Whole-Body Cryostimulation in Fibromyalgia: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Clinical Effects of WBC in FM
4.2. Molecular Effects of WBC in FM
4.3. Gene Expression after WBC in FM
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.-A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology Preliminary Diagnostic Criteria for Fibromyalgia and Measurement of Symptom Severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarzi-Puttini, P.; Giorgi, V.; Marotto, D.; Atzeni, F. Fibromyalgia: An Update on Clinical Characteristics, Aetiopathogenesis and Treatment. Nat. Rev. Rheumatol. 2020, 16, 645–660. [Google Scholar] [CrossRef] [PubMed]
- van Middendorp, H.; Lumley, M.A.; Jacobs, J.W.G.; van Doornen, L.J.P.; Bijlsma, J.W.J.; Geenen, R. Emotions and Emotional Approach and Avoidance Strategies in Fibromyalgia. J. Psychosom. Res. 2008, 64, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Sánchez, C.M.; Montoro, C.I.; Duschek, S.; Reyes Del Paso, G.A. Depression and Trait-Anxiety Mediate the Influence of Clinical Pain on Health-Related Quality of Life in Fibromyalgia. J. Affect. Disord. 2020, 265, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Turk, D.C.; Wilson, H.; Swanson, K.S. The Biopsychosocial Model of Pain and Pain Management. In Behavioral and Psychopharmacologic Pain Management; Cambridge University Press: Cambridge, UK, 2010; pp. 16–43. ISBN 978-0-521-88434-1. [Google Scholar]
- Varallo, G.; Giusti, E.M.; Scarpina, F.; Cattivelli, R.; Capodaglio, P.; Castelnuovo, G. The Association of Kinesiophobia and Pain Catastrophizing with Pain-Related Disability and Pain Intensity in Obesity and Chronic Lower-Back Pain. Brain Sci. 2021, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Varallo, G.; Scarpina, F.; Giusti, E.M.; Cattivelli, R.; Guerrini Usubini, A.; Capodaglio, P.; Castelnuovo, G. Does Kinesiophobia Mediate the Relationship between Pain Intensity and Disability in Individuals with Chronic Low-Back Pain and Obesity? Brain Sci. 2021, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Picavet, H.S.J.; Vlaeyen, J.W.S.; Schouten, J.S.A.G. Pain Catastrophizing and Kinesiophobia: Predictors of Chronic Low Back Pain. Am. J. Epidemiol. 2002, 156, 1028–1034. [Google Scholar] [CrossRef]
- Montoro, C.I.; Reyes del Paso, G.A. Personality and Fibromyalgia: Relationships with Clinical, Emotional, and Functional Variables. Personal. Individ. Differ. 2015, 85, 236–244. [Google Scholar] [CrossRef]
- Montoro, C.I.; Reyes del Paso, G.A.; Duschek, S. Alexithymia in Fibromyalgia Syndrome. Personal. Individ. Differ. 2016, 102, 170–179. [Google Scholar] [CrossRef]
- Velasco, L.; López-Gómez, I.; Gutiérrez, L.; Écija, C.; Catalá, P.; Peñacoba, C. Exploring the Preference for Fatigue-Avoidance Goals as a Mediator Between Pain Catastrophizing, Functional Impairment, and Walking Behavior in Women with Fibromyalgia. Clin. J. Pain 2022, 38, 182–188. [Google Scholar] [CrossRef]
- Kramer, S.; Deuschle, L.; Kohls, N.; Offenbächer, M.; Winkelmann, A. The Importance of Daily Activity for Reducing Fibromyalgia Symptoms: A Retrospective “Real World” Data Comparison of Two Multimodal Treatment Programs. Arch. Rheumatol. 2020, 35, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Farin, E.; Ullrich, A.; Hauer, J. Participation and Social Functioning in Patients with Fibromyalgia: Development and Testing of a New Questionnaire. Health Qual. Life Outcomes 2013, 11, 135. [Google Scholar] [CrossRef] [Green Version]
- Creed, F. A Review of the Incidence and Risk Factors for Fibromyalgia and Chronic Widespread Pain in Population-Based Studies. Pain 2020, 161, 1169–1176. [Google Scholar] [CrossRef]
- Marques, A.P.; Santo, A.d.S.d.E.; Berssaneti, A.A.; Matsutani, L.A.; Yuan, S.L.K. Prevalence of Fibromyalgia: Literature Review Update. Rev. Bras. Reumatol. 2017, 57, 356–363. [Google Scholar] [CrossRef]
- Berger, A.; Dukes, E.; Martin, S.; Edelsberg, J.; Oster, G. Characteristics and Healthcare Costs of Patients with Fibromyalgia Syndrome. Int. J. Clin. Pract. 2007, 61, 1498–1508. [Google Scholar] [CrossRef] [Green Version]
