
Citation: Barzegar, A.; Lee, D.-J.

Deep Reinforcement Learning-Based

Adaptive Controller for Trajectory

Tracking and Altitude Control of an

Aerial Robot. Appl. Sci. 2022, 12, 4764.

https://doi.org/10.3390/

app12094764

Academic Editors: Antoni Grau and

Yolanda Bolea

Received: 14 April 2022

Accepted: 4 May 2022

Published: 9 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Deep Reinforcement Learning-Based Adaptive Controller for
Trajectory Tracking and Altitude Control of an Aerial Robot
Ali Barzegar and Deok-Jin Lee *

School of Mechanical Engineering, Jeonbuk National University, Jeonju 54896, Korea; ali.barzegar@jbnu.ac.kr
* Correspondence: deokjlee@jbnu.ac.kr; Tel.: +82-63-270-4768

Abstract: This research study presents a new adaptive attitude and altitude controller for an aerial
robot. The proposed controlling approach employs a reinforcement learning-based algorithm to ac-
tively estimate the controller parameters of the aerial robot. In dealing with highly nonlinear systems
and parameter uncertainty, the proposed RL-based adaptive control algorithm has advantages over
some types of standard control approaches. When compared to the conventional proportional integral
derivative (PID) controllers, the results of the numerical simulation demonstrate the effectiveness
of this intelligent control strategy, which can improve the control performance of the whole system,
resulting in accurate trajectory tracking and altitude control of the vehicle.

Keywords: RL robot control; RL model predictive control; reinforcement learning for vehicle control;
PID reinforcement learning; RL adaptive PID; reinforcement learning drone control

1. Introduction
1.1. Control Problem of Aerial Robots

Aerial robots have become increasingly popular in recent decades. Quadrotors, in
particular, have piqued the attention of the scientific community, with several important
discoveries and applications proposed and tested. Despite significant advancements, aerial
robot control is still regarded as a very active field of research. Aerial robot controllers, on
the one hand, need the ability to acquire, process, and calculate forces to apply to vehicle
actuators in a very time-critical way. The flight controllers for aerial robots, on the other
hand, should be able to resist failures and respond to changes in payload and disturbances.
Flight control systems for aerial robots are usually implemented using proportional integral
derivative (PID) control algorithms [1]. PIDs have proved their acceptable performance
in some circumstances, such as racing drones, where fast control responses are crucial. A
PID controller works close to optimally in stable settings and environments. Hence, most
commercial aerial robot flight controllers use PIDs for both attitude and altitude control.

However, PID controllers are unable to properly control a robot when faced with un-
expected dynamics disturbances (such as variable payloads) [2–12]. External disturbances
(e.g., wind) can also reduce the accuracy of trajectory tracking by weakening attitude
controller performance. The problem is that model-free controllers are unable to fully cover
the complicated variations in nonlinear dynamics behavior of a quadrotor, causing the
controller to lose stability and robustness [13]. This problem motivated some researchers to
develop optimal and nonlinear model-based controllers to control aerial robots. Nonlinear
Model Predictive Control (NMPC) is one of the most widely used optimal model-based
control algorithms in many recent research works. The controller, as the name implies, uses
a model of the system to forecast the future behavior of the robot in response to the current
control input. A model predictive controller has some advantages over its model-free
counterparts. Not only does the controller outperform its model-free equivalents in terms
of control performance, but it also has the ability to take into account some constraints,
which is a key element in some flight maneuvers such as obstacle avoidance [14]. Despite

Appl. Sci. 2022, 12, 4764. https://doi.org/10.3390/app12094764 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094764
https://doi.org/10.3390/app12094764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3462-8579
https://doi.org/10.3390/app12094764
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094764?type=check_update&version=1

Appl. Sci. 2022, 12, 4764 2 of 23

its benefits over previous model-free techniques, MPC is vulnerable to failure when the
prediction model of the controller does not account for fluctuations in the dynamical system
under control.

When it comes to controlling an aerial robot, it should be noted that the aerial robot
controller needs to control both the altitude and the attitude of the robot. In order to
implement a full optimal model-based controller for an aerial robot, some researchers
proposed employing NMPC for both altitude and attitude controllers, while taking some
measures to reduce its dependency on an accurate model of the robot. Some studies
endeavored to mitigate the problem by using learning algorithms (e.g., a Gaussian process
or neural networks) that actively estimate the dynamics parameters of the robot and update
the prediction model in real time [15–20]. Although the resultant topologies improved the
performance of the controller after learning the dynamical variations of the system, the
methods have the potential to increase computation costs.

Despite the fact that the aforementioned optimal control algorithms partially managed
to improve the overall performance of controllers, they need powerful and fast processors
to compute the online optimization problem. In order to avoid imposing high computing
costs on the system, a number of research studies proposed using linear model predictive
control (LMPC) [21–23]. The advantage of LMPC is its low computation cost, as compared
with its nonlinear counterpart. The controller, however, does not provide a good response
for attitude control when there is too much variation in the parameters of the dynamical
system. The problem stems from the fact that the prediction model in the linear MPC uses
a linearized model around its ideal working point. The linearized model, however, is not
sufficient to be used as a prediction model for the attitude control of aerial robots that need
to do challenging maneuvers. Although the LMPC is not an ideal controller for attitude
control, it is sufficient for altitude control, because most aerial robots fly at low altitudes
with limited variation in elevation; thus, the linearized model around that working altitude
can cover the behavior of a flying robot [24,25].

Although PID controllers cannot fully cover fluctuations in system dynamics, they
provide fast control response, which is a crucial ability for an aerial robot that requires agile
attitude control responses to avoid obstacles and perform demanding maneuvers (e.g.,
delivery aerial robots in urban areas) [26]. In previous research efforts, many researchers
have explored a variety of techniques to mitigate the problem in conventional standard
PIDs. Several studies combined online tuning approaches with PID control to lessen the
impact of changes in vehicle dynamics and disturbances [27]. A number of researchers
opted for training neural networks to actively update the PID gain values of aerial drone
controllers [28,29]. However, neural network training needs a large database of labeled data.
Another widely used approach to actively tune the PID control is the fuzzy-logic-based
auto-tuning algorithm [30–32]. The drawback of the fuzzy-logic-based tuning strategy
is that the efficiency of algorithm is strongly reliant on the fuzzy rules and the inference
system set by the designer. However, some fluctuations in the system dynamics may be
unanticipated, resulting in the generation of inaccurate control gain coefficients by the
fuzzy logic [33].

In addition to the aforementioned optimal control and active tuning approaches
(for PIDs), Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) are
other new approaches that have recently made their way into the field of aerial robots
control. RL and DRL do not require an accurate model of the plant under control or human
designed control rules, in contrast to fuzzy logic that depends on the expert’s expertise. As
a result, these machine learning approaches have attracted the attention of many academics
working on the control of systems with uncertain dynamical models [34–36]. Unlike neural
network-based control techniques, deep reinforcement learning does not require large
labeled datasets. This is a major benefit, since labelling data for all critical scenarios become
more and more expensive as the number of required data grows. Another important
advantage of deep reinforcement learning for control is its capability to directly map image

Appl. Sci. 2022, 12, 4764 3 of 23

features to control states, thereby resolving the need for the implementation of complex
state estimators and image processing algorithms in some special cases [37].

1.2. Related Works

Some researchers have already applied RL algorithms to control aerial robots. How-
ever, the bulk of studies focused on directly using RL algorithms to control aerial robots.
As an example of these efforts, in a research study published in [38], a deep reinforcement
learning algorithm was employed to control a fixed-wing aerial robot. The nonlinearities
of the dynamics model, as well as the coupling effect between lateral and longitudinal
control, were taken into account in the mentioned research study. The Proximal Policy
Optimization (PPO) is the RL algorithm utilized in the study. Similarly, another research
paper [39] employed PPO to regulate the attitude of a quadcopter. A research study pre-
sented in [40] employed a control system to achieve accurate autonomous driving of an
aerial vehicle while landing on a platform. In the latter research paper, the Deep Q-learning
Network (DQN) is the cornerstone of the controlling approach to mapping the images
of poor quality to control states. Although the DQN method appears to be a promising
approach for tackling vision-based control problems, it has significant drawbacks that limit
its usage in more advanced vehicle control tasks that rely on image processing. As another
example of this series of research efforts, a research study published in [41], leveraged an
RL-based approach to control an aerial robot with the objective of capturing photographs of
a person’s front view, particularly his face. RL-based controllers also have found their ways
into the world of morphing aerial robots. For instance, a work presented in [42] used a
combination of the PPO algorithm with a PID controller to control a morphing aerial robot.

In contrast to the majority of the mentioned works that used RL algorithms to directly
control aerial robots, some researchers opted not to use RL for that purpose. Instead,
some attempts have been made to use the RL-based algorithm as a foundation for active
tuning and state estimation mechanisms for other classical controllers. The drawback of a
direct RL-based control algorithm is its slow response, compared with that of conventional
PID controllers that provide very fast controlling responses [43]. In addition, direct deep
reinforcement learning-based controlling approaches does not provide any analytical
guarantees for the stable response and robustness in the control process, as unexplainable
neural networks underpin its structure. However, RL has the potential to be used along
with traditional control algorithms to provide adaptive and robust controllers.

As an example of the latter approach, the research study reported in [44] employed
a fault-tolerant RL-based adaptive controller that combined an RL-based adaptive algo-
rithm (in the study PPO) with a PID controller and an Unscented Kalman Filter (UKF)
to develop a fault-tolerant RL-based adaptive controller. The proposed controlling strat-
egy has employed a hybrid of parameter estimation and a deep reinforcement learning
method. When the value of the parameters associated with faults affected the controller
performance, the algorithm updated the PID controller. Although the findings of the study
revealed a satisfactory control response for altitude control, the attitude control response
did not provide clear superiority over earlier conventional controllers. Another research
study [45] developed an adaptive neuro-fuzzy PID controller for nonlinear systems based
on the Twin Delayed Deep Deterministic Policy Gradient (TD3) method. The observation
of the environment is integrated with information from a multiple-input single-output
(MISO) fuzzy inference system (FIS) and has a specifically defined fuzzy PID controller
functioning as the actor in the TD3 method, which provides automated tuning of fuzzy
PID controller gains.

1.3. Research Objectives

The majority of the aforementioned research studies focused solely on improving
either attitude control performance or altitude controller response. In addition, it must be
noted that some DRL algorithms are more efficient for attitude control (e.g., PPO), while
another group of DRL algorithms (e.g., DDPG) shows better performance in improving

Appl. Sci. 2022, 12, 4764 4 of 23

trajectory tracking [46]. In order to compensate for fluctuations in the dynamics of the
aerial robot, in the proposed controlling architecture, a reinforcement learning algorithm
interacts with the system and learns adaptation policies for actively updating the gains
of the controllers. To adjust the parameters of the attitude PID controller, the trained
policy actively creates appropriate control gain values. Similarly, the scaling factor of the
compensator is updated using actions generated by the RL agent. The aerial RL-based
adaption algorithm is trained in a simulated environment in MATLAB software.

