289 | |||
L. lactis | −8.4080 | 5.1461 | 0.1023 | −18.4943 | 1.6783 | |||
L. paracasei | −9.8159 | 4.5881 | 0.0324 * | −18.8093 | −0.8235 | |||
L. platarum | −5.8372 | 4.1768 | 0.1623 | −14.0236 | 2.3492 | |||
L. reuteri | 14.9535 | 7.9587 | 0.0603 | −0.6452 | 30.5522 | |||
L. rhamnosus | −10.1128 | 4.2426 | 0.0171 * | −18.4282 | −1.7974 | |||
L. sakei | −16.1100 | 4.6066 | 0.0005 *** | −25.1389 | −7.0812 | |||
Medicine | −14.0232 | 4.3397 | 0.0012 ** | −22.5288 | −5.5176 | |||
Mixed culture | −6.3576 | 4.2563 | 0.1353 | −14.6998 | 1.9845 | |||
Prebiotics | −7.7392 | 5.2650 | 0.1416 | −18.0584 | 2.5800 | |||
S. thermophiles | −10.1320 | 5.1511 | 0.0492 * | −20.2279 | −0.0361 | |||
Shewanella sp. | −0.8224 | 5.6405 | 0.8841 | −11.8776 | 10.2329 | |||
Synbiotics | −2.9140 | 4.8327 | 0.5465 | −12.3860 | 6.5579 | |||
Administration time | Intercept | 4.8498 | 2.0891 | 0.0203 | 0.7552 | 8.9445 | 0.00 | |
Day | 0.0207 | 0.0731 | 0.7775 | 0.1226 | 0.1640 | |||
Dosage | Intercept | −2.0531 | 13.1000 | 0.8755 | −27.7285 | 23.6223 | 0.00 | |
Dosage | 0.7001 | 1.4574 | 0.6310 | −2.1564 | 3.5567 | |||
Occludin | Probiotics strain | Intercept | 8.6724 | 3.3722 | 0.0101 * | 2.0631 | 15.2817 | 0.00 |
B. breve | −3.6635 | 4.6024 | 0.4260 | −12.6841 | 5.3571 | |||
B. fragilis | −5.6702 | 3.8086 | 0.1365 | −13.1349 | 1.7945 | |||
B. infantis | 8.7071 | 6.2667 | 0.1647 | −3.5755 | 20.9896 | |||
B. longum | −3.6720 | 4.6995 | 0.4346 | −12.8829 | 5.5389 | |||
B. subtilis | −7.1787 | 4.5800 | 0.1170 | −16.1552 | 1.7979 | |||
C. butyricum | −3.4568 | 4.2446 | 0.4154 | −11.7760 | 4.8624 | |||
E. Coli Nissle | −6.0720 | 4.0014 | 0.1291 | −13.9146 | 1.7706 | |||
L. casei | −3.7033 | 3.8745 | 0.3392 | −11.2972 | 3.8905 | |||
L. fermentum | −3.9842 | 4.5919 | 0.3856 | −12.9841 | 5.0158 | |||
L. gasseri | −4.8758 | 3.8509 | 0.2055 | −12.4234 | 2.6719 | |||
L. johnsonii | −7.6132 | 4.5017 | 0.0908 | −12.4234 | 2.6719 | |||
L. lactis | −2.0662 | 3.7498 | 0.5816 | −9.4157 | 5.2833 | |||
L. paracasei | −6.8846 | 4.5278 | 0.1284 | −15.7589 | 1.9897 | |||
L. platarum | −4.4105 | 3.5894 | 0.2192 | −11.4457 | 2.6247 | |||
L. reuteri | −3.6473 | 4.6628 | 0.4341 | −12.7863 | 5.4916 | |||
L. rhamnosus | −4.8075 | 3.6865 | 0.1922 | −12.0329 | 2.4179 | |||
L. sakei | −7.5784 | 3.6865 | 0.1922 | −12.0329 | 2.4179 | |||
L. salivarius | −5.5702 | 4.5498 | 0.2208 | −15.4050 | 0.2481 | |||
Medicine | −6.9143 | 3.6598 | 0.0589 | −14.0873 | 0.2587 | |||
Mixed culture | −2.6412 | 3.5224 | 0.4534 | −9.5450 | 4.2625 | |||
Prebiotics | 20.7735 | 8.6211 | 0.0160 * | 3.8766 | 37.6705 | |||
S. thermophiles | −5.7126 | 4.5623 | 0.2105 | −14.6545 | 3.2293 | |||
