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Abstract: Unmanned aerial vehicle (UAV) express delivery is facing a period of rapid development
and continues to promote the aviation logistics industry due to its advantages of elevated delivery
efficiency and low labor costs. Automatic detection, localization, and estimation of 6D poses of
targets in dynamic environments are key prerequisites for UAV intelligent logistics. In this study, we
proposed a novel vision system based on deep neural networks to locate targets and estimate their 6D
pose parameters from 2D color images and 3D point clouds captured by an RGB-D sensor mounted
on a UAV. The workflow of this system can be summarized as follows: detect the targets and locate
them, separate the object region from the background using a segmentation network, and estimate
the 6D pose parameters from a regression network. The proposed system provides a solid foundation
for various complex operations for UAVs. To better verify the performance of the proposed system,
we built a small dataset called SIAT comprising some household staff. Comparative experiments with
several state-of-the-art networks on the YCB-Video dataset and SIAT dataset verified the effectiveness,
robustness, and superior performance of the proposed method, indicating its promising applications
in UAV-based delivery tasks.

Keywords: UAV; vision system; semantic segmentation; 6D pose estimation; intelligent logistics

1. Introduction

Recent advances in areas such as computer vision, automation, and artificial intelli-
gence have created new opportunities in the aviation logistics industry. Future improve-
ments require research on the automatic, unmanned, and informational directions that will
power the efficiency and quality of delivery services. Therefore, the demand for unmanned
aerial vehicle (UAV)-based automatic express delivery systems has increased rapidly over
the past several decades. Currently, UAVs are widely used in the fields of surveillance,
aero photography, military, and others [1,2], while most research still focuses on control
algorithms and path planning [3,4].

Owing to the importance and widespread adoption of target localization and recogni-
tion in complex scenes, we proposed an efficient vision system, including object detection,
tracking, segmentation, and 6D pose estimation, and deployed it on a UAV platform to
demonstrate its potential in the applications of automatic express delivery.

The proposed vision system can detect, locate, and track targets of interest without
manual intervention by calculating precise position and pose parameters. In addition,
we built a dataset to evaluate the performance of our algorithm, called the SIAT dataset,
which contains 20 video sequences with a total of 13,161 frames. The ground truth of
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our SIAT dataset comprised segmentation masks and 6D pose parameters for all targets
in each frame. As shown in Figure 1, the workflow for the entire system consists of the
following stages:

• Object detection: The RGB-D camera on the UAV can continuously capture images dur-
ing flights and then transmit them to the server via the WIFI system. The target of interest
can be detected and located by the single shot multibox detector (SSD) [5] algorithm.

• Object tracking: Once the target is detected, the UAV will continue to track and
approach it steadily.

• Semantic Segmentation: The semantic segmentation network processes the image
combined with the color and depth information and outputs an accurate segmentation
mask. Furthermore, for objects with the same textures but different 3D geometries, as
described in the subsection about object classification, we introduced a classification
network to distinguish them.

• 6D Pose Estimation: The 6D pose estimation network calculates the pose parameters
of the target in the segmented image and transmits them to the UAV.

Figure 1. The hardware setup and workflow of the proposed vision system. (1) UAV: the UAV obtains
pictures through the RGB-D camera, then transmits the data to the server via a WIFI system. (2) Server:
the images are processed to detect, segment, classify the target of interest, and estimate its pose
parameters. (3) Workflow: object detection: detect the target of interest in flight, the distance from the
target is usually greater than 3 m; object tracking: approach and track the target, the distance to the
target ranges from 1 to 3 m; semantic segmentation: segment the target pixels from the background
and classify the target; 6D pose estimation: estimate the 6D pose parameters pixel-by-pixel in the
target region. For segmentation and pose estimation, the distance is usually less than 1 m.

The details of the above are described in Section 3. The main contributions of this
study are as follows.

• We built a practical vision system and reliable visual assistance of express delivery
that expands collaborative work between humans and UAVs by enabling accurate
localization and 6D pose parameters of the targets.

• We proposed a semantic segmentation network with a novel feature fusion struc-
ture, which provides more comprehensive semantic information for segmentation by
connecting different features at different layers to fuse color and depth information.