- de la Coba, P.; Bruehl, S.; Moreno-Padilla, M.; Reyes del Paso, G.A. Responses to Slowly Repeated Evoked Pain Stimuli in Fibromyalgia Patients: Evidence of Enhanced Pain Sensitization. Pain Med. 2017, 18, 1778–1786. [Google Scholar] [CrossRef]
- de la Coba, P.; Bruehl, S.; Galvez-Sánchez, C.M.; Reyes Del Paso, G.A. Slowly Repeated Evoked Pain as a Marker of Central Sensitization in Fibromyalgia: Diagnostic Accuracy and Reliability in Comparison with Temporal Summation of Pain. Psychosom. Med. 2018, 80, 573–580. [Google Scholar] [CrossRef]
- Maugars, Y.; Berthelot, J.-M.; Le Goff, B.; Darrieutort-Laffite, C. Fibromyalgia and Associated Disorders: From Pain to Chronic Suffering, from Subjective Hypersensitivity to Hypersensitivity Syndrome. Front. Med. 2021, 8, 666914. [Google Scholar] [CrossRef] [PubMed]
- Montoro, C.I.; Duschek, S.; Muñoz Ladrón de Guevara, C.; Fernández-Serrano, M.J.; Reyes del Paso, G.A. Aberrant Cerebral Blood Flow Responses during Cognition: Implications for the Understanding of Cognitive Deficits in Fibromyalgia. Neuropsychology 2015, 29, 173–182. [Google Scholar] [CrossRef]
- Gracely, R.H.; Petzke, F.; Wolf, J.M.; Clauw, D.J. Functional Magnetic Resonance Imaging Evidence of Augmented Pain Processing in Fibromyalgia. Arthritis Rheum. 2002, 46, 1333–1343. [Google Scholar] [CrossRef]
- Martínez-Lavín, M. Fibromyalgia and Small Fiber Neuropathy: The Plot Thickens! Clin. Rheumatol. 2018, 37, 3167–3171. [Google Scholar] [CrossRef] [PubMed]
- Clauw, D.J.; Arnold, L.M.; McCarberg, B.H. The Science of Fibromyalgia. Mayo Clin. Proc. 2011, 86, 907–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrot, S. Fibromyalgia: A Misconnection in a Multiconnected World? Perrot—European Journal of Pain; Wiley Online Library. 2019. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/ejp.1367 (accessed on 7 March 2022).
- Briones-Vozmediano, E.; Vives-Cases, C.; Ronda-Pérez, E.; Gil-González, D. Patients’ and Professionals’ Views on Managing Fibromyalgia. Pain Res. Manag. 2013, 18, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.J.; Kronisch, C.; Dean, L.E.; Atzeni, F.; Häuser, W.; Fluß, E.; Choy, E.; Kosek, E.; Amris, K.; Branco, J.; et al. EULAR Revised Recommendations for the Management of Fibromyalgia. Ann. Rheum. Dis. 2017, 76, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Häuser, W.; Welsch, P.; Klose, P.; Derry, S.; Straube, S.; Wiffen, P.J.; Moore, R.A. Pharmacological Therapies for Fibromyalgia in Adults—An Overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2018, 2018, CD013151. [Google Scholar] [CrossRef]
- Rolls, C.; Prior, Y. 285 Non-Pharmacological Interventions for People with Fibromyalgia: A Systematic Review. Rheumatology 2018, 57, key075.509. [Google Scholar] [CrossRef] [Green Version]
- Hassett, A.L.; Williams, D.A. Non-Pharmacological Treatment of Chronic Widespread Musculoskeletal Pain. Best Pract. Res. Clin. Rheumatol. 2011, 25, 299–309. [Google Scholar] [CrossRef]
- Sadura-Sieklucka, T.; Sołtysiuk, B.; Karlicka, A.; Sokołowska, B.; Kontny, E.; Księżopolska-Orłowska, K. Effects of Whole Body Cryotherapy in Patients with Rheumatoid Arthritis Considering Immune Parameters. Reumatologia/Rheumatology 2019, 57, 320–325. [Google Scholar] [CrossRef]
- Drynda, S.; Mika, O.; Kekow, J. THU0313 Impact of Whole-Body Cryotherapy on Gene Expression of Peripheral Blood Cells in Patients with Fibromyalgia. Ann. Rheum. Dis. 2015, 74, 309. [Google Scholar] [CrossRef]
- Drynda, S.; Mika, O.; Koczan, D.; Kekow, J. AB0661 Impact of Whole-Body Cryotherapy on Transcriptome of Peripheral Blood Cells in Patients with Fibromyalgia. Ann. Rheum. Dis. 2013, 72, A990–A991. [Google Scholar] [CrossRef]
- Bettoni, L.; Bonomi, F.G.; Zani, V.; Manisco, L.; Indelicato, A.; Lanteri, P.; Banfi, G.; Lombardi, G. Effects of 15 Consecutive Cryotherapy Sessions on the Clinical Output of Fibromyalgic Patients. Clin. Rheumatol. 2013, 32, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Bettoni, L.; Bonomi, F.G.; Zani, V.; Indelicato, A.; Banfi, G. THU0347|Efficacy and Safety of Whole Body Cryotherapy in Fibromyalgic Patients|Annals of the Rheumatic Diseases. Available online: https://ard.bmj.com/content/71/Suppl_3/273.1 (accessed on 7 March 2022).