Shewanella sp. | 3.2302 | 5.1308 | 0.5290 | −6.8260 | 13.2863 | |||
Synbiotics | 4.7622 | 4.6464 | 0.2105 | −14.6545 | 3.2293 | |||
Synechococcus | −5.7857 | 4.5603 | 0.2045 | −14.7238 | 3.1524 | |||
Administration time | Intercept | 6.6502 | 2.0584 | 0.0012 | 2.6159 | 10.6846 | 0.00 | |
Day | −0.0111 | 0.0771 | −0.1444 | 0.8852 | −0.1623 | |||
Dosage | Intercept | 30.9506 | 13.2133 | 0.0192 | 5.0530 | 56.8463 | 0.00 | |
Dosage | −2.5663 | 1.3829 | 0.0635 | −5.2768 | 0.1441 | |||
ZO−1 | Probiotics strain | Intercept | 6.9744 | 2.8378 | 0.0140 * | 1.4124 | 12.5364 | 0.00 |
B. breve | −3.0068 | 3.8836 | 0.4388 | −10.6185 | 4.6049 | |||
B. fragilis | −4.4113 | 3.2109 | 0.1695 | −10.7046 | 1.8819 | |||
B. infantis | −0.1449 | 4.1975 | 0.9725 | −8.3718 | 8.0820 | |||
B. subtilis | −4.8395 | 3.4213 | 0.1572 | −11.5450 | 1.8661 | |||
C. butyricum | −1.6496 | 3.5955 | 0.6464 | −8.6966 | 5.3975 | |||
E. Coli Nissle | −4.0765 | 3.3698 | 0.2264 | −10.6812 | 2.5281 | |||
L. aciophilus | −4.9774 | 3.8695 | 0.1983 | −12.5614 | 2.6067 | |||
L. casei | −4.7159 | 3.9004 | 0.2266 | −12.3605 | 2.9287 | |||
L. fermentum | −5.3177 | 3.3815 | 0.1158 | −11.9454 | 1.3101 | |||
L. gasseri | −4.8525 | 3.2160 | 0.1313 | −11.1557 | 1.4507 | |||
L. johnsonii | −5.4356 | 3.8033 | 0.1530 | −12.8899 | 2.0188 | |||
L. lactis | −3.8105 | 3.1339 | 0.2240 | −9.9528 | 2.3318 | |||
L. paracasei | −4.5868 | 3.2121 | 0.1533 | −10.8824 | 1.7088 | |||
L. platarum | −1.2755 | 2.9966 | 0.6704 | −7.1488 | 4.5978 | |||
L. reuteri | 13.4512 | 5.9509 | 0.0238 | 1.7876 | 25.1149 | |||
L. rhamnosus | −2.8947 | 2.9952 | 0.3338 | −8.7653 | 2.9758 | |||
L. sakei | −5.8836 | 3.3734 | 0.0811 | −12.4954 | 0.7282 | |||
L. salivarius | −5.9818 | 3.8240 | 0.1177 | −13.4766 | 1.5130 | |||
Medicine | −3.1009 | 3.0642 | 0.3116 | −9.1066 | 2.9048 | |||
Mixed culture | 0.2984 | 3.0611 | 0.9223 | −5.7012 | 6.2980 | |||
Mixed culture + medicine | 6.2538 | 4.4766 | 0.1624 | −2.5201 | 15.0278 | |||
Prebiotics | 11.2244 | 5.9390 | 0.0588 | −0.4157 | 22.8646 | |||
S. thermophilus | 0.6803 | 4.1318 | 0.8692 | −7.4177 | 8.7784 | |||
Shewanella sp. | −5.1300 | 3.8449 | 0.1821 | −12.6658 | 2.4058 | |||
Synbiotics | 0.4962 | 3.3391 | 0.8819 | −6.0483 | 7.0407 | |||
Synechococcus | −4.5101 | 3.5893 | 0.2426 | −12.0741 | 3.0539 | |||
Administration time | Intercept | 4.7298 | 1.4227 | 0.0009 | 1.9414 | 7.5183 | 0.00 | |
Day | −0.0541 | 0.0727 | 0.4572 | −0.1966 | 0.0884 | |||
Dosage | Intercept | 0.1495 | 32.3965 | 0.9963 | −63.3465 | 63.6454 | 0.00 | |
Day | 0.2520 | 3.9322 | 0.9489 | −7.4550 | 7.7591 |