• We proposed an innovative 6D pose estimation network that uses the pyramid pooling
module (PPM) and the refined residual block (RRB) module in the color feature
extraction backbone to enhance features to accurately generate 6D pose parameters
for the target.
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• We constructed a dataset with the ground truth of segmentation masks and 6D pose
parameters to evaluate the performance of the algorithm of the system, namely the
SIAT dataset.

The remainder of this paper is organized as follows: Section 2 reviews related work.
The details of the system and methodology are described in Section 3. Section 4 introduces
the experimental setup and indicators, followed by a discussion of comparative experi-
mental results to prove the effectiveness and robustness of the proposed system. Section 5
concludes the paper.

2. Related Work

Automatic detection, localization, and estimation of the 6D pose of the target are
virtual steps in UAV intelligent logistics. Therefore, it is important to design an accurate
and efficient intelligent-vision system. Previous related research [6,7] mainly focused on
target detection, obstacle avoidance, visual navigation, and environmental awareness for
UAVs; however, few focused on intelligent logistics tasks. To fill this gap, our research
mainly aims to customize a vision-guided system that involves object detection, target
tracking, semantic segmentation, object classification, and 6D object pose estimation for
UAV intelligent logistics. We review the related research on these vision tasks.

Object detection: Object detection is one of the fundamental tasks in computer vision.
Traditional methods usually extract features [8,9] and use AdaBoost [10] to classify and
detect targets. With the sharp development of deep learning, object detection methods
based on neural networks have rapidly emerged, and the frameworks of these methods can
mainly be categorized into two types: two-stage region-based methods, including [11–13],
and one-stage region-free methods, including [14–17]. Two-stage region-based methods
are characterized by the extraction of anchor boxes through the Region Proposal. A large
number of extracted anchor boxes will cause an imbalance between positive and negative
samples and affect the training and inference speed of the model. One-stage region-free
methods complete category prediction and location regression simultaneously to improve
the speed and reduce memory consumption. Considering the real-time advantage, we
adopted the SSD algorithm in our system, which is highly efficient in detecting objects
of different sizes and shapes and is robust because of the multi-scale feature maps used
for prediction.

Object tracking: Object tracking is a valuable task that is widely used in sports broad-
casting, security monitoring, unmanned vehicles, robots, and other fields. Traditional object
tracking methods include discriminative correlation filters (DCF) [18], Kernel tracking [19],
silhouette tracking [20], and point tracking [21]. Object tracking methods based on deep
learning have progressively replaced traditional methods and have become mainstream
in recent years. SiamFC [22] and SANet [23] are both successful representatives of deep-
learning-based methods. With the proposition of attention methods, the transformer-based
model shows excellent capabilities in various fields, such as natural language processing
(NLP) and computer vision. TransTrack [24] and TrackFormer [25] have achieved strong
performance in object tracking as a representation of the transformer-based model.

Semantic segmentation: Semantic segmentation is a pixel-level classification task
that aims to segment an image into different parts. Traditional semantic segmentation
methods are based on clustering approaches with additional information from the edges
and contours [26]. After the full convolution neural network (FCN) [27] was proposed,
methods based on deep learning have gradually dominated the semantic segmentation
field. U-Net [28] defined an encoder network to extract semantic information from images
and a decoder network to output pixel-level classification results. Similarly, U-Net adds
skip connections to fuse the complementary information of different layers. The pyramid
pooling module (PPM) is recommended in PSPNet [29] to aggregate context information
from different scales to upgrade the network’s ability to acquire global information. To
segment objects at multiple scales robustly, various spatial pyramid pooling (ASPP) meth-
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ods have been proposed by DeepLab [30]. Transformer-based research [31] on semantic
segmentation is also in the limelight.

Object classification: Classification is a classic problem in the field of computer vision.
Since Alexnet [32] was proposed, an era of deep learning has been proposed. With further
development of the classification network, basic network structures, such as Vgg [33] and
ResNet [34] have been proposed to rapidly mature the object classification field. A recently
published study [35] trained a lightweight CNN network to generate mid-level features.
In this study, the main task of our classification network is to deal with objects that have
comparable contexts but different geometry structures; therefore, two parallel branches are
designed to extract color features and depth features, respectively, and then fuse features to
classify the objects.