- Vitenet, M.; Tubez, F.; Marreiro, A.; Polidori, G.; Taiar, R.; Legrand, F.; Boyer, F.C. Effect of Whole Body Cryotherapy Interventions on Health-Related Quality of Life in Fibromyalgia Patients: A Randomized Controlled Trial. Complement. Ther. Med. 2018, 36, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Metzger, D.; Zwingmann, C.; Protz, W.; Jäckel, W.H. Whole-body cryotherapy in rehabilitation of patients with rheumatoid diseases—Pilot study. Rehabilitation 2000, 39, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Klemm, P.; Becker, J.; Aykara, I.; Asendorf, T.; Dischereit, G.; Neumann, E.; Müller-Ladner, U.; Lange, U. Serial Whole-Body Cryotherapy in Fibromyalgia Is Effective and Alters Cytokine Profiles. Adv. Rheumatol. 2021, 61, 3. [Google Scholar] [CrossRef]
- Kurzeja, R.; Gutenbrunner, C.; Krohn-Grimberghe, B. Primäre Fibromyalgie: Vergleich der Kältekammertherapie mit zwei klassischen Wärmetherapieverfahren. Aktuelle Rheumatol. 2003, 28, 158–163. [Google Scholar] [CrossRef]
- Sundaram, V.M. To Compare the Effectiveness of Whole Body Cryotherapy against Steam Therapy in Patients with Chronic Fibromyalgia. Physiotherapy 2015, 101, e988–e989. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.; Tercero, M.J.; Salas, J.S.; Gimeno, J.H.; Alejo, J.S. The Effect of Cryotherapy on Fibromyalgia: A Randomised Clinical Trial Carried out in a Cryosauna Cabin. Rheumatol. Int. 2018, 38, 2243–2250. [Google Scholar] [CrossRef] [Green Version]
- Romanowski, M.W.; Straburzyńska-Lupa, A. Is the Whole-Body Cryotherapy a Beneficial Supplement to Exercise Therapy for Patients with Ankylosing Spondylitis? J. Back Musculoskelet. Rehabil. 2020, 33, 185–192. [Google Scholar] [CrossRef]
- Miller, E.; Kostka, J.; Włodarczyk, T.; Dugué, B. Whole-Body Cryostimulation (Cryotherapy) Provides Benefits for Fatigue and Functional Status in Multiple Sclerosis Patients. A Case-Control Study. Acta Neurol. Scand. 2016, 134, 420–426. [Google Scholar] [CrossRef]
- Rymaszewska, J.; Lion, K.M.; Pawlik-Sobecka, L.; Pawłowski, T.; Szcześniak, D.; Trypka, E.; Rymaszewska, J.E.; Zabłocka, A.; Stanczykiewicz, B. Efficacy of the Whole-Body Cryotherapy as Add-on Therapy to Pharmacological Treatment of Depression—A Randomized Controlled Trial. Front. Psychiatry 2020, 11, 522. [Google Scholar] [CrossRef]
- Fontana, J.M.; Bozgeyik, S.; Gobbi, M.; Piterà, P.; Giusti, E.M.; Dugué, B.; Lombardi, G.; Capodaglio, P. Whole-Body Cryostimulation in Obesity: A Scoping Review. J. Therm. Biol. 2022, 106, 103250. [Google Scholar] [CrossRef]
- Kozłowska, M.; Kortas, J.; Żychowska, M.; Antosiewicz, J.; Żuczek, K.; Perego, S.; Lombardi, G.; Ziemann, E. Beneficial Effects of Whole-Body Cryotherapy on Glucose Homeostasis and Amino Acid Profile Are Associated with a Reduced Myostatin Serum Concentration. Sci. Rep. 2021, 11, 7097. [Google Scholar] [CrossRef] [PubMed]
- Bouzigon, R.; Grappe, F.; Ravier, G.; Dugue, B. Whole- and Partial-Body Cryostimulation/Cryotherapy: Current Technologies and Practical Applications. J. Therm. Biol. 2016, 61, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Algafly, A.A.; George, K.P. The Effect of Cryotherapy on Nerve Conduction Velocity, Pain Threshold and Pain Tolerance. Br. J. Sports Med. 2007, 41, 365–369. [Google Scholar] [CrossRef]
- White, G.E.; Wells, G.D. Cold-Water Immersion and Other Forms of Cryotherapy: Physiological Changes Potentially Affecting Recovery from High-Intensity Exercise. Extreme Physiol. Med. 2013, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, D.L. In Vivo Mechanisms of Cutaneous Vasodilation and Vasoconstriction in Humans during Thermoregulatory Challenges. J. Appl. Physiol. 2006, 100, 1709–1718. [Google Scholar] [CrossRef]
- Louis, J.; Theurot, D.; Filliard, J.-R.; Volondat, M.; Dugué, B.; Dupuy, O. The Use of Whole-Body Cryotherapy: Time- and Dose-Response Investigation on Circulating Blood Catecholamines and Heart Rate Variability. Eur. J. Appl. Physiol. 2020, 120, 1733–1743. [Google Scholar] [CrossRef]
- Dugué, B.; Bernard, J.P.; Bouzigon, R.; De Nardi, M.; Douzi, W.; Feirreira, J.J. Whole Body Cryotherapy/Cryostimulation, 39th Informatory Note on Refrigeration Technologies. Available online: https://iifiir.org/en/fridoc/whole-body-cryotherapy-cryostimulation-39-lt-sup-gt-th-lt-sup-gt-informatory-142805 (accessed on 20 January 2022).