Item 1 | Subgroup | Estimate | SE 3 | p−Value 4 | CI. lb 5 | CI. ub 6 | R2 (%) | |
---|---|---|---|---|---|---|---|---|
Claudin | Probiotics strain | Intercept 2 | 12.3197 | 3.9377 | 0.0018 ** | 4.6020 | 20.0374 | 0.00 |
B. breve | −13.3197 | 5.1349 | 0.0066 ** | −24.0091 | −3.8806 | |||
B. fragilis | −9.8015 | 4.3794 | 0.0252 * | −18.3850 | −1.2181 | |||
B. infantis | −4.3984 | 5.5055 | 0.4243 | −15.1891 | 6.3923 | |||
B. longum | −5.2956 | 5.4295 | 0.3294 | −15.9372 | 5.3459 | |||
B. subtilis | −11.0005 | 5.1768 | 0.0336 * | −21.1469 | −0.8541 | |||
C. butyricum | −6.1354 | 4.8116 | 0.2023 | −15.5660 | 3.2952 | |||
L. casei | −12.7922 | 4.5728 | 0.0052 ** | −21.7547 | −3.8297 | |||
L. johnsonii | −12.2498 | 5.1128 | 0.0166 * | −22.2707 | −2.2289 | |||
L. lactis | −8.4080 | 5.1461 | 0.1023 | −18.4943 | 1.6783 | |||
L. paracasei | −9.8159 | 4.5881 | 0.0324 * | −18.8093 | −0.8235 | |||
L. platarum | −5.8372 | 4.1768 | 0.1623 | −14.0236 | 2.3492 | |||
L. reuteri | 14.9535 | 7.9587 | 0.0603 | −0.6452 | 30.5522 | |||
L. rhamnosus | −10.1128 | 4.2426 | 0.0171 * | −18.4282 | −1.7974 | |||
L. sakei | −16.1100 | 4.6066 | 0.0005 *** | −25.1389 | −7.0812 | |||
Medicine | −14.0232 | 4.3397 | 0.0012 ** | −22.5288 | −5.5176 | |||
Mixed culture | −6.3576 | 4.2563 | 0.1353 | −14.6998 | 1.9845 | |||
Prebiotics | −7.7392 | 5.2650 | 0.1416 | −18.0584 | 2.5800 | |||
S. thermophiles | −10.1320 | 5.1511 | 0.0492 * | −20.2279 | −0.0361 | |||
Shewanella sp. | −0.8224 | 5.6405 | 0.8841 | −11.8776 | 10.2329 | |||
Synbiotics | −2.9140 | 4.8327 | 0.5465 | −12.3860 | 6.5579 | |||
Administration time | Intercept | 4.8498 | 2.0891 | 0.0203 | 0.7552 | 8.9445 | 0.00 | |
Day | 0.0207 | 0.0731 | 0.7775 | 0.1226 | 0.1640 | |||
Dosage | Intercept | −2.0531 | 13.1000 | 0.8755 | −27.7285 | 23.6223 | 0.00 | |
Dosage | 0.7001 | 1.4574 | 0.6310 | −2.1564 | 3.5567 | |||
Occludin | Probiotics strain | Intercept | 8.6724 | 3.3722 | 0.0101 * | 2.0631 | 15.2817 | 0.00 |
B. breve | −3.6635 | 4.6024 | 0.4260 | −12.6841 | 5.3571 | |||
B. fragilis | −5.6702 | 3.8086 | 0.1365 | −13.1349 | 1.7945 | |||
B. infantis | 8.7071 | 6.2667 | 0.1647 | −3.5755 | 20.9896 | |||
B. longum | −3.6720 | 4.6995 | 0.4346 | −12.8829 | 5.5389 | |||
B. subtilis | −7.1787 | 4.5800 | 0.1170 | −16.1552 | 1.7979 | |||
C. butyricum | −3.4568 | 4.2446 | 0.4154 | −11.7760 | 4.8624 | |||
E. Coli Nissle | −6.0720 | 4.0014 | 0.1291 | −13.9146 | 1.7706 | |||
L. casei | −3.7033 | 3.8745 | 0.3392 | −11.2972 | 3.8905 | |||
L. fermentum | −3.9842 | 4.5919 | 0.3856 | −12.9841 | 5.0158 | |||
L. gasseri | −4.8758 | 3.8509 | 0.2055 | −12.4234 | 2.6719 | |||