The rest of this paper is organized as follows: In Section 2, the dynamic model of a
quadrotor is discussed. In Section 3, the control problem of the aerial robot is addressed,
where the altitude and attitude control of the robot is discussed before introducing the
proposed RL-based adaptive control framework. The applicability and efficacy of the
proposed control strategy are evaluated in a simulated environment in Section 4. Finally,
Section 5 summarizes the research findings.

2. Aerial Robot Dynamics

The aerial robot used in this research study is a quadcopter. Quadcopters are substan-
tially underactuated, with six degrees of freedom (three translational and three rotational)
and only four distinct inputs (rotor speeds). Rotational and translational motions are
coupled to achieve six degrees of freedom. After accounting for the intricate aerodynamic
effects, the resulting dynamics is highly nonlinear. As another property of quadcopters,
it must be noted that, unlike conventional helicopters, the rotor blade pitch angle in a
quadcopter does not need to be varied.

2.1. Quadcopter Coordinate Frames, Forces, and Torques

The reference coordinate frame and the coordinate frame of the vehicle body must be
determined before building a mathematical model of the quadrotor, as shown in Figure 1.

The ground and the reference coordinate frames are both tied to <E

(
O,
→
I ,
→
J ,
→
K
)

. The

<B

(
o,
→
i ,
→
j ,
→
k
)

is a coordinate frame that is attached to the body of the vehicle and has its

center aligned with the center of mass of the robot.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 22

1.3. Research Objectives
The majority of the aforementioned research studies focused solely on improving ei-

ther attitude control performance or altitude controller response. In addition, it must be
noted that some DRL algorithms are more efficient for attitude control (e.g., PPO), while
another group of DRL algorithms (e.g., DDPG) shows better performance in improving
trajectory tracking [46]. In order to compensate for fluctuations in the dynamics of the
aerial robot, in the proposed controlling architecture, a reinforcement learning algorithm
interacts with the system and learns adaptation policies for actively updating the gains of
the controllers. To adjust the parameters of the attitude PID controller, the trained policy
actively creates appropriate control gain values. Similarly, the scaling factor of the com-
pensator is updated using actions generated by the RL agent. The aerial RL-based adap-
tion algorithm is trained in a simulated environment in MATLAB software.

The rest of this paper is organized as follows: In Section 2, the dynamic model of a
quadrotor is discussed. In Section 3, the control problem of the aerial robot is addressed,
where the altitude and attitude control of the robot is discussed before introducing the
proposed RL-based adaptive control framework. The applicability and efficacy of the pro-
posed control strategy are evaluated in a simulated environment in Section 4. Finally, Sec-
tion 5 summarizes the research findings.

2. Aerial Robot Dynamics
The aerial robot used in this research study is a quadcopter. Quadcopters are sub-

stantially underactuated, with six degrees of freedom (three translational and three rota-
tional) and only four distinct inputs (rotor speeds). Rotational and translational motions
are coupled to achieve six degrees of freedom. After accounting for the intricate aerody-
namic effects, the resulting dynamics is highly nonlinear. As another property of quad-
copters, it must be noted that, unlike conventional helicopters, the rotor blade pitch angle
in a quadcopter does not need to be varied.

2.1. Quadcopter Coordinate Frames, Forces, and Torques
The reference coordinate frame and the coordinate frame of the vehicle body must

be determined before building a mathematical model of the quadrotor, as shown in Figure
1. The ground and the reference coordinate frames are both tied to ℜா(𝑂, 𝐼, 𝐽, 𝐾ሬሬ⃗). The ℜ൫𝑜, 𝚤, 𝚥, 𝑘ሬ⃗ ൯ is a coordinate frame that is attached to the body of the vehicle and has its
center aligned with the center of mass of the robot.

Figure 1. The coordinate frame of the quadcopter. Figure 1. The coordinate frame of the quadcopter.

In this research study, the dynamical equations governing the quadcopter were derived
from the text published in [47]. The following assumptions were taken into consideration
in order to determine the examined equations of the motion of the system:

Appl. Sci. 2022, 12, 4764 5 of 23

• The aerial robot consists of a stiff body with a symmetrical structure.
• The geometrical center of the robot is the same as its center of gravity and mass.
• The moment of inertia of the propellers has been overlooked.

The dynamical model of the system could be constructed by taking into account both
the translational dynamic (Newton’s second law) and the rotational dynamic (Euler’s
rotation equations).

2.2. Translational Dynamics

The following forces acted on the system being studied:

• The total weight of the vehicle, as expressed in Equation (1).
• The generated thrust of rotors, which can be calculated using Equation (2).
• As indicated in Equation (3), the drag force and air friction.

w =

 0
0
−mg

 (1)

Ft = R ∑4
i=1 Fi = b ∑4

i=1(ωi)
2

 sin ϕ sin ψ + sin θ cos ψ cos ϕ
− sin ϕ cos ψ + sin ψ cos ϕ sin θ

cos θ cos ϕ

 (2)

Fd = Cd
.
ξ = −

 Cdx 0 0
0 Cdy 0
0 0 Cdz

 .
x
.
y
.
z

 = −

 Cdx
.
x

Cdy
.
y

Cdz
.
z

 (3)

F = m
..
ξ = w + Ft + Fd (4)

In the equations, the gravity acceleration is denoted by g. In Equation (2), the Euler
angles are represented by (ϕ, θ, ψ). The rotation transform matrix, the angular velocity of
the ith propeller, and the thrust constant are represented by R, ωi, and b, respectively. In
Equation (3), Cd is the matrix of translational drag coefficients. The position of the center of
mass (ξ) in the flat earth coordinate is defined as a 3 by 1 vector. The equation of motion
that describes the translational motion of a quadcopter can be stated as follows, using
Newton’s second law:

..
x =

1
m

(
b

4

∑
i=1

(ωi)
2(sin ϕ sin ψ + cos ϕ sin θ cos ψ)− Cdx

.
x

)
(5)

..
y =

1
m

(
b

4

∑
i=1

(ωi)
2(− sin ϕ cos ψ + sin ψ cos ϕ sin θ)− Cdy

.
y

)
(6)

..
z =

1
m

(
b

4

∑
i=1

(ωi)
2(cos θ cos ϕ)− Cdz

.
z− gm

)
(7)

2.3. Rotational Dynamics

A quadrotor is affected by roll, pitch, and yaw torques, as well as by an aerodynamic
friction torque and the gyroscopic effect of the propeller. The torques are expressed as
follows, in Equations (8)–(12):

τx =

 0
−l
0

×
 0

0
F2

+

 0
l
0

×
 0

0
F4

 =

 lb
(
ω4

2 −ω2
2)

0
0

 (8)

Appl. Sci. 2022, 12, 4764 6 of 23

τy =

 l
0
0

×
 0

0
F1

+

 −l
0
0

×
 0

0
F3

 =

 0
lb
(
ω3

2 −ω1
2)

0

 (9)

τz =

 0
0

d ∑4
i=1(ωi)

2

 (10)

τa = Ca

.
ψ

2

.
ϕ

2

.
θ

2

 =

 Caz
.
ψ

2

Cax
.
ϕ

2

Cay
.
θ

2

 (11)

τgp = JrΩr

 0
.
θ
− .

ϕ

 (12)

where l is the distance between the motor axis and the center of mass of the quadcopter. In
Equation (11), Ca is a 3 by 3 matrix of aerodynamic friction coefficients. In Equation (12),
Jr and Ωr, respectively, are the inertia and rotation velocity of rotors. Applying Euler’s
rotation equations yields the equations of motion (Equations (13)–(15)) that govern the
rotating motion of the quadrotor. In the equations, Ix, Iy, and Iz are moments of inertia
along the x, y, and z directions respectively:

..
ϕ =

1
Ix

(
−Cax

.
ϕ

2 − JrΩr
.
θ −

(
Iz − Iy

) .
θ

.
ψ+ lb

(
ω4

2 −ω2
2
))

(13)

..
θ =

1
Iy

(
−Cay

.
θ

2
− JrΩr

.
ϕ− (Ix − Iz)

.
ϕ

.
ψ + lb

(
ω3

2 −ω1
2
))

(14)

..
ψ =

1
Iz

(
−Cay

.
θ

2
− JrΩr

.
ϕ− (Ix − Iz)

.
ϕ

.
ψ +

4

∑
i=1

(−1)i+1ωi
2

)
(15)

2.4. Dynamics Model of the Quadcopter

Having considered both translational and rotational dynamics, the entire dynamic
model of the quadcopter could be stated as follows:

..
x =

1
m
(
u1ux − Cdx

.
x
)

(16)

..
y =

1
m

(
u1uy − Cdy

.
y
)

(17)

..
z =

1
m
(
u1(cos θ cos ϕ)− Cdz

.
z− gm

)
(18)

..
ϕ =

1
Ix

(
−Cax

.
ϕ

2 − JrΩr
.
θ −

(
Iz − Iy

) .
θ

.
ψ+ u2

)
(19)

..
θ =

1
Iy

(
−Cay

.
θ

2
− JrΩr

.
ϕ− (Ix − Iz)

.
ϕ

.
ψ + u3

)
(20)

..
ψ =

1
Iz

(
−Cay

.
θ

2
− JrΩr

.
ϕ− (Ix − Iz)

.
ϕ

.
ψ + u4

)
(21)

where u is a vector expressed as follows (in the equations, d is the drag coefficient):

ux = (sin ϕ sin ψ + cos ϕ sin θ cos ψ) (22)

uy = (− sin ϕ cos ψ + sin ψ cos ϕ sin θ) (23)

Appl. Sci. 2022, 12, 4764 7 of 23

u1
u2
u3
u4

 =

b b b b
0 −lb 0 lb
−lb 0 lb 0

d −d d −d

ω1
2

ω2
2

ω3
2

ω4
2

 (24)

3. Quadcopter Control
3.1. Controller Framework

A quadcopter is an underactuated system, which means that six degrees of freedom
in space are controlled by just four motors. Hence, controllers in such vehicles must be
designed for a subset of four degrees of freedom. Furthermore, the fact must be taken into
account that the control of the x and y positions in space is influenced by changes in the
pitch and roll angles. Having considered the aforementioned relationships, the control of a
quadrotor is normally designed for two independent subsets of coordinates. The necessity
for a swashplate mechanism is eliminated with four separate rotors. The swashplate
mechanism was necessary to give the helicopter more degrees of freedom, but the same
level of control can be achieved by simply adding two more rotors, as implemented in
the structure of quadcopters. Despite the fact that the command is for three position
coordinates (x, y, z) plus yaw angle, the control algorithm employs both roll and pitch
orientation controllers. In the inertial coordinate system, the control signals of three position
controllers define a force vector (thrust). The setpoints (u1x, u1y) transmitted to the roll and
pitch controls are considered as the orientation of the vector. The stated architecture, as
well as the elements of our proposed controllers, are depicted in Figure 2, which will be
explored in the next sections.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 22

3.1. Controller Framework
A quadcopter is an underactuated system, which means that six degrees of freedom

in space are controlled by just four motors. Hence, controllers in such vehicles must be
designed for a subset of four degrees of freedom. Furthermore, the fact must be taken into
account that the control of the x and y positions in space is influenced by changes in the
pitch and roll angles. Having considered the aforementioned relationships, the control of
a quadrotor is normally designed for two independent subsets of coordinates. The neces-
sity for a swashplate mechanism is eliminated with four separate rotors. The swashplate
mechanism was necessary to give the helicopter more degrees of freedom, but the same
level of control can be achieved by simply adding two more rotors, as implemented in the
structure of quadcopters. Despite the fact that the command is for three position coordi-
nates (x, y, z) plus yaw angle, the control algorithm employs both roll and pitch orienta-
tion controllers. In the inertial coordinate system, the control signals of three position con-
trollers define a force vector (thrust). The setpoints (𝑢1௫, 𝑢1௬) transmitted to the roll and
pitch controls are considered as the orientation of the vector. The stated architecture, as
well as the elements of our proposed controllers, are depicted in Figure 2, which will be
explored in the next sections.