- Ziemann, E.; Olek, R.A.; Kujach, S.; Grzywacz, T.; Antosiewicz, J.; Garsztka, T.; Laskowski, R. Five-Day Whole-Body Cryostimulation, Blood Inflammatory Markers, and Performance in High-Ranking Professional Tennis Players. J. Athl. Train. 2012, 47, 664–672. [Google Scholar] [CrossRef]
- Lange, U.; Uhlemann, C.; Müller-Ladner, U. Serial whole-body cryotherapy in the criostream for inflammatory rheumatic diseases. A pilot study. Med. Klin. Munich Ger. 1983 2008, 103, 383–388. [Google Scholar] [CrossRef]
- Banfi, G.; Melegati, G.; Barassi, A.; Dogliotti, G.; Melzi d’Eril, G.; Dugué, B.; Corsi, M.M. Effects of Whole-Body Cryotherapy on Serum Mediators of Inflammation and Serum Muscle Enzymes in Athletes. J. Therm. Biol. 2009, 34, 55–59. [Google Scholar] [CrossRef]
- Lubkowska, A.; Szyguła, Z.; Chlubek, D.; Banfi, G. The Effect of Prolonged Whole-Body Cryostimulation Treatment with Different Amounts of Sessions on Chosen pro- and Anti-Inflammatory Cytokines Levels in Healthy Men. Scand. J. Clin. Lab. Investig. 2011, 71, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Lubkowska, A.; Szygula, Z.; Klimek, A.J.; Torii, M. Do Sessions of Cryostimulation Have Influence on White Blood Cell Count, Level of IL6 and Total Oxidative and Antioxidative Status in Healthy Men? Eur. J. Appl. Physiol. 2010, 109, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Pournot, H.; Bieuzen, F.; Louis, J.; Fillard, J.-R.; Barbiche, E.; Hausswirth, C. Time-Course of Changes in Inflammatory Response after Whole-Body Cryotherapy Multi Exposures Following Severe Exercise. PLoS ONE 2011, 6, e22748. [Google Scholar] [CrossRef]
- Lubkowska, A.; Dołęgowska, B.; Szyguła, Z. Whole-Body Cryostimulation—Potential Beneficial Treatment for Improving Antioxidant Capacity in Healthy Men—Significance of the Number of Sessions. PLoS ONE 2012, 7, e46352. [Google Scholar] [CrossRef] [Green Version]
- Wojciak, G.; Szymura, J.; Szygula, Z.; Gradek, J.; Wiecek, M. The Effect of Repeated Whole-Body Cryotherapy on Sirt1 and Sirt3 Concentrations and Oxidative Status in Older and Young Men Performing Different Levels of Physical Activity. Antioxidants 2021, 10, 37. [Google Scholar] [CrossRef]
- Lubkowska, A.; Dudzińska, W.; Bryczkowska, I.; Dołęgowska, B. Body Composition, Lipid Profile, Adipokine Concentration, and Antioxidant Capacity Changes during Interventions to Treat Overweight with Exercise Programme and Whole-Body Cryostimulation. Oxid. Med. Cell. Longev. 2015, 2015, 803197. [Google Scholar] [CrossRef]
- Stanek, A.; Cholewka, A.; Gadula, J.; Drzazga, Z.; Sieron, A.; Sieron-Stoltny, K. Can Whole-Body Cryotherapy with Subsequent Kinesiotherapy Procedures in Closed Type Cryogenic Chamber Improve BASDAI, BASFI, and Some Spine Mobility Parameters and Decrease Pain Intensity in Patients with Ankylosing Spondylitis? BioMed Res. Int. 2015, 2015, 404259. [Google Scholar] [CrossRef] [Green Version]
- Banfi, G.; Lombardi, G.; Colombini, A.; Melegati, G. Whole-Body Cryotherapy in Athletes. Sports Med. Auckl. NZ 2010, 40, 509–517. [Google Scholar] [CrossRef]
- Lubkowska, A.; Chudecka, M.; Klimek, A.; Szyguła, Z.; Frączek, B. Acute Effect of a Single Whole-Body Cryostimulation on Prooxidant–Antioxidant Balance in Blood of Healthy, Young Men. J. Therm. Biol. 2008, 8, 464–467. [Google Scholar] [CrossRef]
- Lombardi, G.; Ziemann, E.; Banfi, G. Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature. Front. Physiol. 2017, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- Berk, M.; Williams, L.J.; Jacka, F.L.; O’Neil, A.; Pasco, J.A.; Moylan, S.; Allen, N.B.; Stuart, A.L.; Hayley, A.C.; Byrne, M.L.; et al. So Depression Is an Inflammatory Disease, but Where Does the Inflammation Come from?|BMC Medicine|Full Text. Available online: https://bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-11-200 (accessed on 7 March 2022).