L. johnsonii | −7.6132 | 4.5017 | 0.0908 | −12.4234 | 2.6719 | |||
L. lactis | −2.0662 | 3.7498 | 0.5816 | −9.4157 | 5.2833 | |||
L. paracasei | −6.8846 | 4.5278 | 0.1284 | −15.7589 | 1.9897 | |||
L. platarum | −4.4105 | 3.5894 | 0.2192 | −11.4457 | 2.6247 | |||
L. reuteri | −3.6473 | 4.6628 | 0.4341 | −12.7863 | 5.4916 | |||
L. rhamnosus | −4.8075 | 3.6865 | 0.1922 | −12.0329 | 2.4179 | |||
L. sakei | −7.5784 | 3.6865 | 0.1922 | −12.0329 | 2.4179 | |||
L. salivarius | −5.5702 | 4.5498 | 0.2208 | −15.4050 | 0.2481 | |||
Medicine | −6.9143 | 3.6598 | 0.0589 | −14.0873 | 0.2587 | |||
Mixed culture | −2.6412 | 3.5224 | 0.4534 | −9.5450 | 4.2625 | |||
Prebiotics | 20.7735 | 8.6211 | 0.0160 * | 3.8766 | 37.6705 | |||
S. thermophiles | −5.7126 | 4.5623 | 0.2105 | −14.6545 | 3.2293 | |||
Shewanella sp. | 3.2302 | 5.1308 | 0.5290 | −6.8260 | 13.2863 | |||
Synbiotics | 4.7622 | 4.6464 | 0.2105 | −14.6545 | 3.2293 | |||
Synechococcus | −5.7857 | 4.5603 | 0.2045 | −14.7238 | 3.1524 | |||
Administration time | Intercept | 6.6502 | 2.0584 | 0.0012 | 2.6159 | 10.6846 | 0.00 | |
Day | −0.0111 | 0.0771 | −0.1444 | 0.8852 | −0.1623 | |||
Dosage | Intercept | 30.9506 | 13.2133 | 0.0192 | 5.0530 | 56.8463 | 0.00 | |
Dosage | −2.5663 | 1.3829 | 0.0635 | −5.2768 | 0.1441 | |||
ZO−1 | Probiotics strain | Intercept | 6.9744 | 2.8378 | 0.0140 * | 1.4124 | 12.5364 | 0.00 |
B. breve | −3.0068 | 3.8836 | 0.4388 | −10.6185 | 4.6049 | |||
B. fragilis | −4.4113 | 3.2109 | 0.1695 | −10.7046 | 1.8819 | |||
B. infantis | −0.1449 | 4.1975 | 0.9725 | −8.3718 | 8.0820 | |||
B. subtilis | −4.8395 | 3.4213 | 0.1572 | −11.5450 | 1.8661 | |||
C. butyricum | −1.6496 | 3.5955 | 0.6464 | −8.6966 | 5.3975 | |||
E. Coli Nissle | −4.0765 | 3.3698 | 0.2264 | −10.6812 | 2.5281 | |||
L. aciophilus | −4.9774 | 3.8695 | 0.1983 | −12.5614 | 2.6067 | |||
L. casei | −4.7159 | 3.9004 | 0.2266 | −12.3605 | 2.9287 | |||
L. fermentum | −5.3177 | 3.3815 | 0.1158 | −11.9454 | 1.3101 | |||
L. gasseri | −4.8525 | 3.2160 | 0.1313 | −11.1557 | 1.4507 | |||
L. johnsonii | −5.4356 | 3.8033 | 0.1530 | −12.8899 | 2.0188 | |||
L. lactis | −3.8105 | 3.1339 | 0.2240 | −9.9528 | 2.3318 | |||
L. paracasei | −4.5868 | 3.2121 | 0.1533 | −10.8824 | 1.7088 | |||
L. platarum | −1.2755 | 2.9966 | 0.6704 | −7.1488 | 4.5978 | |||
L. reuteri | 13.4512 | 5.9509 | 0.0238 | 1.7876 | 25.1149 | |||
L. rhamnosus | −2.8947 | 2.9952 | 0.3338 | −8.7653 | 2.9758 | |||
L. sakei | −5.8836 | 3.3734 | 0.0811 | −12.4954 | 0.7282 | |||
L. salivarius | −5.9818 | 3.8240 | 0.1177 | −13.4766 | 1.5130 | |||
Medicine | −3.1009 | 3.0642 | 0.3116 | −9.1066 | 2.9048 | |||