The 6D object pose estimation: The traditional method of object pose estimation is
represented by template matching [36]; however, it is difficult to apply in a messy envi-
ronment. In recent years, transformational changes in deep learning hold the promise of
estimating accurate, stable, and high-quality object pose parameters and encourage pose
estimation methods based on neural networks to become mainstream. These methods can
be roughly divided into two types: keypoint-based methods [5,37,38], which use neural net-
works to obtain key points first, and then compute 6D poses using the PnP algorithm [39], and
regression-based methods [40,41], which directly design a single neural network to regress
the 6D poses of the objects. Another group of approaches addressed the CAD model, which
resulted in significant geometry and structure priors. Mask2CAD [42] learns via contrastive
loss between the positive and negative pairs of image CAD. Pathch2CAD [43] builds on
Mask2CAD to solve the challenges of occlusions and new perspectives. The method [44]
proposed a semantic segmentation network that fuses multi-scale features in a densely con-
nected manner. The last proposed method, called FS6D [45], uses object pose estimation as a
feature-matching problem based on the feature-matching technique SuperGLUE [46].

3. System and Methodology
3.1. Hardware Setup

The staple hardware devices in the vision system include a server with NVIDIA
GTX1080Ti GPU and 3.6 GHz Intel i7-6850K CPU, router, micro UAV(DJI M100), and
Percipio RGB-D camera (FM830-I) mounted on the UAV. In addition to being compact,
lightweight, and easy to mount and unmount, the Percipio RGB-D camera simultaneously
combines structured light and binocular vision to generate depth maps with an accuracy
of up to 1 mm. Note that the RGB-D camera also acts as a depth sensor to measure the
distance from the UAV to the target. According to the parameters given by Tuyang, the
effective range of the Percipio FM830-I RGB-D camera is 0.5–6 m. Figure 2 shows the UAV
and Percipio RGB-D camera used in our vision system.

Figure 2. UAV (left), the Percipio RGB-D camera (right).

3.2. System Overview

The overall framework of the proposed system is illustrated in Figure 1. The RGB-D
camera equipped on the UAV takes the image every 0.5 s and then transmits the image
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to the server via WIFI. We applied the Mercury-MW150R router to transmit the signal
from the UAV to the server, which theoretically has an effective communication range of
300 m indoors and 800 m outdoors. On the server, these images are used to detect, track,
segment objects, and estimate 6D poses. The position, size, and 6D pose parameters of
the target were transmitted back to the UAV to provide visual assistance for handling
tasks. The following sections describe the detection, segmentation, and object 6D pose
estimation algorithms.

3.3. Object Detection

The system was applied to UAVs, which have high real-time requirements. In addition,
for safety reasons, in an actual scenario, the UAVs need to maintain a certain distance from
the target, resulting in a limited region of interest obtained by the detector. To deal with
these challenges, we proposed a strategy: cropping the image from 960 × 1280 to a small
size during the object detection stage to improve the inference efficiency of the network.

We selected the classic SSD algorithm as the object detector because of its high efficiency
in detecting objects of different sizes and shapes and its robustness because of the multi-scale
feature maps used for prediction. As an excellent single-stage object detection algorithm
with high accuracy, compared with the previous two-stage method [47], SSD significantly
improves the detection speed by canceling the bounding box proposals and consequent
feature resampling. We split the original image of size 960 × 1280 into sub-images of size
300 × 300. The size of the sub-images is an empirical choice, considering the inference speed
of each sub-image and the number of sub-images that need to be detected by SSD. Hereafter,
multi-scale convolutional feature maps generated at different scales in SSD can predict
the bounding boxes of objects in these sub-images with gratifying accuracy. Finally, the
bounding boxes predicted by SSD were mapped to the original image, as shown in Figure 3.

   

...