Figure 2. The elements of the proposed control architecture of the quadcopter.

The altitude controller and the attitude controller are the two main parts of the con-
trol architecture. The altitude controller, as shown in Figure 2, maintains the altitude of
the aerial robot at the required level. In most commercial aerial robots, the altitude con-
troller is a PID controller with fixed control gain values. In this research, a proposed con-
trol architecture consisting of a MPC controller and a gravity compensator is proposed as
a replacement for conventional PID controllers. The scaling factor of the compensator is
adaptively adjusted during the operation of the robot, using actions generated by the re-
inforcement learning agent. The robot attitude controller is the second major controlling
component of the system. The controller is made up of two distinct PID controller blocks.
The difference between the desired x and y position and the actual x and y location in
space is measured and defined as the position error in 2D. The x-position and y-position
PID controllers in the outer loop were designed to minimize the error. The control com-
mands of the position controllers are transformed to appropriate roll and pitch setpoints.
The inner loop PID controllers use the resulting roll and pitch setpoints as reference in-
puts. The control gain values of the inner loop PID controllers are constant in our pro-
posed control architecture, whereas the control gain values of the outer loop PID control-
lers are adaptively adjusted using trained policy from the RL-based adaptation algorithm.

Figure 2. The elements of the proposed control architecture of the quadcopter.

The altitude controller and the attitude controller are the two main parts of the control
architecture. The altitude controller, as shown in Figure 2, maintains the altitude of the
aerial robot at the required level. In most commercial aerial robots, the altitude controller
is a PID controller with fixed control gain values. In this research, a proposed control
architecture consisting of a MPC controller and a gravity compensator is proposed as a
replacement for conventional PID controllers. The scaling factor of the compensator is
adaptively adjusted during the operation of the robot, using actions generated by the
reinforcement learning agent. The robot attitude controller is the second major controlling
component of the system. The controller is made up of two distinct PID controller blocks.
The difference between the desired x and y position and the actual x and y location in space
is measured and defined as the position error in 2D. The x-position and y-position PID
controllers in the outer loop were designed to minimize the error. The control commands
of the position controllers are transformed to appropriate roll and pitch setpoints. The
inner loop PID controllers use the resulting roll and pitch setpoints as reference inputs.

Appl. Sci. 2022, 12, 4764 8 of 23

The control gain values of the inner loop PID controllers are constant in our proposed
control architecture, whereas the control gain values of the outer loop PID controllers are
adaptively adjusted using trained policy from the RL-based adaptation algorithm.

3.2. Attitude Control

To control the attitude of the robot, an architecture comprising of RL-based adaptive
controllers is proposed in this study. The outer loop PID controllers were designed to gener-
ate the u1x and u1y virtual control signals as described in Equations (25)–(28). Equation (29)
is used to convert the control commands from outer loop PIDs to the necessary roll and
pitch reference values for the inner-loop PID controllers.

ex = xdes − x (25)

ey = ydes − y (26)

u1x = (Kpx·ex) +
(
Kdx·

.
ex
)
+ (Kix

∫
ex dt) (27)

u1y =
(
Kpy·ey

)
+
(
Kdy·

.
ey
)
+ (Kiy

∫
ey dt) (28)[

ϕd
θd

]
=

1
g

[
sin(ψdes)− cos(ψdes)
cos(ψdes)− sin(ψdes)

][
u1x
u1y

]
(29)

As indicated in Equations (30)–(32), three PID controllers were implemented in the
inner loop PID control block to provide manipulated variables for robot attitude control.

u2 = Kp2(ϕd − ϕ) + Kd2
(.

ϕd −
.
ϕ
)
+ Ki2

∫
(ϕd − ϕ) dt (30)

u3 = Kp3(θd − θ) + Kd3

(.
θd −

.
θ
)
+ Ki3

∫
(θd − θ) dt (31)

u4 = Kp4(ψd − ψ) + Kd4

(.
ψd −

.
ψ
)
+ Ki4

∫
(ψd − ψ) dt (32)

The optimal control gains for the inner loop PID controllers were obtained, based on
several trials and errors. The obtained gain coefficients are listed in Table 1. The control
gains of outer loop PID controllers are actively estimated and adjusted by the RL agent.

Table 1. Control gain values of the inner-loop PID controllers.

PID Control Kp Ki Kd

Roll (ϕ) 0.021 0.011 0.003
Pitch (θ) 0.014 0.03 0.001
Yaw (ψ) 0.002 0.07 0.013

3.3. Altitude Control

In this study, the proposed altitude controller utilizes a linear model predictive con-
troller and a gravity compensator in its controlling architecture. The gravity compensator
is responsible for alleviating the effect of forces that arise from fluctuations in the weight
of the robot. The scaling factor of the compensator is adaptively updated using the RL
policy. The proposed algorithm aimed to mitigate the impact of disturbances arising from
changes in the weight of the robot on the performance of the aerial robot in trajectory
tracking and altitude stabilization. The MPC is based on an iterative, finite-horizon robot
model optimization. The present states of the quadcopter are sampled at time t, and a
cost-minimizing control strategy for a relatively short time horizon in the future [t, t + T] is
computed (using a numerical minimization technique). At each control interval, model
predictive control solves an optimization problem, a quadratic program (QP). Until the
next control interval, the solution generated a sequence of manipulated variables to be

Appl. Sci. 2022, 12, 4764 9 of 23

applied to the robot. A series of online optimizations are run to estimate possible state
trajectories that would arise from the present states. Furthermore, the solution identifies a
cost-minimizing control strategy (by the solution of Euler–Lagrange equations) from t until
time ran out at t + T. Although the MPC computes a series of manipulated variables, only
the first step of the computed control strategy is applied to the quadcopter, after which the
updated states of the robot are sampled again and the computations are repeated using
the updated states, resulting in computation of fresh control inputs and a new anticipated
state route. Figure 3 shows the relationship between the prediction horizon and generated
control inputs.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 22

only the first step of the computed control strategy is applied to the quadcopter, after
which the updated states of the robot are sampled again and the computations are re-
peated using the updated states, resulting in computation of fresh control inputs and a
new anticipated state route. Figure 3 shows the relationship between the prediction hori-
zon and generated control inputs.

Figure 3. Prediction horizon and predicted control inputs in MPC.

Model predictive control is considered as a multivariable controlling algorithm in-
corporating the following components:
• A dynamics model of the system under control.
• A cost function J.
• An optimization mechanism. The optimal manipulated variable (𝑢ெ) is computed

by minimizing the cost function J using the optimization algorithm.
A typical cost function in the MPC algorithm is made up of four terms, each of which

focuses on a different element of controller performance (k represents the current control
interval): 𝐽(𝒅) = 𝐽ோ்(𝒅) + 𝐽௨(𝒅) + 𝐽∆௨(𝒅) (33)𝒅 = [𝑢ெ(𝑘|𝑘) 𝑢ெ(𝑘 + 1|𝑘) … 𝑢ெ(𝑘 + 𝑝 − 1|𝑘)] (34)

where dk signifies optimal control inputs that are obtained by solving a quadratic pro-
gramming (QP) problem, as indicated in Equation (34). In Equation (33), JRT(dk) is refer-
ence tracking cost. Here, Ju(dk) and JΔu(dk) are representations of manipulated variable
tracking and manipulated variable move suppression, respectively. The last cost term in
Equation (33), JΔu(dk), decreases the control effort, thereby reducing the energy consump-
tion of the actuators (e.g., the dc motors of the quadrotor). The MPC cost function can be
formulated as follow: 𝐽(𝒅) = [𝒆𝑹𝑻𝑻 (𝑘 + 𝑖)𝑸ିଵୀ 𝒆𝑹𝑻(𝑘 + 𝑖)] + [𝒆𝒖𝑻(𝑘 + 𝑖)𝑹𝒆𝒖(𝑘 + 𝑖)] +[∆𝒖𝑻(𝑘 + 𝑖)𝑹∆𝒖∆𝒖(𝑘 + 𝑖)] (35)

In Equation (35), 𝑸 is a (𝑛ோ் × 𝑛ோ்) weight matrix (𝑛ோ் is the number of plant output
variables). Here, 𝑹, and 𝑹∆𝒖 (𝑛𝒖 × 𝑛𝒖) are positive-semi-definite weight matrices (𝑛𝒖
represents the number of manipulated variables). In the aforementioned cost function, p
is the prediction horizon, which can be adjusted according to the controller performance
and the processing power of the hardware. In Equation (35), 𝒆𝑹𝑻 , 𝒆𝒖, and ∆𝒖 can be com-
puted, using Equations (36)–(38). 𝒆𝑹𝑻(𝑖 + 𝑘) = 𝒓(𝑘 + 𝑖 + 1|𝑘) − 𝒚(𝑘 + 𝑖 + 1|𝑘) (36)𝒆𝒖(𝑖 + 𝑘) = 𝒖𝒅𝒆𝒔(𝑘 + 𝑖|𝑘) − 𝒖𝑴𝑷𝑪(𝑘 + 𝑖|𝑘) (37)

Figure 3. Prediction horizon and predicted control inputs in MPC.

Model predictive control is considered as a multivariable controlling algorithm incor-
porating the following components:

• A dynamics model of the system under control.
• A cost function J.
• An optimization mechanism. The optimal manipulated variable (uMPC) is computed

by minimizing the cost function J using the optimization algorithm.