Mixed culture | 0.2984 | 3.0611 | 0.9223 | −5.7012 | 6.2980 | |||
Mixed culture + medicine | 6.2538 | 4.4766 | 0.1624 | −2.5201 | 15.0278 | |||
Prebiotics | 11.2244 | 5.9390 | 0.0588 | −0.4157 | 22.8646 | |||
S. thermophilus | 0.6803 | 4.1318 | 0.8692 | −7.4177 | 8.7784 | |||
Shewanella sp. | −5.1300 | 3.8449 | 0.1821 | −12.6658 | 2.4058 | |||
Synbiotics | 0.4962 | 3.3391 | 0.8819 | −6.0483 | 7.0407 | |||
Synechococcus | −4.5101 | 3.5893 | 0.2426 | −12.0741 | 3.0539 | |||
Administration time | Intercept | 4.7298 | 1.4227 | 0.0009 | 1.9414 | 7.5183 | 0.00 | |
Day | −0.0541 | 0.0727 | 0.4572 | −0.1966 | 0.0884 | |||
Dosage | Intercept | 0.1495 | 32.3965 | 0.9963 | −63.3465 | 63.6454 | 0.00 | |
Day | 0.2520 | 3.9322 | 0.9489 | −7.4550 | 7.7591 |
Items 1 | Bias | Se. Bias 2 | Intercept | t | df 3 | p-Value |
---|---|---|---|---|---|---|
Claudin | 3.8205 | 0.8085 | −1.4250 | 4.73 | 43 | <0.0001 |
Occludin | 4.4028 | 0.6205 | −0.7640 | 7.10 | 63 | <0.0001 |
ZO-1 | 3.6468 | 0.4838 | −0.0727 | 7.54 | 71 | <0.0001 |
Items 1 | df 2 | Fixed Effect Model | Random Effect Model | Heterogeneity | ||||
---|---|---|---|---|---|---|---|---|
Effect Size | p-Value | Effect Size | p-Value | Q 3 (p-Value) | I2 (%) | τ2 | ||
Claudin | 53 | 0.7299 | <0.0001 | 1.0118 | 0.0512 | 901.22 (<0.0001) | 93.6 | 12.6892 |
Occludin | 13 | 1.5067 | <0.0001 | 1.8429 | <0.0001 | 1481.58 (<0.0001) | 94.1 | 12.5371 |
ZO-1 | 99 | 1.8644 | <0.0001 | 2.0862 | <0.0001 | 1062.17 (<0.0001) | 90.7 | 7.4204 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.-I.; Cho, S.; Jeon, E.; Park, M.; Chae, B.; Ditengou, I.C.P., Jr.; Choi, N.-J. The Effect of Probiotics on Intestinal Tight Junction Protein Expression in Animal Models: A Meta-Analysis. Appl. Sci. 2022, 12, 4680. https://doi.org/10.3390/app12094680
Ahn S-I, Cho S, Jeon E, Park M, Chae B, Ditengou ICP Jr., Choi N-J. The Effect of Probiotics on Intestinal Tight Junction Protein Expression in Animal Models: A Meta-Analysis. Applied Sciences. 2022; 12(9):4680. https://doi.org/10.3390/app12094680
Chicago/Turabian StyleAhn, Sung-Il, Sangbuem Cho, Eunjeong Jeon, Myungsun Park, Byungho Chae, Isaac Celestin Poaty Ditengou, Jr., and Nag-Jin Choi. 2022. "The Effect of Probiotics on Intestinal Tight Junction Protein Expression in Animal Models: A Meta-Analysis" Applied Sciences 12, no. 9: 4680. https://doi.org/10.3390/app12094680
APA StyleAhn, S. -I., Cho, S., Jeon, E., Park, M., Chae, B., Ditengou, I. C. P., Jr., & Choi, N. -J. (2022). The Effect of Probiotics on Intestinal Tight Junction Protein Expression in Animal Models: A Meta-Analysis. Applied Sciences, 12(9), 4680. https://doi.org/10.3390/app12094680