300×300 image blocks

single shot 

multibox 

detector (SSD)
960

1280

Figure 3. The process of object detection. The original image is cut into several 300 × 300 sub-images,
and then the SSD algorithm is applied to each sub-image, respectively. Finally, these bounding boxes
are mapped to the original image.

3.4. Object Tracking

In the tracking phase, the UAV moves to the target according to the detection results.
To maintain real-time detection while tracking, with full consideration of the correlation in
sequence frames, we propose an innovative strategy in which the current detection region
is centered on the detected area of the previous frame and expands it twice. Finally, the
size of the cropped image was adjusted to 300 × 300 pixels as the input of the detector to
output the current real-time detection results of each frame.

3.5. Semantic Segmentation

As a significant component of the proposed visual system, the semantic segmentation
algorithm is a system comprising multiple networks. Figure 4 illustrates this framework.
The segmentation system distinguishes detected objects from the background at the pixel
level to facilitate subsequent pose estimation. The black plate with three round marks in
addition to the object is a calibration plate used to generate the SIAT datasets and works in
the same way in all figures in the following text.
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Figure 4. The overall framework of the segmentation network. The encoder network uses convolu-
tional layers and MaxPooling layers to extract features of different scales from RGB and depth images.
The decoder layer uses convolution and Upsampling to output pixel-level classification results.

During tracking, the RGB-D camera acted as a depth sensor to measure the distance
from the UAV to the server. Semantic segmentation began when the UAV approached the
target within 1 m. We introduced a novel segmentation algorithm based on an encoder-
decoder structure to obtain a precise segmentation mask. Our semantic segmentation
network was inspired by the classical segmentation network U-Net [28] and consisted of
an encoder network and a decoder network. The convolutional and max-pooling layers
compose the encoder network to extract features at different scales, whereas the decoder
layer applies convolution and upsampling to output the pixel-level classification results. In
addition, because the features of the encoder and decoder layers contain complementary
information from different layers in the convolutional network, a skip network is applied
to fuse this information to improve the network performance.

Compared with the prior network, the innovation of our network is reflected in the
following two points:

• To better utilize the geometric information of the environment, in addition to the RGB
images, we input the depth images into the segmentation network. Therefore, our
encoder network consists of two branches, with one branch extracting color features
and the other extracting geometric features. Next, the color and geometric features of
the Max-Pooling layer will be concatenated at each downsampling stage to reinforce
the expressiveness of the features.

• We introduced the PPM [29] to aggregate contextual information at different scales to
reduce computation. In addition, to strengthen the recognition ability of each stage, we
added RRB [48] to refine the feature map, the details of which are shown in Figure 4.

In the training stage, cross-entropy is used as the loss function of the segmentation
network and is expressed as follows:

L = −
H

∑
i=1

W

∑
j=1

y
′
i,j log yi,j, (1)

where yi,j ∈ {1, 2, . . . , C} is the ground truth of each pixel and y
′
i,j is the prediction. H and

W denote the height and width of the image, respectively.
In summary, the proposed semantic segmentation network can achieve pixel-level

classification by fusing color and depth information, which significantly improves the
accuracy with a slight increase in the computational cost. However, the segmentation
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network performs unsatisfactorily on objects with similar or the same textures but diverse
geometries. Therefore, we leveraged a classification network to address this problem.

3.6. Object Classification

As mentioned in the segmentation network section, segmentation networks often
cannot accurately predict segmentation masks for objects with similar textures but differ-
ent geometries.

Figure 5 shows that the left image is a cup with a handle, and the right image is the
other side of the cup, in which the handle cannot be seen. Although the handle of the cup
has the same pattern as the cup body, it cannot be separated using color information alone.
We designed a new classification network that introduced depth information to classify
two objects.

Figure 5. Objects with the same textures and different shapes, the left object is a cup with a handle
and the right object is another side of the cup with the handle hidden. The depth image is next to the
color image.

According to the segmentation results of the previous step, the target regions were
cropped as inputs into the classification network. The structure of the classification is
shown in Figure 6: two convolutional networks extracting color and geometric features, a
fuse layer for the two types of features, and a fully connected layer to obtain the result. In
each branch, the features were first extracted through the convolutional and max-pooling
layers. Subsequently, after the fourth layer of convolution, the color feature vector and
depth feature vector of the same dimension are obtained. They are multiplied element by
element to fuse the final features and feed them into a fully connected layer. The outputs
were concatenated and eventually fed into the pose predictor.