A typical cost function in the MPC algorithm is made up of four terms, each of
which focuses on a different element of controller performance (k represents the current
control interval):

J(dk) = JRT(dk) + Ju(dk) + J∆u(dk) (33)

dk = [uMPC(k|k) uMPC(k + 1|k) . . . uMPC(k + p− 1|k)] (34)

where dk signifies optimal control inputs that are obtained by solving a quadratic pro-
gramming (QP) problem, as indicated in Equation (34). In Equation (33), JRT(dk) is refer-
ence tracking cost. Here, Ju(dk) and J∆u(dk) are representations of manipulated variable
tracking and manipulated variable move suppression, respectively. The last cost term in
Equation (33), J∆u(dk), decreases the control effort, thereby reducing the energy consump-
tion of the actuators (e.g., the dc motors of the quadrotor). The MPC cost function can be
formulated as follow:

J(dk) = ∑
p−1
i=0 [e

T
RT(k + i)QeRT(k + i)] + [eT

u(k + i)Reu(k + i)]
+
[
∆uT(k + i)R∆u∆u(k + i)

] (35)

In Equation (35), Q is a (nRT × nRT) weight matrix (nRT is the number of plant output
variables). Here, R, and R∆u (nu × nu) are positive-semi-definite weight matrices (nu
represents the number of manipulated variables). In the aforementioned cost function, p is
the prediction horizon, which can be adjusted according to the controller performance and

Appl. Sci. 2022, 12, 4764 10 of 23

the processing power of the hardware. In Equation (35), eRT , eu, and ∆u can be computed,
using Equations (36)–(38).

eRT(i + k) = r(k + i + 1|k)− y(k + i + 1|k) (36)

eu(i + k) = udes(k + i|k)− uMPC(k + i|k) (37)

∆u(k + i) = uMPC(k + i|k)− uMPC(k + i− 1|k) (38)

The reference value (or reference values) given to the controller at the ith prediction
horizon step is specified as r(k + i|k). Similarly, the value (or values) of nRT outputs
variables of the plant, sampled at the ith prediction horizon step, is defined as y(k + i|k) .
In the equation, udes(k + i|k) reflects the value (or values) of nu desired control inputs
corresponding to uMPC(k + i|k). In the proposed MPC control architecture, in this paper,
there is one manipulated variable, uMPC(k + i|k) . In addition, in this paper, y(k + i|k) is
the altitude (z position) of the robot, while r(k + i|k) is the desired altitude for the robot. In
order to reduce the controller effort and alleviate the effects of arising fluctuations in the
weight of the aerial robot, this study proposed to use a gravity compensator after the MPC
controller. The final altitude control input u1 is defined as:

u1 = uMPC(k|k)− g(nominal mass o f the robot + a1) (39)

In Equation (39), a1 is the scaling factor of the compensator that is actively estimated
by the RL policy. In order to evaluate the performance of the proposed control architecture
in controlling an aerial robot, a dynamics model of a commercial aerial robot named Parrot
was chosen and implemented in the simulator environment as the aerial robot under
control. The dynamics model specifications of the employed Parrot quadcopter are listed
in Table 2.

Table 2. The Parrot aerial robot model specifications [48].

Specification Parameter Unit Value

Drone Mass m kg 0.063
Lateral Moment Arm l m 0.0624

Thrust Coefficient b N·s2 0.0107
Drag Coefficient d N·m·s2 0.7826 × 10−3

Rolling Moment of Inertia Ix Kg·m2 5.82857 × 10−5

Pitching Moment of Inertia Iy Kg·m2 7.16914 × 10−5

Yawing Moment of Inertia Iz Kg·m2 0.0001
Rotor Moment of Inertia Ir Kg·m2 0.1021 × 10−6

This research study employs a linear model predictive control. Hence, a linear state-
space model of the quadcopter is required. Equation (40) describes the standard form
of a linear time-invariant (LTI) state-space model, which has p inputs, q outputs, and n
state variables. .

x = Ax + Bu
y = Cx + Du

(40)

where x, y, and u are the state vector, the output vector, and the input vector, respectively.
In the equation, A, B, and C are (n× n), the state matrix; (n× p), the input matrix; and
(q× n), the output matrix, respectively. It should be noted that D is a (q× p) feedforward
matrix. The D matrix is zero in this study, as there is no direct feedthrough. The linear
model was computed around the operational point in the state-space model using the
MPC Designer app in the Model Predictive Control Toolbox. The toolbox included in the
MATLAB software provides control blocks for developing not only linear model predictive
control but also nonlinear and adaptive model predictive controllers. In addition, the
MPC Designer app included in the software package facilitates the design of an LMPC by
automating the processes for plant linearization and tuning the controller parameters. The

Appl. Sci. 2022, 12, 4764 11 of 23

state-space parameters of the linearized plant can be found in the MPC object (MPCobj)
generated by the MPC Designer app. The Simulink MPC Designer linearizes each block in
the model independently, then combines the outputs of the individual linearized models to
produce the linearized model of the whole plant. Table 3 presents the resulting values for
the state-space model generated by the app.

Table 3. The parameters of the state space model.

Parameter Value

A
[

1 0
1.985× 10−4 1

]
B

[
7.94× 10−3

1.985× 10−4

]
C

[
0 1

]
D 0

3.4. Deep Reinforcement Learning for Online Parameter Estimation and Tuning

The proposed parameter estimation approach in the study utilizes a DRL algorithm to
actively estimate and adjust the parameters both in PID controllers and the compensator. A
reinforcement learning agent was developed in the Simulink environment to construct an
adaption topology for actively estimating the tuning parameters of the designed controllers.
In the first stage, the reinforcement learning algorithm interacted with the dynamics model
of the robot (in the simulator environment) to learn the appropriate tuning rules. During
the operation time of the robot, the trained policy is used to actively adjust the gain values
of the controllers. In this study, the RL algorithm is the Deep Deterministic Policy Gradient
(DDPG). The DDPG is an approach that combines the idea from DPG with the Deep
Q-learning Network (DQN) to create an off-policy algorithm that is able to work with
continuous action space [49]. It aims to generate the optimal action policy for the agent to
maximize rewards while fulfilling its objectives [50]. The DDPG algorithm can work over
continuous action spaces, which is a significant challenge for traditional RL approaches
such as Q-learning. The DDPG algorithm is a hybrid technique that incorporates both
the policy gradient and the value function. The architecture of DDPG is based on the
actor-critic framework. In the algorithm, the actor refers to the policy function, whereas the
critic refers to the value function Q. The critic network evaluates the actions of the actor
based on the rewards and the subsequent state resulting from the environment. The role
of the critic is to adjust the weights of the actor network so that the future actions of the
actor result in the highest potential cumulative reward. The goal in the DDPG algorithm is
to learn a parameterized deterministic policy µθ(s), such that the obtained optimal policy
maximizes the expected reward over all states reachable by the policy:

J(θ) = Es∼ρµ [R(s, µθ(s))] (41)

where ρµ is the distribution of all states reachable by the policy. It is proven that maximizing
the returns or true Q-value of all actions leads to the same optimal policy. This is an idea
introduced in dynamic programing, where policy evaluation first finds the true Q-value of
all state-action pairs, and policy improvements change the policy by selecting the action(s)
with the maximal Q-value:

a∗t = argmaxaQθ(st, a) (42)

in Equation (42), a∗t is the action(s) with maximal Q-value. The action is expected to
generate the maximum expected reward. In the continuous space, the gradient of objective
function can be considered to be the same a as the gradient of the Q-value. If we have an

Appl. Sci. 2022, 12, 4764 12 of 23

estimate Qµ(s, a) of all the value of any action (a), changing the policy µθ(s) in the direction
of ∇θQµ(s, a) leads to an action with higher Q-value and associated return:

∇θ J(θ) = Es∼ρµ

[
∇θQµ(s, a)|a=µθ(s)

]
(43)

In Equation (43), gradient with regard to action (a) of the Q-value is taken. We can
expand the above equation by applying the chain rule.

∂Q(s,a)
∂θ = ∂Q(s,a)

∂a × ∂a
∂θ

∇θ J(θ) = Es∼ρµ

[
∇θµθ(s)×∇aQµ(s, a)|a=µθ(s)

] (44)

To obtain an unbiased estimate of the Q-value of any action and compute its gradient,
it is possible to calculate a function approximator Qϕ(s, a), as long as it is compatible, and
to minimize the quadratic error with the true Q-values:

∇θ J(θ) = Es∼ρµ

[
∇θµθ(s)×∇aQϕ(s, a)

∣∣
a=µθ(s)

]
(45)

J(ϕ) = Es∼ρµ [
(

Qµ(s, µθ(s))−Qϕ(s, µθ(s)))2
]

(46)

The goal of the DDPG algorithm was to extend the DPG to incorporate non-linear
function approximators. The objective was fulfilled by combining DQN and DPG concepts
to create an algorithm working over continuous space. Furthermore, the following elements
were added to the base DPG algorithm.

• An experience reply memory to store past transitions and learn off-policy.
• Target networks to stabilize learning.

DDPG updates the parameters of target networks after each update of the trained
network using a sliding average (soft update) for both the actor and the critic:

θQtarget ← τθQ + (1− τ)θQtarget (47)

θµtarget ← τθµ + (1− τ)θµtarget (48)

where τ is a hyperprameter between 0 and 1. The modified update rule guarantees that the
target networks are always lagging behind the trained networks, providing more stability
to the learning of Q-values. The key idea borrowed from DPG is the policy gradient for the
actor. The critic is learned using regular Q-learning and target networks:

J(ϕ) = Es∼ρµ [
(

r
(
s, a, s′

)
+ γQtarget

(
s′, µθ′

(
s′
))
−Qϕ(s, a))2

]
(49)

where Qϕ′(s′, µθ′(s′)) is the value of the action that is estimated to return the largest total
future reward, based on all possible actions that can be made in the next state. In the
Equation (49), γ is the discount factor. Noise is added to improve exploration:

at = µθ(st) + ξnoise (50)

The additive noise is an Ornstein–Uhlenbeck process that generate temporally corre-
lated noise with zero mean. The target value can be computed using the target network:

yRLi = ri + γQtarget(si+1, µtarget(si+1|θµtarget)
∣∣∣θQtarget) (51)

Appl. Sci. 2022, 12, 4764 13 of 23

The following loss function is minimized, resulting in an update in the critic. A
sampling policy gradient can also be applied to update the actor:

L =

(
1
N

)
∑

i

(
yRLi −Q

(
si, ai

∣∣∣θQ
))2

(52)

∇θµ J ≈ 1
N ∑

i
∇aQ

(
s, a
∣∣∣θQ
)∣∣∣∣∣s=si , a=µ(si)

∇θµ µ(s|θµ)

∣∣∣∣∣si∇a (53)

Figure 4 depicts the aforementioned learning process in the DDPG algorithm. The
architecture is comprised of two actor-critic networks. The target networks in the architec-
ture stabilized the learning procedure. The noise improves the exploration of the reachable
control states. The proposed RL-based control algorithm (Algorithm 1) is described in the
following pseudocode.

Algorithm 1. The proposed algorithm.

1: Initial policy network µ and critic network Q with weights θµand θQ respectively.
2: Set target policy network µtarget and target critic network Qtarget with weights θµtarget and θQtarget

3:
Set target parameters weights equal to main parameters weights:

θµtarget ← θµ , θQtarget ← θQ

4: for episode = 1, M do

5:
Initialize a random process noise N for action
exploration.

6: Receive initial observation state s1.
7: for t = 1, T do
8: Select actions a = µθi + ξnoise where ξnoise ∼ N
9: Observe a vector of states s

10:
Apply actions (a2 to a7) to outer loop PID controllers as follow:
u1x = (a2·ex) +

(
a3·

.
ex
)
+ (a4

∫
exdt)

u1y =
(
a5·ey

)
+
(
a6·

.
ey
)
+
(
a7
∫

eydt
)

11: Use the updated u1x and u1y to generate θdes , ϕdes
12: Use θdes , ϕdes as setpoints for inner loop PIDs and generate u2,u3 and u4.