- Veltri, A.; Scarpellini, P.; Piccinni, A.; Conversano, C.; Giacomelli, C.; Bombardieri, S.; Bazzichi, L.; Dell’Osso, L. Methodological Approach to Depressive Symptoms in Fibromyalgia Patients. Clin. Exp. Rheumatol. 2012, 30, 136–142. [Google Scholar]
- Ouzzani, M. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downs, S.H.; Black, N. The Feasibility of Creating a Checklist for the Assessment of the Methodological Quality Both of Randomised and Non-Randomised Studies of Health Care Interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viljoen, C.T.; Rensburg, D.C.J.V.; Verhagen, E.; Mechelen, W.V. Epidemiology of Injury and Illness Among Trail Runners: A Systematic Review. Sports Med. 2021, 51, 917–943. [Google Scholar] [CrossRef] [PubMed]
- Marchand, S. Mechanisms Challenges of the Pain Phenomenon. Front. Pain Res. 2021, 1, 574370. [Google Scholar] [CrossRef]
- Yam, M.F.; Loh, Y.C.; Tan, C.S.; Khadijah Adam, S.; Abdul Manan, N.; Basir, R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int. J. Mol. Sci. 2018, 19, 2164. [Google Scholar] [CrossRef] [Green Version]
- Dubin, A.E.; Patapoutian, A. Nociceptors: The Sensors of the Pain Pathway. J. Clin. Investig. 2010, 120, 3760–3772. [Google Scholar] [CrossRef] [Green Version]
- Latremoliere, A.; Woolf, C.J. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [Green Version]
- Staud, R. Peripheral Pain Mechanisms in Chronic Widespread Pain. Best Pract. Res. Clin. Rheumatol. 2011, 25, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Littlejohn, G.; Guymer, E. Neurogenic Inflammation in Fibromyalgia. Semin. Immunopathol. 2018, 40, 291–300. [Google Scholar] [CrossRef]
- Hung, A.L.; Lim, M.; Doshi, T.L. Targeting Cytokines for Treatment of Neuropathic Pain. Scand. J. Pain 2017, 17, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Vanderwall, A.G.; Milligan, E.D. Cytokines in Pain: Harnessing Endogenous Anti-Inflammatory Signaling for Improved Pain Management. Front. Immunol. 2019, 10, 3009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uçeyler, N.; Häuser, W.; Sommer, C. Systematic Review with Meta-Analysis: Cytokines in Fibromyalgia Syndrome. BMC Musculoskelet. Disord. 2011, 12, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Year | Reporting | External Validity | Internal Validity | Power | Score | Comment | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Items | 1 | 2 | 3 | 6 | 7 | 9 | 10 | 11 | 12 | 16 | 17 | 18 | 20 | 26 | 27 | total | ||
Metzger D. et al. | 2000 | 1 | 0 | 1 | 1 | 0 * | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 11/15 | * Item 7: no SD was reported for all population data description, and no estimates of variability (interquartile range of results and standard error and standard deviation and confidence intervals) were reported |
Kurzeja R. et al. | 2003 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9/15 | |
Bettoni L. et al. | 2013 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 10/15 | |
Rivera J. et al. | 2018 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 13/15 | |
Vitenet M. et al. | 2018 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 * | 1 | 0 | 10/15 | * Item 20: the outcome measures were clearly described but the control group protocol was not explained in detail so we cannot consider it valid and reliable. |
Klemm P. et al. | 2021 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 14/15 |
Author, Date, Country | Study Design | Experimental Population (n) | Subgroups (n, Sex) | Mean Age ± SD (Year) | WBC Exposures (n) and Protocol | Sampling Time (Measurement, Surveys) |
---|---|---|---|---|---|---|