Color Image

Depth Image

Result

Conv + maxpooling

Fully connected

Conv

Concat 

Figure 6. The overall framework of the classification network. Two convolutional networks are
designed to extract color and geometric features, respectively, then fuse those features, and utilize
fully connected layers to obtain results.



Appl. Sci. 2023, 13, 115 8 of 17

3.7. Object 6D Pose Estimation

We estimate the object 6D poses through the transformation matrix between the object
coordinate system and the camera coordinate system, which comprises the rotation matrix
R and translation vector t. This concept is illustrated in Figure 7.

Z'

X'

Y' Z
Y

XR

Object coordinate

Camera coordinate

t = (tx, ty, tz)

Figure 7. Illustration of object 6D pose estimation. The pose transformation matrix between the object
coordinate system and the camera coordinate system is composed of the rotation matrix R and the
translation vector t.

To solve the rotation matrix R and translation vector t requires sufficient geometric
information; we converted the region of the target in the depth map to a point cloud
according to the following formula:

z = d/s

x = (x′ − cx) ∗ z/ fx

y = (y′ − cy) ∗ z/ fy

where d and s denote depth and scale factors, respectively. x′ and y′ represent the coordi-
nates of pixels in the depth map, and cx, cy, fx, fy represent the intrinsic parameters of the
camera, and (x, y, z) are the corresponding point coordinates calculated. By converting
each pixel in the depth map, as described above, the data of the point cloud can be obtained.
The trimmed RGB image and its corresponding point cloud data are then fed together into
the 6D Pose Estimation network.

The overall framework of our network is shown in Figure 8. We use a feature extracting
backbone based on ResNet18 to map pixels to the color feature embeddings. Our backbone
has made some improvements to ResNet18; for details, the output of layer2, layer3, and
layer4 and the output of PPM go through an RRB module to strengthen the features.
The features from different scales are then fused, which is beneficial for pose estimation.
Meanwhile, a geometric feature extraction backbone based on PointNet is also constructed
to map 3D points to geometric feature embeddings. With the pixel-wise fused color and
geometric feature embeddings, the convolution layers will regress the 6D pose parameters
Ti(i = 1, 2, . . . , N) and confidence scores ci(i = 1, 2, . . . , N) for each pixel. The pose with the
maximum confidence score is regarded as prediction Tpre. To improve the pose-estimation
accuracy, we use the iterative refinement network proposed by denseFusion [41] to obtain
the refined pose.
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Color Feature 

Extracting 

Backbone

Geometric Feature 

Extracting 

Backbone

Fuse

...

Pixel-wise 

dense fusion feature

RGB 

Point cloud

Pose

Predictor

Refined pose

Iterative 

refinement 

network

Concat

RRB
Upsample

Conv + maxpooling

PPM + RRB

Conv + maxpooling + RRB

Conv  + RRB

RGB 

Color Feature 

...

Coarse pose

6D Pose Estimation Network

Color Feature Extracting Backbone

A

B

Figure 8. The overall framework of the 6D pose estimation network. (A) 6D pose estimation network:
Firstly, the color and geometric features are extracted from two backbones and fused at the pixel
level. Then, a predictor is used to regress the pose. Finally, the iterative refinement network is used
to refine the pose. (B) Color Feature Extracting Backbone: Our backbone is based on ResNet18,
for detail, the output of layer2, layer3, and layer4 and the output of PPM go through an RRB
module to strengthen the features. Then the features are fused from different scales to improve the
expressiveness of features.

We designed two loss functions in the training stage to deal with symmetric and
asymmetric targets. For asymmetric ones, each pose corresponds to the unique shape or
texture of the object; therefore, we define the loss as the average distance between the points
sampled on the object model transformed by the ground truth pose and corresponding
points transformed by the predicted pose. The loss function is defined as follows:

Li =
1
M ∑

j

∥∥∥(Rgtxj + tgt)− (Ri
predxj + ti

gt)
∥∥∥

where xj represents the homogeneous form of the j-th point of M randomly selected points
from the 3D model of the object. pgt = [Rgt|tgt] is the ground truth pose, and Rgt and tgt are
the rotation matrix and translation vector, respectively. In addition, ppredi = [Rpredi|tpredi]
is the current predicted pose of the i-th pixel.