13:
Compute uMPC by minimizing the MPC cost function.

min {J(dk) =
p−1
∑

i=0
eT

RT(k + i)QMPCeRT(k + i) + eT
u (k + i)Reu(k + i)+

∆uT(k + i)R∆u∆u(k + i)}

14:
Compute u1 using the generated namipulated variable from MPC and the
scalling factor of the compensator
u1 = uMPC(k + i|k)− g(nominal mass o f the robot + a1)

15: Apply control inputs u1, u2, u3 and u4 to the drone dynamics model.
16: Observe the next vector of states st+1, and the next reward r
17: Store (s, a, r, st+1) in reply buffer D.
18: Randomly sample a minibatch of N transitions (si, ai, r, si+1) from D.
19: Compute targets: yRLi = ri + γQtarget(si+1, µtarget(si+1

∣∣∣θµtarget)
∣∣∣θQtarget)

20: Update critic by minimizing the loss: L = 1
N ∑

i

(
yRLi −Q

(
si, ai

∣∣θQ))2

21:
Update the actor policy using a sampled policy gradient:

∇θµ J ≈ 1
N ∑

i
∇aQ

(
s, a
∣∣θQ)∣∣∣∣s=si , a=µ(si)∇θµ µ(s|θµ)

∣∣∣∣
si

22: Update the target networks:

23:
θQtarget ← τθQ + (1− τ)θQtarget ,
θµtarget ← τθµ + (1− τ)θµtarget

24: end for
25: end for

Appl. Sci. 2022, 12, 4764 14 of 23Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 22

Figure 4. The architecture and learning process of deep deterministic policy gradient.

Figure 5. The architecture of the proposed adaptive RL-based controller.

To find the optimal architecture for the actor-critic network, many simulations were
run with different numbers of layers and neuron counts in neural networks. According to
the simulations findings, it was observed that increasing the size of hidden layers encour-
ages polynomial exploration, whereas increasing the number of layers promotes exponen-
tial exploration. The number of layers in the actor network varied from 1 to 5 for the pur-
pose of the experiment. Increasing the size of the actor network layers to a value of more
than 400 neurons per layer resulted in over-parameterization and oscillation of the dis-
counted long-term reward. Over-reducing the number of layers, on the other hand, re-
sulted in poor performance. According to the simulation results, it was concluded that at

Figure 4. The architecture and learning process of deep deterministic policy gradient.

The actor outputs are actions (a = µθ(s) + ξnoise) selected from a continuous action
space by considering the current state of the environment. In this study, the action is
comprised of a vector of actions a = [a1 a2 a3 a4 a5 a6 a7]. Here, a2 to a7 are used to actively
estimates and tune the gain coefficients of the outer loop PID controllers for x and y
positions, which are two controllers located in outer loop PID control block. The action (a1)
generates an updated estimation of the proper scaling factor for updating the compensator.
The defined states were errors

(
ex, ey, ez

)
and

(∫
ex,
∫

ey,
∫

ez
)
. The Q function is computed

using the rewards from the environments. The notion is that the best policy can be found
by maximizing the true Q-value of all actions. The architecture of the proposed adaptive
RL-based controller is shown in Figure 5.

To find the optimal architecture for the actor-critic network, many simulations were
run with different numbers of layers and neuron counts in neural networks. According
to the simulations findings, it was observed that increasing the size of hidden layers
encourages polynomial exploration, whereas increasing the number of layers promotes
exponential exploration. The number of layers in the actor network varied from 1 to 5 for
the purpose of the experiment. Increasing the size of the actor network layers to a value
of more than 400 neurons per layer resulted in over-parameterization and oscillation of
the discounted long-term reward. Over-reducing the number of layers, on the other hand,
resulted in poor performance. According to the simulation results, it was concluded that at
least 130 neurons in each layer of the actor and the critic are necessary to learn the policy
effectively, with 200 being the ideal number. The architecture of the designed actor and
critic neural networks is shown in Figure 6.

Appl. Sci. 2022, 12, 4764 15 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 22

Figure 4. The architecture and learning process of deep deterministic policy gradient.

Figure 5. The architecture of the proposed adaptive RL-based controller.

To find the optimal architecture for the actor-critic network, many simulations were
run with different numbers of layers and neuron counts in neural networks. According to
the simulations findings, it was observed that increasing the size of hidden layers encour-
ages polynomial exploration, whereas increasing the number of layers promotes exponen-
tial exploration. The number of layers in the actor network varied from 1 to 5 for the pur-
pose of the experiment. Increasing the size of the actor network layers to a value of more
than 400 neurons per layer resulted in over-parameterization and oscillation of the dis-
counted long-term reward. Over-reducing the number of layers, on the other hand, re-
sulted in poor performance. According to the simulation results, it was concluded that at

Figure 5. The architecture of the proposed adaptive RL-based controller.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 22

least 130 neurons in each layer of the actor and the critic are necessary to learn the policy
effectively, with 200 being the ideal number. The architecture of the designed actor and
critic neural networks is shown in Figure 6.

Figure 6. The architecture of actor and critic neural networks.

4. Simulations
As mentioned in Section 3, a dynamics model of a commercial aerial robot (Parrot)

was selected and implemented in the simulator environment as an aerial robot under con-
trol to test the effectiveness of the proposed control architecture in controlling an aerial
robot. The AR Drone 2.0, the Rolling Spider, and Mambo are all Parrot products that can
be programmed using MATLAB [51]. The AR Drone 2.0 toolbox was developed and dis-
tributed by researchers. In addition, a MATLAB Simulink Support Package for Rolling
Spider is available as an add-on development package based on MIT’s Aerospace Blockset
supporting simulation, hardware code generation, and interface for Parrot Minidrones
[52]. The Parrot Mambo (6-DOF small quadcopter) comes with ultrasonic, accelerometer,
gyroscope, air pressure, and down-facing camera sensors. It allows algorithms to be ap-
plied to the robot via a Bluetooth link over a Personal Area Network (PAN).The Simulink
Support Package for Parrot Minidrones [53], which is developed using the UAV toolbox
from Mathworks [54], was utilized in this research study to simulate the quadrotor. The
aerodynamics effect was deemed minor for the purpose of simplicity, hence the block as-
sociated with the aerodynamics effect was deactivated throughout the simulations. Fur-
thermore, during the simulations, parameters of the environment (such as air pressure at
various elevations) were also assumed to be constant. A UAV waypoint follower block
(included in the UAV toolbox) was employed to generate several successive waypoints.
In the Simulink environment, two experiments were carried out to evaluate the perfor-
mance of the proposed control architecture, compared to that of typical PID controllers.

The experiments aimed at evaluating the effectiveness of the controller in controlling
the aerial robot in the presence of weight disturbances affecting the dynamics model of

Figure 6. The architecture of actor and critic neural networks.

Appl. Sci. 2022, 12, 4764 16 of 23

4. Simulations

As mentioned in Section 3, a dynamics model of a commercial aerial robot (Parrot)
was selected and implemented in the simulator environment as an aerial robot under
control to test the effectiveness of the proposed control architecture in controlling an aerial
robot. The AR Drone 2.0, the Rolling Spider, and Mambo are all Parrot products that
can be programmed using MATLAB [51]. The AR Drone 2.0 toolbox was developed and
distributed by researchers. In addition, a MATLAB Simulink Support Package for Rolling
Spider is available as an add-on development package based on MIT’s Aerospace Blockset
supporting simulation, hardware code generation, and interface for Parrot Minidrones [52].
The Parrot Mambo (6-DOF small quadcopter) comes with ultrasonic, accelerometer, gyro-
scope, air pressure, and down-facing camera sensors. It allows algorithms to be applied to
the robot via a Bluetooth link over a Personal Area Network (PAN).The Simulink Support
Package for Parrot Minidrones [53], which is developed using the UAV toolbox from Math-
works [54], was utilized in this research study to simulate the quadrotor. The aerodynamics
effect was deemed minor for the purpose of simplicity, hence the block associated with
the aerodynamics effect was deactivated throughout the simulations. Furthermore, during
the simulations, parameters of the environment (such as air pressure at various elevations)
were also assumed to be constant. A UAV waypoint follower block (included in the UAV
toolbox) was employed to generate several successive waypoints. In the Simulink envi-
ronment, two experiments were carried out to evaluate the performance of the proposed
control architecture, compared to that of typical PID controllers.

The experiments aimed at evaluating the effectiveness of the controller in controlling
the aerial robot in the presence of weight disturbances affecting the dynamics model of
the robot. When a payload is attached to a quadrotor, three main changes may happen.
The overall mass of the system increases. The fluctuations in the mass of the robot can also
shift the gravitational center, and therefore the inertia. In the experiments, the payload
was considered to be an isotropic symmetric stiff solid mass connected to the aerial robot,
rather than being suspended. Another assumption was that the physical dimensions of the
attached mass were smaller than the dimensions of the quadrotor. The distance between
the center of gravity of the robot and the center of gravity of the load is associated with
the shape and the weight distribution of the connector, as well as with the shape and
the weight distribution of the load. In our experiments, this distance was assumed to be
zero. As a result, the effects of changes in inertia and gravity were deemed insignificant.
Therefore, the focus of our article was solely on analyzing the effects of mass variation on
the performance of the controller. When the robot is executing a logistic task, the mass
could be in two stable states: one before the load comes into contact with the quadrotor, and
the other when the payload mass is integrated into the system. Depending on the gripping
technique and the qualities of the surface of the load, there may be many profiles of mass
fluctuation between these two states. We assumed that there was no gripping and the mass
was connected to the robot body directly. Another assumption was that the load had a
non-deformable surface; therefore, a single step profile for the mass disturbance could be
used, as it was implemented in many prior publications. The variations in the mass were
simulated by adding a term named Massdist to (16)–(18), resulting in Equations (54)–(56).
Massdist is calculated using Equation (57).