Metzger D et al., 2000, Germany | Non-controlled study (Prospective observational study) | 1º FM (49), RA (21), CLBP (20), AS (13), OA (11), 2º FM (4) and AD (2). Tot. 120 (90 F/30 M) | no control group | 52.6 ± 8.9 | 6 days/weeks/twice a day for 4 weeks (48 total): −105 °C (avg 2.5 min) 2–3 patients per chamber per session | On the 1st day, then twice a week and on the last day, i.e., eight times in total |
Kurzeja R. et al., 2003, Germany | Non-randomized controlled study (Prospective observational study) | 1º FM (66, 61 F/5 M, 2 drop-outs) | WBC (38 tot, 20 drop-outs) WT (mud bath + hot air) (28) | 50, 35–65 (WBC) 53, 35–64 (mud bath + hot air) (SD n.r.) | Once/day for 3 to 4 weeks (not clear the exact number of sessions): adaptation of 1/2 to 1 min @ −40 °C, −110 °C (avg 2 min) | After 1st, 7th, and last session |
Drynda S. et al., 2013, Germany | Randomized-controlled trial study (Abstract only) | FM (10 tot, 9 F/1 M) | Baseline (before WBC) and post-WBC (after WBC) | 48.7 ± 9.8 | 3 sessions/3 consecutive days (3 tot): adaptation of 10 s @ −10 °C, 10 s @ −60 °C; max 3 min @ −110 °C | Blood was collected immediately prior to (baseline) and directly after the first exposure to WBC and after the third exposure |
Bettoni L. et al., 2012, Italy | Randomized-controlled trial study (Abstract only) | FM (98, 91 F/7 M) based on ACR criteria and Wolfe criteria | WBC (49, 46 F; 3 M) treated with antioxidants agents and analgesic CTR (49, 45 F; 4 M) treated only antioxidants agents and analgesic | WBC (37.7, SD n.r.) CTR (39.2, SD n.r.) | 5 times/week for 3 weeks (tot 15 sessions): adaptation of −60 °C for 1 min, 2 min @ −140 °C. WBC group: 30 min of rehabilitation after WBC | Beginning of four weeks and after the end of the cycle of WBC: VAS pain and Fatigue questionnaire (FSS) |
Bettoni L. et al., 2013, Italy | Non-randomized controlled study (Clinical Qualitative study) | FM (100, 94 F/6 M) | WBC+ (46 F/4 M) WBC− (46 F/4 M) | WBC+ 17–67 WBC− 19–70 (SD n.r.) | 15 sessions (5 week for 3 weeks): adaptation of 30 s @ −60 °C and 3 min @ −140 °C WBC+ group: 30 min of aerobic exercise after WBC | At recruitment and following (or not) to WBC |
Drynda S. et al., 2015, Germany | Non-controlled study (Experimental Research/Abstra−ct only) | FM (22, 20 F/2 M) | WBC (22) | 51.7 ± 8.9 | 3 sessions/3 consecutive days: adaptation of 10 s @ −10 °C, 10 s @ −60 °C for max 3 min @ −110 °C | Blood collected at baseline (prior the start, immediately after 1st exposure, and after 3rd exposure) |
Meenakshi Sundaram V. et al., 2015, India | Randomized experimental study (Abstract only) | FM (40, 24 F/16 M) | A (20, were randomly allotted): Steam Therapy and Functional Rehabilitation B (20): WBC and Functional Rehabilitation) | 20–40 (SD n.r.) | n.r. | Visual Analogue Scale, SF-36, Health Questionnaire, Epworth sleepiness scale, and Fatigue and Severity Scale on the 1st day and the 14th day |
Rivera J. et al., 2018, Spain | Randomized crossover clinical study | FM (60, F/M n.r.) | A (34, 1 drop out) B (26) group inversion after Period 1 → intervention group (WBC) and CTR Period 1 (3 weeks), Washout (1 week), Period 2 (3 weeks) | 25–80 (SD n.r.) | 15 sessions/alternate days for 3 weeks: adaptation of 30 s @ −60 °C, 3 min @ −196 °C Protocol: 10 sessions +1 week Washout +10 sessions (group inversion) | After 22 and 50 days from period start—visits 3 and 6, corresponding to the evaluation of the first and second periods, respectively |
Vitenet M. et al., 2018, Belgium | Randomized controlled study | FM (24, 20 F/4 M) | WBC (11, 8 F; 3 M) CTR (13, 12 F; 1 M) | 55 ± 10 (WBC) 50 ± 11 (CTR) | 10 sessions/8 days (1 sessions/day for the first 4 and last 2 days, 2 sessions/day for days 5 and 6): 3 min @ −110 °C | Just before the first treatment and 1 month following the end of the last intervention |