For targets with a symmetric structure, one texture or shape can theoretically be asso-
ciated with multiple or infinite poses. Therefore, to avoid ambiguous learning objectives,
loss is defined as the average distance between the points transformed by the predicted
pose and their closest points on the object model transformed by the ground truth pose.
The loss function is defined as follows:

Li =
1
M ∑

j
min

0<k<M

∥∥∥(Rgtxj + tgt)− (Ri
predxk + ti

pred)
∥∥∥

4. Experiments
4.1. Datasets

YCB-Video Dataset The YCB-Video dataset [49] is a benchmark for the task of object
6D pose estimation, which contains 92 RGB-D video sequences and 133,827 frames of
21 items with different shapes and textures. Each frame includes one segmentation mask
and a 6D pose of all target objects in the image. For a fair comparison with previous
work, we set the same training and testing data, where 80 video sequences for training
and 2949 keyframes selected from the remaining 12 video sequences were used for evalua-
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tion. All methods mentioned below are based on the same training data and test data to
ensure fairness. In addition, 80,000 synthetic images released by [49] were used to train
our network.

SIAT Dataset To verify the robustness of the proposed method, we used an RGB-D
video dataset, the SIAT dataset. As shown in Figure 9, the SIAT dataset comprises 20 video
sequences of 10 items with different textures and shapes, with 18 for training and the
remaining two for evaluation. Each video includes hundreds of frames captured by a
Percipio RGB-D camera (FM830-I). The 3D model of each item in the SIAT dataset was
obtained using the method in [50]. Using a motion capture system, OptiTrack, an accurate
6D pose between the camera coordinate system and object coordinate system could be
obtained. An experimental site equipped with OptiTrack and its corresponding software
interface is shown in Figure 10. Once the 6D pose parameter of an object is obtained, the
segmentation mask of the object can be obtained using the camera model.

Figure 9. The objects present in the SIAT dataset.

Figure 10. The Motion Capture System, OptiTrack, and its corresponding software interface.
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4.2. Metrics

Metrics for Segmentation Two widely used metrics, mean intersection over union
(mIOU) and mean pixel accuracy (mPA), were utilized to evaluate the segmentation net-
work proposed in this study. mIOU is the average of IOUs of all classes, in which the IOU
of each class is calculated by dividing the intersection of the predicted area and actual
ground truth area by the union of the predicted and ground truth areas. The mPA is the
average pixel accuracy of all classes, in which the pixel accuracy of each class is defined as
the proportion of accurate pixels to the total pixels.

Metrics for Pose Estimation ADD-S (average closest distance) and AUC (area under
the ADD-S curve) were adopted to evaluate the performance of the 6D pose estimation
network proposed in the study on the SIAT dataset and YCB-Video dataset. The ADD-S is
defined as the average distance between each point of the 3D object model transformed
by the ground truth pose Pgt and the nearest point of the 3D object model transformed by
Ppred. Accuracy was defined as the percentage of testing samples with an ADD-S below
a certain threshold. In this study, we report the accuracy of an ADD-S of less than 2 cm.
In addition, an accuracy threshold curve of the ADD-S can be obtained by adjusting the
threshold. The AUC is defined as the area under the curve from 0 to a certain threshold.
For a fair comparison, we followed previous work to set this threshold to 0.1 m.

4.3. Experiments on the SIAT Dataset

Semantic segmentation Table 1 shows the segmentation accuracy of the proposed
segmentation network and other state-of-the-art methods on the SIAT dataset. As shown in
Table 1, the proposed segmentation network is much better than the other methods for both
mIOU and mPA metrics, which proves the overall performance of our network. Figure 11
shows some qualitative results of our segmentation network and other methods, from
which it can be observed that the results of our method are more accurate than those of
other methods, especially at the edges of the objects. Furthermore, for the texture-less object
in the first and second columns, it is difficult to obtain accurate and complete predictions
using the previous state-of-the-art methods. Our segmentation results after fusing the
depth information can better fit the ground truth.