..
x =

1
m + Massdist

(
u1ux − Cdx

.
x
)

(54)

..
y =

1
m + Massdist

(
u1uy − Cdy

.
y
)

(55)

..
z =

1
m + Massdist

(
u1(cos θ cos ϕ)− Cdz

.
z− gm

)
(56)

Massdist = Rand·step(t− 5) (57)

Appl. Sci. 2022, 12, 4764 17 of 23

In Equation (57), “Rand” represents a random value between 0% and 70% of the mass
of the robot. Every 5 seconds, the mass of the robot is perturbed by a weight disturbance
with the value of Massdist. An RL agent block from the reinforcement learning toolbox was
used in the Simulink environment to implement the deep reinforcement learning policy.
During the experiments, the presented RL algorithm interacted with the environment
in the simulator, thereby learning the appropriate strategy for estimating and updating
the parameters of the PID controllers and the gravity compensator. The achieved reward
throughout the training process is shown in Figure 7.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 22

the robot. When a payload is attached to a quadrotor, three main changes may happen.
The overall mass of the system increases. The fluctuations in the mass of the robot can also
shift the gravitational center, and therefore the inertia. In the experiments, the payload
was considered to be an isotropic symmetric stiff solid mass connected to the aerial robot,
rather than being suspended. Another assumption was that the physical dimensions of
the attached mass were smaller than the dimensions of the quadrotor. The distance be-
tween the center of gravity of the robot and the center of gravity of the load is associated
with the shape and the weight distribution of the connector, as well as with the shape and
the weight distribution of the load. In our experiments, this distance was assumed to be
zero. As a result, the effects of changes in inertia and gravity were deemed insignificant.
Therefore, the focus of our article was solely on analyzing the effects of mass variation on
the performance of the controller. When the robot is executing a logistic task, the mass
could be in two stable states: one before the load comes into contact with the quadrotor,
and the other when the payload mass is integrated into the system. Depending on the
gripping technique and the qualities of the surface of the load, there may be many profiles
of mass fluctuation between these two states. We assumed that there was no gripping and
the mass was connected to the robot body directly. Another assumption was that the load
had a non-deformable surface; therefore, a single step profile for the mass disturbance
could be used, as it was implemented in many prior publications. The variations in the
mass were simulated by adding a term named 𝑀𝑎𝑠𝑠ௗ௦௧ to (16)–(18), resulting in Equa-
tions (54)–(56). 𝑀𝑎𝑠𝑠ௗ௦௧ is calculated using Equation (57). 𝑥ሷ = 1𝑚 + 𝑀𝑎𝑠𝑠ௗ௦௧ (𝑢ଵ𝑢௫ − 𝐶ௗ௫𝑥ሶ) (54)

𝑦ሷ = 1𝑚 + 𝑀𝑎𝑠𝑠ௗ௦௧ ൫𝑢ଵ𝑢௬ − 𝐶ௗ௬𝑦ሶ൯ (55)

𝑧ሷ = 1𝑚 + 𝑀𝑎𝑠𝑠ௗ௦௧ (𝑢ଵ(cos 𝜃 cos 𝜑) − 𝐶ௗ௭𝑧ሶ − 𝑔𝑚) (56)𝑀𝑎𝑠𝑠ௗ௦௧ = 𝑅𝑎𝑛𝑑 ∙ 𝑠𝑡𝑒𝑝(𝑡 − 5) (57)

In Equation (57), “Rand” represents a random value between 0% and 70% of the mass
of the robot. Every 5 seconds, the mass of the robot is perturbed by a weight disturbance
with the value of 𝑀𝑎𝑠𝑠ௗ௦௧. An RL agent block from the reinforcement learning toolbox
was used in the Simulink environment to implement the deep reinforcement learning pol-
icy. During the experiments, the presented RL algorithm interacted with the environment
in the simulator, thereby learning the appropriate strategy for estimating and updating
the parameters of the PID controllers and the gravity compensator. The achieved reward
throughout the training process is shown in Figure 7.

Figure 7. Episode reward and average reward recorded during training. Figure 7. Episode reward and average reward recorded during training.

To train the neural networks, different values for hyperparameters were applied,
aimed at finding the best possible values. Table 4 shows the optimal values obtained for
the hyperparameters.

Table 4. The optimal values for hyperparameters.

Hyperparameter Value

Critic Learning Rate 0.0001
Actor Learning Rate 0.00001

Critic Gradient Threshold 1
Actor Gradient Threshold 4

Variance 0.3
Variance Decay Rate 0.00001

Experience Buffer 1,000,000
Mini-Batch Size 64

Target Smooth Factor 0.001

During the aerial robot operation, the trained policy actively estimated the parameters
of the controllers. The first experiment was done in two stages (the first time with the
proposed controller and the second time with conventional PID controllers) to compare
the performance of the proposed controller with that of the conventional PID controller.
During the experiments, some weight disturbances (random values between 0% and 70%
of the mass of the robot) perturbed the system. The first defined maneuver for the aerial
robot was to get to the coordinates (x, y, z = 3.5, 3.5, 4) and stabilize its position in space.
Figures 8–10 show the performance of the PID controller and the proposed controller.

Appl. Sci. 2022, 12, 4764 18 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 22

To train the neural networks, different values for hyperparameters were applied,
aimed at finding the best possible values. Table 4 shows the optimal values obtained for
the hyperparameters.

Table 4. The optimal values for hyperparameters.

Hyperparameter Value
Critic Learning Rate 0.0001
Actor Learning Rate 0.00001

Critic Gradient Threshold 1
Actor Gradient Threshold 4

Variance 0.3
Variance Decay Rate 0.00001

Experience Buffer 1,000,000
Mini-Batch Size 64

Target Smooth Factor 0.001

During the aerial robot operation, the trained policy actively estimated the parame-
ters of the controllers. The first experiment was done in two stages (the first time with the
proposed controller and the second time with conventional PID controllers) to compare
the performance of the proposed controller with that of the conventional PID controller.
During the experiments, some weight disturbances (random values between 0% and 70%
of the mass of the robot) perturbed the system. The first defined maneuver for the aerial
robot was to get to the coordinates (x, y, z = 3.5, 3.5, 4) and stabilize its position in space.
Figures 8–10 show the performance of the PID controller and the proposed controller.

Figure 8. Performance of the quadcopter in tracking the desired X and Y positions.

Figure 9. Performance of the quadcopter in attaining desired height and yaw angle.

Figure 8. Performance of the quadcopter in tracking the desired X and Y positions.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 22

To train the neural networks, different values for hyperparameters were applied,
aimed at finding the best possible values. Table 4 shows the optimal values obtained for
the hyperparameters.

Table 4. The optimal values for hyperparameters.

Hyperparameter Value
Critic Learning Rate 0.0001
Actor Learning Rate 0.00001

Critic Gradient Threshold 1
Actor Gradient Threshold 4

Variance 0.3
Variance Decay Rate 0.00001

Experience Buffer 1,000,000
Mini-Batch Size 64

Target Smooth Factor 0.001

During the aerial robot operation, the trained policy actively estimated the parame-
ters of the controllers. The first experiment was done in two stages (the first time with the
proposed controller and the second time with conventional PID controllers) to compare
the performance of the proposed controller with that of the conventional PID controller.
During the experiments, some weight disturbances (random values between 0% and 70%
of the mass of the robot) perturbed the system. The first defined maneuver for the aerial
robot was to get to the coordinates (x, y, z = 3.5, 3.5, 4) and stabilize its position in space.
Figures 8–10 show the performance of the PID controller and the proposed controller.

Figure 8. Performance of the quadcopter in tracking the desired X and Y positions.

Figure 9. Performance of the quadcopter in attaining desired height and yaw angle. Figure 9. Performance of the quadcopter in attaining desired height and yaw angle.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 22

Figure 10. Performance of the quadcopter in tracking the desired Roll and Pitch angles.

Variations in the values of the manipulated variables 𝑢ଵ, 𝑢ଶ, 𝑢ଷ and 𝑢ସ are plotted in
Figures 11 and 12. Figures 13 and 14 exhibit changes in control gain values that occurred
during the operation of the robot.

Figure 11. Variations in manipulated variables 𝑢ଵ and 𝑢ଶ.

Figure 12. Variations in manipulated variables 𝑢ଷ and 𝑢ସ.

Figure 13. Variations in adaptive gain values of the X position PID controller.

Figure 10. Performance of the quadcopter in tracking the desired Roll and Pitch angles.

Variations in the values of the manipulated variables u1, u2, u3 and u4 are plotted in
Figures 11 and 12. Figures 13 and 14 exhibit changes in control gain values that occurred
during the operation of the robot.

Appl. Sci. 2022, 12, 4764 19 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 22

Figure 10. Performance of the quadcopter in tracking the desired Roll and Pitch angles.

Variations in the values of the manipulated variables 𝑢ଵ, 𝑢ଶ, 𝑢ଷ and 𝑢ସ are plotted in
Figures 11 and 12. Figures 13 and 14 exhibit changes in control gain values that occurred
during the operation of the robot.

Figure 11. Variations in manipulated variables 𝑢ଵ and 𝑢ଶ.

Figure 12. Variations in manipulated variables 𝑢ଷ and 𝑢ସ.

Figure 13. Variations in adaptive gain values of the X position PID controller.

Figure 11. Variations in manipulated variables u1 and u2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 22

Figure 10. Performance of the quadcopter in tracking the desired Roll and Pitch angles.

Variations in the values of the manipulated variables 𝑢ଵ, 𝑢ଶ, 𝑢ଷ and 𝑢ସ are plotted in
Figures 11 and 12. Figures 13 and 14 exhibit changes in control gain values that occurred
during the operation of the robot.

Figure 11. Variations in manipulated variables 𝑢ଵ and 𝑢ଶ.

Figure 12. Variations in manipulated variables 𝑢ଷ and 𝑢ସ.

Figure 13. Variations in adaptive gain values of the X position PID controller.

Figure 12. Variations in manipulated variables u3 and u4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 22

Figure 10. Performance of the quadcopter in tracking the desired Roll and Pitch angles.

Variations in the values of the manipulated variables 𝑢ଵ, 𝑢ଶ, 𝑢ଷ and 𝑢ସ are plotted in
Figures 11 and 12. Figures 13 and 14 exhibit changes in control gain values that occurred
during the operation of the robot.

Figure 11. Variations in manipulated variables 𝑢ଵ and 𝑢ଶ.

Figure 12. Variations in manipulated variables 𝑢ଷ and 𝑢ସ.

Figure 13. Variations in adaptive gain values of the X position PID controller. Figure 13. Variations in adaptive gain values of the X position PID controller.

A comparative study using a range of values was conducted to explore the influence
of RL hyperparameters on the steady-state error of the altitude control. According to the
results of the experiments, zero noise generated the highest steady-state error. Setting the
noise to a very high value, however, prevented the actor from learning the best policy,
resulting in more errors. It was observed that increasing the variance enhances the explo-
ration of action space. For both actor and critic, the gradient threshold varied between 1, 4,
and infinity. Table 5 summarizes the results of the trials.

Appl. Sci. 2022, 12, 4764 20 of 23
Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 22

Figure 14. Variations in adaptive gain values of the Y position PID controller.

A comparative study using a range of values was conducted to explore the influence
of RL hyperparameters on the steady-state error of the altitude control. According to the
results of the experiments, zero noise generated the highest steady-state error. Setting the
noise to a very high value, however, prevented the actor from learning the best policy,
resulting in more errors. It was observed that increasing the variance enhances the explo-
ration of action space. For both actor and critic, the gradient threshold varied between 1,
4, and infinity. Table 5 summarizes the results of the trials.

Table 5. Variation of RL hyperparameters and their effect on the steady-state error.

Critic Learning
Rate

Actor Grad
Threshold

Critic Grad
Threshold

Variance
(Noise)

Mini
Batch Size

Steady
State Error 0.0001 4 1 0.3 64 0.00064 0.0001 inf 1 0.3 64 0.00093 0.0001 1 4 0.3 64 0.00011 0.0001 1 inf 0.3 64 0.00008 0.0001 1 1 0 64 0.00435 0.0001 1 1 0.5 64 0.00010 0.0001 1 1 0.3 128 0.00045 0.00005 4 1 0.3 64 0.00001

In the second experiment, a waypoint tracking maneuver was conducted to evaluate
the ability of the robot, with the proposed control architecture, in tracking consecutive
waypoints. Figure 15 illustrates the performance of the aerial robot in tracking the way-
points.