Klemm P. et al., 2021, Germany | Non-randomized controlled study | 89 patients screened: 32 excluded, 57 enrolled (38 F/19 M) FM (26) Healthy CTR (31) | WBC (26) CTR (31) | 46 ± 9.8 | 2 sessions/week for 3 weeks (6 sessions tot) 1st session: 90 s @ −130° 2nd sessions: 2 min @ −130° From the 3rd session onwards: 3 min @ −130° | Outcomes were measured after 3 and 6 sessions, and 3 months of discontinued therapy (follow-up). |
Author, Date, Country | Subgroups | Outcomes and Assessment | Results |
---|---|---|---|
Metzger D et al., 2000, Germany | no control group | Pain Intensity: 10-item numerical rating scale Well-being: 5-item verbal rating scale Effectiveness and importance of WBC: 4-level verbal rating scales Rewarming time Duration of pain relief (hrs) Duration of stay in the chamber | ↓ Pain Intensity (constant during 4-weeks) (p = 0.000); ↓ Pain Intensity afternoon vs. morning between the different treatment periods: Beginning (p = 0.001), middle (p = 0.007) and end (p = 0.01) of the four-week treatment); ↓ Pain Intensity immediately after WBC (p = 0.000); = duration of pain relief during 4-weeks follow-up; = rewarming time; ↑ Well-being (p = 0.000); ↑ stay in chamber from middle of treatment onwards (p = 0.000); ↑ stay in cryochamber afternoon vs. morning in week 1, 2 (p = 0.000). |
Kurzeja R. et al., 2003, Germany | WBC WT (mud bath + hot air) | Pain, general conditions, vegetative and functional: Patient self-assessment (PSE) Pain Intensity: VAS Number of painful tender points Duration of pain relief (hrs) | WBC vs. WT: ↓ VAS in WBC & WT (p < 0.01); ↑ PSEWBC > ↑ PSEWT (p < 0.01); ↓ TPWBC > ↓ TPCTR in middle and end of discharge (p < 0.01); Avg duration of pain relief after WBC = 2 h 45 min |
Drynda S. et al., 2013, Germany | Baseline (before WBC) post-WBC (after WBC) | Pain Intensity: VAS Transcriptome analyses (gene expression): Affymetrix GeneChip® Human Gene 1.0 ST arrays | ↓ VAS 90 out of 33.297 transcripts: >1.2 fold up-regulation < 1.2 fold down-regulation vs. baseline (72 down-regulated, 18 up-regulated, 34 changed after 1st session); up-regulated genes: PBX1, SFRP2, MAP2K3, and SLC25A39; down-regulated genes: SNORD p-value n.r. |
Bettoni L. et al., 2012, Italy | WBC (antioxidants andanalgesics) CTR(antioxidants and analgesics) | Pain Intensity: VAS Fatigue: fatigue score Blood pressure Heart rate Oxygen saturation Axillary temperature | WBC vs. CTR: ↓ VASWBC > ↓ VASCTR (p < 0.05) ↓ FatigueWBC > ↓ FatigueCTR = blood pressure, heart rate, oxygen saturation, axillary temperature (p < 0.05) |
Bettoni L. et al., 2013, Italy | WBC+ WBC− | Pain: VAS Physical and Mental health: SF-36 Global Health Status: VAS-GH Fatigue: FSS | WBC+ vs. WBC−: ↓ VASWBC+ > ↓ VASWBC−−(p < 0.0001); ↑ (SF)-36WBC+ > ↑ (SF)-36WBC− (p < 0.0001) ↑ (SF)-36 in WBC− (for almost of all the (SF)-36 items) (p < 0.05, p < 0.01, p < 0.0001) ↓ VAS-GHWBC+ > ↓ VAS-GHWBC− (p < 0.0001) ↓ FSSWBC+ > ↓ FSSWBC− (p < 0.0001) |
Drynda S. et al., 2015, Germany | WBC | Gene expression: Real-Time PCR (TaqMan) | ↓ CCL4 (−67%) in 19 out of 22 Ps ↓ CD69 (−59%) in 16 out of 22 Ps 13 patients: ↑ mRNA MAP2K3 (+180%); 9 patients: = mRNA MAP2K3 p-value n.r. |
Meenakshi Sundaram V. et al., 2015, India | A: Steam Therapy and Functional Rehabilitation) B: WBC and Functional Rehabilitation) | Pain: VAS Sleep disturbances: Epworth sleepiness scale Fatigue: FSS Health: SF-36 | B vs. A: ↓ Pain-B > ↓ Pain-A ↓ Fatigue-B > ↓ Fatigue-A ↓ Sleep disturbances-B > ↓ Sleep disturbances-A ↑ SF-36-B > ↑ SF-36-A p-value n.r. |