Table 1. Quantitative evaluation of segmentation on SIAT Dataset.

mIOU mPA

U-Net [28] 57.2 94.2
DeepLabV3 [51] 61.3 95.0
PSPNet [29] 65.2 95.6

Ours 70.6 96.1

Classfication The accuracy of our classification network reached 96.4%, which proves
its robustness in dealing with similar objects, especially for objects with the same textures
but different geometrical structures, such as cups from different perspectives, which cannot
be distinguished from other segmented networks.

6D Pose estimation Table 2 shows the accuracy comparison of our 6D pose estimation
network and DenseFusion on the SIAT dataset, where Dense(per) represents the DenseFu-
sion method without an iterative refinement network and Dense(iter) is the DenseFusion
method using an iterative refinement network. Ours uses the same method as abbreviated.
As shown in Table 2, our results without iterative refinement are close to the refined results
of DenseFusion, and our refined result is significantly better than that of DenseFusion,
which proves the accuracy of our method. Some quantitative results of DenseFusion and
our pose-estimation network are shown in Figure 12. It can be observed that our method
can obtain better results overall, especially for the untextured object in the fourth column
of images. The estimation of DenseFusion has obvious errors, and our method can yield
more accurate results.
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Images

Ground Truth

Ours

DeepLabV3

PSPNet

U-Net

Figure 11. Some qualitative results of our segmentation network and other state-of-the-art segmenta-
tion networks. Different colors represent different categories.

Table 2. Quantitative evaluation of 6D pose on SIAT Dataset.

Dense(per) Dense(iter) Ours(per) Ours(iter)

AUC ADD-S AUC ADD-S AUC ADD-S AUC ADD-S

toy 97.4 88.6 97.4 88.6 88.8 97.2 88.8 97.8

Lay’s 68.0 73.8 72.7 75.3 76.0 74.0 78.6 82.2

bowl 97.4 91.5 97.4 91.5 92.2 97.7 92.3 99.1

Thermos cup 50.0 58.9 50.0 58.9 73.6 61.6 73.6 61.6

Tea box 69.2 82.0 69.2 82.0 75.2 68.8 79.5 68.8

Blue moon 52.2 75.7 60.8 76.4 78.1 62.5 84.0 73.1

Metal block 64.3 78.5 64.5 78.5 76.7 64.4 81.4 76.9

Carton 71.7 83.4 71.7 83.4 75.1 66.1 80.1 75.3

cup 96.3 85.9 97.6 87.6 87.9 97.7 88.9 99.5

back of cup 92.7 88.2 92.7 88.2 87.7 94.0 90.1 98.1

MEAN 75.7 79.5 77.3 81.0 81.4 78.7 83.7 83.2
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Figure 12. Quantitative evaluation of DenseFusion and the pose estimation network proposed in the
paper on SIAT pose dataset.

4.4. Experiments on the YCB-Video Dataset

The 6D Pose estimation Table 3 shows the accuracy comparison of the proposed 6D
pose estimation network in this study and other state-of-the-art methods on the YCB-Video
dataset, where Dense(per) denotes the DenseFusion method without an iterative refinement
network, Dense(iter) is DenseFusion using an iterative refinement network, and our method
is also abbreviated similarly. It can be observed that our method significantly outperforms
other methods on the ADD-S and AUC metrics, which confirms the advantages of our
method. Figure 13 shows some quantitative results of our network and the state-of-the-
art method DenseFusion on the YCB-Video dataset. The points in the image are formed
by projecting the 3D points of the object into a 2D image after transformation with the
predicted pose parameters, in which different colors represent different objects. The figure
(Figure 13) shows that our method can estimate more accurate results, particularly in
cluttered scenes, demonstrating the robustness of our network. Table 4 shows the execution
time of our system. It can be seen that the transmission task takes more time than the visual
processing task.