Figure 15. Performance of the aerial robot in tracking waypoints.

From the results of the experiments, it can be observed that the robot with the pro-
posed controller provided smoother trajectory. Furthermore, the error in the trajectory
tracking of the robot with the proposed controller was less than that of the PID controller.

Figure 14. Variations in adaptive gain values of the Y position PID controller.

Table 5. Variation of RL hyperparameters and their effect on the steady-state error.

Critic Learning
Rate

Actor Grad
Threshold

Critic Grad
Threshold

Variance
(Noise)

Mini
Batch Size

Steady
State Error

0.0001 4 1 0.3 64 0.00064
0.0001 inf 1 0.3 64 0.00093
0.0001 1 4 0.3 64 0.00011
0.0001 1 inf 0.3 64 0.00008
0.0001 1 1 0 64 0.00435
0.0001 1 1 0.5 64 0.00010
0.0001 1 1 0.3 128 0.00045

0.00005 4 1 0.3 64 0.00001

In the second experiment, a waypoint tracking maneuver was conducted to evaluate
the ability of the robot, with the proposed control architecture, in tracking consecutive way-
points. Figure 15 illustrates the performance of the aerial robot in tracking the waypoints.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 22

Figure 14. Variations in adaptive gain values of the Y position PID controller.

A comparative study using a range of values was conducted to explore the influence
of RL hyperparameters on the steady-state error of the altitude control. According to the
results of the experiments, zero noise generated the highest steady-state error. Setting the
noise to a very high value, however, prevented the actor from learning the best policy,
resulting in more errors. It was observed that increasing the variance enhances the explo-
ration of action space. For both actor and critic, the gradient threshold varied between 1,
4, and infinity. Table 5 summarizes the results of the trials.

Table 5. Variation of RL hyperparameters and their effect on the steady-state error.

Critic Learning
Rate

Actor Grad
Threshold

Critic Grad
Threshold

Variance
(Noise)

Mini
Batch Size

Steady
State Error 0.0001 4 1 0.3 64 0.00064 0.0001 inf 1 0.3 64 0.00093 0.0001 1 4 0.3 64 0.00011 0.0001 1 inf 0.3 64 0.00008 0.0001 1 1 0 64 0.00435 0.0001 1 1 0.5 64 0.00010 0.0001 1 1 0.3 128 0.00045 0.00005 4 1 0.3 64 0.00001

In the second experiment, a waypoint tracking maneuver was conducted to evaluate
the ability of the robot, with the proposed control architecture, in tracking consecutive
waypoints. Figure 15 illustrates the performance of the aerial robot in tracking the way-
points.

Figure 15. Performance of the aerial robot in tracking waypoints.

From the results of the experiments, it can be observed that the robot with the pro-
posed controller provided smoother trajectory. Furthermore, the error in the trajectory
tracking of the robot with the proposed controller was less than that of the PID controller.

Figure 15. Performance of the aerial robot in tracking waypoints.

From the results of the experiments, it can be observed that the robot with the pro-
posed controller provided smoother trajectory. Furthermore, the error in the trajectory
tracking of the robot with the proposed controller was less than that of the PID controller.
The results showed that the proposed control algorithm is able to stabilize the system
performance when the robot is subjected to weight disturbances. It must be noted that the
performance of the conventional PID controller was satisfactory as long as the extra weight
was low, but when the added weight was large, the basic PID controller failed to control
the robot properly.

Appl. Sci. 2022, 12, 4764 21 of 23

5. Conclusions

A new deep reinforcement learning-based adaptive controller for controlling an aerial
robot was proposed in this research paper. To interact with the robot dynamics model
and learn the right policy for actively adjusting the controller, the proposed adaptive
control method leveraged a deep deterministic policy gradient algorithm. A linear model
predictive controller and an adaptive gravity compensator gain were used in the proposed
control system for the robot altitude controller. The performance of the proposed control
architecture was compared to that of traditional PID controllers with fixed settings in the
Simulink environment. Experiments in a simulated environment demonstrated that the
presented control algorithm outperforms ordinary PID controllers in terms of trajectory
tracking and altitude control.

Author Contributions: Conceptualization, A.B. and D.-J.L.; methodology, A.B.; software, A.B.;
validation, A.B.; formal analysis, A.B.; investigation, A.B.; resources, A.B.; writing—original draft
preparation, A.B.; writing—review and editing, A.B.; visualization, A.B.; supervision, D.-J.L.; project
administration, D.-J.L.; funding acquisition, D.-J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Unmanned Vehicles Core Technology Research and
Development Program through the National Research Foundation of Korea (NRF), Unmanned
Vehicle Advanced Research Center (UVARC), which is funded by the Ministry of Science and ICT,
the Republic of Korea (2020M3C1C1A01082375). This research was also supported by DNA+Drone
Technology Development Program through the National Research Foundation of Korea (NRF), which
is funded by the Ministry of Science and ICT (No. NRF-2020M3C1C2A01080819).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saunders, J.; Saeedi, S.; Li, W. Autonomous Aerial Delivery Vehicles, a Survey of Techniques on how Aerial Package Delivery is

Achieved. arXiv 2021, arXiv:2110.02429.
2. Joshi, G.; Virdi, J.; Chowdhary, G. Design and flight evaluation of deep model reference adaptive controller. In Proceedings of the

AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 1336.
3. Balcazar, R.; Rubio, J.D.J.; Orozco, E.; Cordova, D.A.; Ochoa, G.; Garcia, E.; Pacheco, J.; Gutierrez, G.J.; Mujica-Vargas, D.;

Aguilar-Ibañez, C. The Regulation of an Electric Oven and an Inverted Pendulum. Symmetry 2022, 14, 759. [CrossRef]
4. Rubio, J.D.J.; Orozco, E.; Cordova, D.A.; Islas, M.A.; Pacheco, J.; Gutierrez, G.J.; Zacarias, A.; Soriano, L.A.; Meda-Campana,

J.A.; Mujica-Vargas, D. Modified Linear Technique for the Controllability and Observability of Robotic Arms. IEEE Access 2022,
10, 3366–3377. [CrossRef]

5. Aguilar-Ibanez, C.; Moreno-Valenzuela, J.; García-Alarcón, O.; Martinez-Lopez, M.; Acosta, J.Á.; Suarez-Castanon, M.S. PI-Type
Controllers and Σ–∆ Modulation for Saturated DC-DC Buck Power Converters. IEEE Access 2021, 9, 20346–20357. [CrossRef]

6. Soriano, L.A.; Rubio, J.D.J.; Orozco, E.; Cordova, D.A.; Ochoa, G.; Balcazar, R.; Cruz, D.R.; Meda-Campaña, J.A.; Zacarias, A.;
Gutierrez, G.J. Optimization of Sliding Mode Control to Save Energy in a SCARA Robot. Mathematics 2021, 9, 3160. [CrossRef]

7. Vosoogh, M.; Piltan, F.; Mirshekaran, A.M.; Barzegar, A.; Siahbazi, A.; Sulaiman, N. Integral Criterion-Based Adaptation Control
to Vibration Reduction in Sensitive Actuators. Int. J. Hybrid Inf. Technol. 2015, 8, 11–30. [CrossRef]

8. Soriano, L.A.; Zamora, E.; Vazquez-Nicolas, J.M.; Hernández, G.; Madrigal, J.A.B.; Balderas, D. PD Control Compensation Based
on a Cascade Neural Network Applied to a Robot Manipulator. Front. Neurorobotics 2020, 14, 78. [CrossRef]

9. Kada, B.; Ghazzawi, Y. Robust PID controller design for an UAV flight control system. In Proceedings of the World Congress on
Engineering and Computer Science, San Francisco, CA, USA, 19–21 October 2011; Volume 2, pp. 1–6.

10. Silva-Ortigoza, R.; Hernández-Márquez, E.; Roldán-Caballero, A.; Tavera-Mosqueda, S.; Marciano-Melchor, M.; García-Sánchez, J.R.;
Hernández-Guzmán, V.M.; Silva-Ortigoza, G. Sensorless Tracking Control for a “Full-Bridge Buck Inverter–DC Motor” System:
Passivity and Flatness-Based Design. IEEE Access 2021, 9, 132191–132204. [CrossRef]

11. Mirshekaran, A.M.; Piltan, F.; Sulaiman, N.; Siahbazi, A.; Barzegar, A.; Vosoogh, M. Design Intelligent Model-free Hybrid
Guidance Controller for Three Dimension Motor. Int. J. Inf. Eng. Electron. Bus. 2014, 6, 29–35. [CrossRef]

12. Barzegar, A.; Piltan, F.; Mirshekaran, A.M.; Siahbazi, A.; Vosoogh, M.; Sulaiman, N. Research on Hand Tremors-Free in Active
Joint Dental Automation. Int. J. Hybrid Inf. Technol. 2015, 8, 71–96. [CrossRef]

13. He, X.; Kou, G.; Calaf, M.; Leang, K.K. In-Ground-Effect Modeling and Nonlinear-Disturbance Observer for Multirotor Unmanned
Aerial Vehicle Control. J. Dyn. Syst. Meas. Control 2019, 141, 071013. [CrossRef]

14. Barzegar, A.; Doukhi, O.; Lee, D.J.; Jo, Y.H. Nonlinear Model Predictive Control for Self-Driving cars Tra-jectory Tracking in
GNSS-denied environments. In Proceedings of the 2020 20th International Conference on Control, Automation and Systems
(ICCAS), Busan, Korea, 13–16 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 750–755.

http://doi.org/10.3390/sym14040759
http://doi.org/10.1109/ACCESS.2021.3140160
http://doi.org/10.1109/ACCESS.2021.3054600
http://doi.org/10.3390/math9243160
http://doi.org/10.14257/ijhit.2015.8.2.02
http://doi.org/10.3389/fnbot.2020.577749
http://doi.org/10.1109/ACCESS.2021.3112575
http://doi.org/10.5815/ijieeb.2014.05.05
http://doi.org/10.14257/ijhit.2015.8.12.05
http://doi.org/10.1115/1.4043221

Appl. Sci. 2022, 12, 4764 22 of 23

15. Cao, G.; Lai, E.M.-K.; Alam, F. Gaussian Process Model Predictive Control of an Unmanned Quadrotor. J. Intell. Robot. Syst. 2017,
88, 147–162. [CrossRef]

16. Mehndiratta, M.; Kayacan, E. Gaussian Process-based Learning Control of Aerial Robots for Precise Visualization of Geological
Outcrops. In Proceedings of the 2020 European Control Conference (ECC), St. Petersburg, Russia, 12–15 May 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 10–16. [CrossRef]

17. Caldwell, J.; Marshall, J.A. Towards Efficient Learning-Based Model Predictive Control via Feedback Lineari-zation and Gaussian
Process Regression. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, 27 September–1 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4306–4311.