Rivera J. et al., 2018, Spain | Group A Group B → Groups inverted after Period 1: WBC and CTR Period 1 (3 weeks), Washout (1 week), Period 2 (3 weeks) | Pain: VAS Impact of disease: FIQ Severity of disease: ICAF Physical and Mental health: (SF)-36 | WBC vs. CTR first period (V1–V3): ∆VASWBC > ∆VASCTR (p < 0.0001) ∆FIQWBC > ∆FIQCTR (p < 0.0001) ∆ICAFWBC scores > ∆ICAFCTR scores (all p < 0.0001) SF-36WBC physical function > SF-36CTR physical function (p < 0.0001) SF-36WBC emotional function > SF-36CTR emotional function (p < 0.0002) Linear regression confirmed significance independently of baseline values: VAS (β = 2.56); FIQ (β = 29.7); ICAF (β = 12.8) Period 2 VAS (p = 0.015) and FIQ (p = 0.003) of period 1 did not return to baseline → washout period too short |
Vitenet M. et al., 2018, Belgium | WBC CTR | Health-reported quality of life (physical and mental) MOS SF-36-physical (PCS) MOS SF-36-mental (MCS) | WBC vs. CTR: ↑ PCSWBC > ↑ PCSCTR (p = 0.017) ↑ MCS WBC > ↑ MCSCTR (p = 0.017) |
Klemm P. et al., 2021, Germany | WBC CTR | Pain intensity: VAS Disease activity: FIQ Cytokine levels: ELISA | FM after 3 WBC sessions vs. FM baseline: ↓ VAS (p = 0.0016); MCIDFM for VAS not achieved; ↓ IL-1 (p = 0.0001); ↓ IL-6 (p = 0.0028); ↓ IL-10 (p = 0.0014); =TNF-α (p = 0.1320); FM after 6 WBC sessions vs. FM baseline: ↓ VAS(p < 0.0001); MCID for VAS achieved; ↓ FIQ (p = 0.0006); ↓IL-1 (p = 0.0001); ↓ IL-6 (p = 0.0038); = IL-10 (p = 0.0735); = TNF-α (p = 0.5950) FM after 3 month of last WBC sessions vs. FM baseline: ↑ VAS (p = 0.0037); = FIQ (p = 0.2142); MCID for FIQ not achieved; ↓ IL-1 (p < 0.0001); ↓ IL-6 (p < 0.0088); ↑ IL-10 (p = 0.0008); =TNF-α (p = 0.4100) CTR after 3 WBC sessions vs. CTR baseline: = IL-1 (p = 0.2429); =IL-6 (p = 0.4247); =IL-10 (0.2053); =TNF-α (p = 0.3943) CTR after 6 WBC sessions vs. CTR baseline: = IL-1 (p = 0.1080); =IL-6 (p = 0.1279); =IL-10 (0.1092); =TNF-α (p = 0.5647) CTR after 3 month of last WBC sessions vs. CTR baseline: ↓ IL-1 (p = 0.0021); =IL-6 (p = 0.7883); =IL-10 (p = 0.1154); =TNF-α (p = 0.7716) FM vs. CTR at baseline: IL-1FM > IL-1CTR (p < 0.0001); IL-6FM > IL-6CTR (p < 0.0017); IL-10FM > IL-10CTR (p < 0.0001); TNF-α FM = TNF-αCTR (p = 0.1240); FM vs. CTR after 3 WBC sessions: IL-1FM > IL-1CTR (p < 0.0001) IL-6FM > IL-6CTR (p < 0.0023); IL-10FM = IL-10CTR (p = 0.6581); TNF-α FM >TNF-αCTR (p = 0.0009); FM vs. CTR after 6 WBC sessions: IL-1FM < IL-1CTR (p < 0.0403); IL-6FM > IL-6CTR (p < 0.0077); IL-10FM > IL-10CTR (p < 0.0059); TNF-α FM = TNF-αCTR (p = 0.0167); FM vs. CTR after 3 months from last WBC sessions: IL-1FM > IL-1CTR (p < 0.0086); IL-6FM > IL-6CTR (p < 0.0231); IL-10FM > IL-10CTR (p < 0.0001); TNF-α FM = TNF-αCTR (p = 0.0699); |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontana, J.M.; Gobbi, M.; Piterà, P.; Giusti, E.M.; Capodaglio, P. Whole-Body Cryostimulation in Fibromyalgia: A Scoping Review. Appl. Sci. 2022, 12, 4794. https://doi.org/10.3390/app12094794
Fontana JM, Gobbi M, Piterà P, Giusti EM, Capodaglio P. Whole-Body Cryostimulation in Fibromyalgia: A Scoping Review. Applied Sciences. 2022; 12(9):4794. https://doi.org/10.3390/app12094794
Chicago/Turabian StyleFontana, Jacopo Maria, Michele Gobbi, Paolo Piterà, Emanuele Maria Giusti, and Paolo Capodaglio. 2022. "Whole-Body Cryostimulation in Fibromyalgia: A Scoping Review" Applied Sciences 12, no. 9: 4794. https://doi.org/10.3390/app12094794
APA StyleFontana, J. M., Gobbi, M., Piterà, P., Giusti, E. M., & Capodaglio, P. (2022). Whole-Body Cryostimulation in Fibromyalgia: A Scoping Review. Applied Sciences, 12(9), 4794. https://doi.org/10.3390/app12094794