DenseFusion(iterative)

Ours(iterative)

Figure 13. In order to obtain a more intuitive comparison, some qualitative results are shown here.
All results are predicted based on the same segmentation mask as PoseCNN. The dots of different
colors represent objects of different categories. The name below the image indicates the name of
the method.
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Table 3. Quantitative evaluation of pose estimation on YCB-Video dataset.

PoseCNN + ICP Dense(per) Dense(iter) Ours(per) Ours(iter)

AUC ADD-S AUC ADD-S AUC ADD-S AUC ADD-S AUC ADD-S

002 master chef can 95.8 100.0 95.2 100.0 96.4 100.0 95.3 100.0 96.3 100.0

003 cracker box 92.7 93.0 92.5 99.3 95.5 99.5 92.6 100.0 96.3 100.0

004 sugar box 98.2 100 95.1 100.0 97.5 100.0 95.5 100.0 97.7 100.0

005 tomato soup can 94.5 96.8 93.7 96.9 94.6 96.9 96.8 100.0 97.7 100.0

006 mustard bottle 98.6 100.0 95.9 100.0 97.2 100.0 96.0 100.0 97.8 100.0

007 tuna fish can 97.1 97.9 94.9 100.0 96.6 100.0 96.0 100.0 97.2 100.0

008 pudding box 97.9 100.0 94.7 100.0 96.5 100.0 94.3 100.0 96.8 100.0

009 gelatin box 98.8 100.0 95.8 100.0 98.1 100.0 97.3 100.0 98.2 100.0

010 potted meat can 92.7 97.2 90.1 93.1 91.3 93.1 93.0 95.4 94.0 95.3

011 banana 97.1 99.7 91.5 93.9 96.6 100.0 93.5 96.8 97.1 100.0

019 pitcher base 97.8 100.0 94.6 100.0 97.1 100.0 93.4 99.5 97.9 100.0

021 bleach cleanser 96.9 99.9 94.3 99.8 95.8 100.0 95.0 99.7 96.7 100.0

024 bowl 81.0 58.8 86.6 69.5 88.2 98.8 84.4 73.9 88.8 96.8

025 mug 95.0 99.5 95.5 100.0 97.1 100.0 96.0 100.0 97.3 100.0

035 power drill 98.2 99.9 92.4 97.1 96.0 98.7 92.9 97.3 96.1 98.3

036 wood block 87.6 82.6 85.5 93.4 89.7 94.6 85.8 84.3 91.7 96.7

037 scissors 91.7 100 96.4 100.0 95.2 100.0 96.6 100.0 93.1 99.5

040 large marker 97.2 98.0 94.7 99.2 97.5 100.0 95.9 99.7 97.8 100.0

051 large clamp 75.2 75.6 71.6 78.5 72.9 79.2 73.7 79.2 75.7 80.1

052 extra large clamp 64.4 55.6 69.0 69.5 69.8 76.3 83.4 83.6 83.3 88.9

061 foam brick 97.2 99.6 92.4 100.0 92.5 100.0 94.8 100.0 96.4 100.0

MEAN 93.0 93.1 91.2 95.3 93.1 96.8 92.8 96.5 94.8 97.9

Table 4. Running time of all networks used in the vision system and the time of image transmission.

Detection Segmentation Classification 6D Pose
Estimation

Image
Transmission

Time (s) 0.049 0.02 0.002 0.023 0.11

5. Conclusions

In this study, a vision system is proposed for the object-handling tasks of UAVs. The
system combines 2D images and 3D point cloud information to accurately detect and
segment various objects in complex scenes and realize 6D object pose estimation, which
can provide a solid foundation for intelligent picking or other object handling tasks of
UAVs. In addition, to evaluate the performance of the system more comprehensively, we
contribute a 6D pose estimation dataset named the SIAT dataset. Experiments conducted
on the SIAT dataset and benchmark YCB-Video dataset demonstrate the robustness of our
system. Currently, the proposed method experiences slow image transmission. Upgrading
the hardware to improve image transmission speed and researching more lightweight
networks and algorithms to carry vision systems on UAVs to complete offline 6D pose
estimation will be considered in future works.
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