18. Chee, K.Y.; Jiahao, T.Z.; Hsieh, M.A. KNODE-MPC: A Knowledge-Based Data-Driven Predictive Control Framework for Aerial
Robots. IEEE Robot. Autom. Lett. 2022, 7, 2819–2826. [CrossRef]

19. Richards, A.; How, J. Decentralized model predictive control of cooperating UAVs. In Proceedings of the 2004 43rd IEEE
Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601), Nassau, Bahamas, 14–17 December 2004; IEEE:
Piscataway, NJ, USA, 2004; Volume 4, pp. 4286–4291.

20. Scholte, E.; Campbell, M. Robust Nonlinear Model Predictive Control With Partial State Information. IEEE Trans. Control Syst.
Technol. 2008, 16, 636–651. [CrossRef]

21. Mathisen, S.H.; Gryte, K.; Johansen, T.; Fossen, T.I. Non-linear Model Predictive Control for Longitudinal and Lateral Guidance
of a Small Fixed-Wing UAV in Precision Deep Stall Landing. In Proceedings of the AIAA Infotech@ Aerospace, San Diego, CA,
USA, 4–8 January 2016; p. 0512. [CrossRef]

22. Barzegar, A.; Doukhi, O.; Lee, D.-J. Design and Implementation of an Autonomous Electric Vehicle for Self-Driving Control under
GNSS-Denied Environments. Appl. Sci. 2021, 11, 3688. [CrossRef]

23. Iskandarani, M.; Givigi, S.N.; Fusina, G.; Beaulieu, A. Unmanned Aerial Vehicle formation flying using Linear Model Predictive
Control. In Proceedings of the 2014 IEEE International Systems Conference Proceedings, Ottawa, ON, Canada, 31 March–3 April
2014; IEEE: Piscataway, NJ, USA, 2014; pp. 18–23. [CrossRef]

24. Britzelmeier, A.; Gerdts, M. A Nonsmooth Newton Method for Linear Model-Predictive Control in Tracking Tasks for a Mobile
Robot with Obstacle Avoidance. IEEE Control Syst. Lett. 2020, 4, 886–891. [CrossRef]

25. Wang, Q.; Zhang, A.; Sun, H.Y. MPC and SADE for UAV real-time path planning in 3D environment. In Proceedings 2014 IEEE
International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), Wuhan, China, 18–19 October 2014; IEEE: Piscataway,
NJ, USA, 2014; pp. 130–133. [CrossRef]

26. Pan, Z.; Li, D.; Yang, K.; Deng, H. Multi-Robot Obstacle Avoidance Based on the Improved Artificial Potential Field and PID
Adaptive Tracking Control Algorithm. Robotica 2019, 37, 1883–1903. [CrossRef]

27. Doukhi, O.; Fayjie, A.R.; Lee, D.J. Intelligent Controller Design for Quad-Rotor Stabilization in Presence of Parameter Variations.
J. Adv. Transp. 2017, 2017, 4683912. [CrossRef]

28. Rosales, C.D.; Tosetti, S.R.; Soria, C.M.; Rossomando, F.G. Neural Adaptive PID Control of a Quadrotor using EFK. IEEE Lat. Am.
Trans. 2018, 16, 2722–2730. [CrossRef]

29. Rosales, C.; Soria, C.M.; Rossomando, F.G. Identification and adaptive PID Control of a hexacopter UAV based on neural networks.
Int. J. Adapt. Control Signal Process. 2018, 33, 74–91. [CrossRef]

30. Sarhan, A.; Qin, S. Adaptive PID Control of UAV Altitude Dynamics Based on Parameter Optimization with Fuzzy Inference. Int.
J. Model. Optim. 2016, 6, 246–251. [CrossRef]

31. Siahbazi, A.; Barzegar, A.; Vosoogh, M.; Mirshekaran, A.M.; Soltani, S. Design Modified Sliding Mode Controller with Parallel
Fuzzy Inference System Compensator to Control of Spherical Motor. Int. J. Intell. Syst. Appl. 2014, 6, 12–25. [CrossRef]

32. Hu, X.; Liu, J. Research on uav balance control based on expert-fuzzy adaptive pid. In Proceedings of the 2020 IEEE International
Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 25–27 August 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 787–789.

33. Barzegar, A.; Piltan, F.; Vosoogh, M.; Mirshekaran, A.M.; Siahbazi, A. Design Serial Intelligent Modified Feedback Linearization
like Controller with Application to Spherical Motor. Int. J. Inf. Technol. Comput. Sci. 2014, 6, 72–83. [CrossRef]

34. Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; Abbeel, P. Benchmarking deep reinforcement learning for continuous control. In
Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; PMLR: London, UK,
2016; pp. 1329–1338.

35. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
36. Claus, C.; Boutilier, C. The dynamics of reinforcement learning in cooperative multiagent systems. In Proceedings of the Fifteenth

National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, Madison, WI, USA,
26–30 July 1998; pp. 746–752.

37. Bernstein, A.V.; Burnaev, E.V. Reinforcement learning in computer vision. In Proceedings of the Tenth International Conference
on Machine Vision (ICMV 2017), Vienna, Austria, 13–15 November 2048; Volume 10696, pp. 458–464.

38. Bohn, E.; Coates, E.M.; Moe, S.; Johansen, T.A. Deep Reinforcement Learning Attitude Control of Fixed-Wing UAVs Using
Proximal Policy optimization. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS),
Atlanta, GA, USA, 11–14 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 523–533. [CrossRef]

39. Koch, W.; Mancuso, R.; West, R.; Bestavros, A. Reinforcement Learning for UAV Attitude Control. ACM Trans. Cyber-Phys. Syst.
2019, 3, 1–21. [CrossRef]

http://doi.org/10.1007/s10846-017-0549-y
http://doi.org/10.23919/ecc51009.2020.9143655
http://doi.org/10.1109/LRA.2022.3144787
http://doi.org/10.1109/TCST.2007.912120
http://doi.org/10.2514/6.2016-0512
http://doi.org/10.3390/app11083688
http://doi.org/10.1109/syscon.2014.6819230
http://doi.org/10.1109/LCSYS.2020.2996959
http://doi.org/10.1109/spac.2014.6982672
http://doi.org/10.1017/S026357471900033X
http://doi.org/10.1155/2017/4683912
http://doi.org/10.1109/TLA.2018.8795113
http://doi.org/10.1002/acs.2955
http://doi.org/10.7763/IJMO.2016.V6.534
http://doi.org/10.5815/ijisa.2014.03.02
http://doi.org/10.5815/ijitcs.2014.05.10
http://doi.org/10.1177/0278364913495721
http://doi.org/10.1109/icuas.2019.8798254
http://doi.org/10.1145/3301273

Appl. Sci. 2022, 12, 4764 23 of 23

40. Polvara, R.; Patacchiola, M.; Sharma, S.; Wan, J.; Manning, A.; Sutton, R.; Cangelosi, A. Toward End-to-End Control for UAV
Autonomous Landing via Deep Reinforcement Learning. In Proceedings of the 2019 International Conference on Unmanned
Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 115–123. [CrossRef]

41. Passalis, N.; Tefas, A. Continuous drone control using deep reinforcement learning for frontal view person shooting. Neural
Comput. Appl. 2019, 32, 4227–4238. [CrossRef]

42. Zheng, L.; Zhou, Z.; Sun, P.; Zhang, Z.; Wang, R. A novel control mode of bionic morphing tail based on deep reinforcement
learning. arXiv 2020, arXiv:2010.03814.

43. Botvinick, M.; Ritter, S.; Wang, J.X.; Kurth-Nelson, Z.; Blundell, C.; Hassabis, D. Reinforcement learning, fast and slow. Trends
Cogn. Sci. 2019, 23, 408–422. [CrossRef]

44. Pi, C.-H.; Ye, W.-Y.; Cheng, S. Robust Quadrotor Control through Reinforcement Learning with Disturbance Compensation. Appl.
Sci. 2021, 11, 3257. [CrossRef]

45. Shi, Q.; Lam, H.-K.; Xuan, C.; Chen, M. Adaptive neuro-fuzzy PID controller based on twin delayed deep deterministic policy
gradient algorithm. Neurocomputing 2020, 402, 183–194. [CrossRef]

46. Dooraki, A.R.; Lee, D.-J. An innovative bio-inspired flight controller for quad-rotor drones: Quad-rotor drone learning to fly
using reinforcement learning. Robot. Auton. Syst. 2020, 135, 103671. [CrossRef]

47. Quan, Q. Introduction to Multicopter Design and Control, 1st ed.; Springer Nature: Singapore, 2017; pp. 99–120.
48. Hernandez, A.; Copot, C.; De Keyser, R.; Vlas, T.; Nascu, I. Identification and path following control of an AR. Drone quadrotor.

In Proceedings of the 2013 17th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania,
11–13 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 583–588.

49. Fan, J.; Wang, Z.; Xie, Y.; Yang, Z. A theoretical analysis of deep Q-learning. In Proceedings of the Learning for Dynamics and
Control, Virtual, 7–8 June 2020; PMLR: London, UK, 2020; pp. 486–489.

50. Jesus, C., Jr.; Bottega, J.A.; Cuadros, M.A.S.L.; Gamarra, D.F.T. Deep deterministic policy gradient for navigation of mobile
robots in simulated environments. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo
Horizonte, Brazil, 2–6 December 2019; pp. 362–367.

51. Sandipan, S.; Wadoo, S. Linear optimal control of a parrot AR drone 2.0. In Proceedings of the 2017 IEEE MIT Undergraduate
Research Technology Conference (URTC), Cambridge, MA, USA, 3–5 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5.

52. Glazkov, T.V.; Golubev, A.E. Using Simulink Support Package for Parrot Minidrones in nonlinear control education. AIP Conf.
Proc. 2019, 2195, 020007. [CrossRef]

53. Kaplan, M.R.; Eraslan, A.; Beke, A.; Kumbasar, T. Altitude and Position Control of Parrot Mambo Minidrone with PID and Fuzzy
PID Controllers. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO),
Bursa, Turkey, 28–30 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 785–789. [CrossRef]

54. Gill, J.S.; Velashani, M.S.; Wolf, J.; Kenney, J.; Manesh, M.R.; Kaabouch, N. Simulation Testbeds and Frameworks for UAV
Performance Evaluation. In Proceedings of the 2021 IEEE International Conference on Electro Information Technology (EIT), Mt.
Pleasant, MI, USA, 14–15 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 335–341.

http://doi.org/10.1109/icuas.2018.8453449
http://doi.org/10.1007/s00521-019-04330-6
http://doi.org/10.1016/j.tics.2019.02.006
http://doi.org/10.3390/app11073257
http://doi.org/10.1016/j.neucom.2020.03.063
http://doi.org/10.1016/j.robot.2020.103671
http://doi.org/10.1063/1.5140107
http://doi.org/10.23919/eleco47770.2019.8990445

	Introduction
	Control Problem of Aerial Robots
	Related Works
	Research Objectives

	Aerial Robot Dynamics
	Quadcopter Coordinate Frames, Forces, and Torques
	Translational Dynamics
	Rotational Dynamics
	Dynamics Model of the Quadcopter

	Quadcopter Control
	Controller Framework
	Attitude Control
	Altitude Control
	Deep Reinforcement Learning for Online Parameter Estimation and Tuning

	Simulations
	Conclusions
	References

