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Abstract

:

Kingdom of Among the G20 countries, Saudi Arabia (KSA) is facing alarming traffic safety issues compared to other G-20 countries. Mitigating the burden of traffic accidents has been identified as a primary focus as part of vision 20230 goals. Driver distraction is the primary cause of increased severity traffic accidents in KSA. In this study, three different machine learning-based severity prediction models were developed and implemented for accident data from the Qassim Province, KSA. Traffic accident data for January 2017 to December 2019 assessment period were obtained from the Ministry of Transport and Logistics Services. Three classifiers, two of which are ensemble machine learning methods, namely random forest, XGBoost, and logistic regression, were used for crash injury severity classification. A resampling technique was used to deal with the problem of bias due to data imbalance issue. SHapley Additive exPlanations (SHAP) analysis interpreted and ranked the factors contributing to crash injury. Two forms of modeling were adopted: multi and binary classification. Among the three models, XGBoost achieved the highest classification accuracy (71%), precision (70%), recall (71%), F1-scores (70%), and area curve (AUC) (0.87) of receiver operating characteristic (ROC) curve when used for multi-category classifications. While adopting the target as a binary classification, XGBoost again outperformed the other classifiers with an accuracy of 94% and an AUC of 0.98. The SHAP results from both global and local interpretations illustrated that the accidents classified under property damage only were primarily categorized by their consequences and the number of vehicles involved. The type of road and lighting conditions were among the other influential factors affecting injury s severity outcome. The death class was classified with respect to temporal parameters, including month and day of the week, as well as road type. Assessing the factors associated with the severe injuries caused by road traffic accidents will assist policymakers in developing safety mitigation strategies in the Qassim Region and other regions of Saudi Arabia.
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1. Introduction


Every year, traffic accidents cause a huge number of injuries and casualties worldwide, and the socioeconomic and emotional consequences suffered are enormous. It is important to understand what precedes a road traffic accident (RTA) and the resulting injury severity so that a reduction in road trauma is given top priority. Although traffic volumes declined during the COVID-19 pandemic worldwide, the average annual reduction in the number of deaths due to RTAs was well below the target (50% by 2020) established by the United Nations Decade of Action for Road Safety [1]. As per the latest global road status report on road safety published by World Health Organization (WHO), traffic accidents are responsible for over 1.3 million mortalities worldwide. Motor vehicle accidents are the leading cause of death among teenagers and young people globally [2]. Over three-quarters, (80%) of all deaths in developing countries are from traffic accidents involving men. The Kingdom of Saudi Arabia (KSA) has faced serious traffic safety issues, particularly since the oil boom in the early 1970s. With over 300,000 road accidents occurring annually [3], the KSA surpasses all the G20 countries [3, 4]. The KSA suffers through a loss of SAR 13 billion annually associated with RTAs [4], as 30% of hospital capacity is affected. Therefore, it is critical to understand what precedes a road traffic accident so that a reduction in road trauma prevalence and severity can be achieved with effective interventions.



The top five provinces in Saudi Arabia in terms of RTA frequency are Riyadh, Jeddah, Makkah, Madinah, and Qassim [5]. With the lowest population among these top five provinces, the Traffic Police Department in Qassim recorded more than 18,000 accidents in 2010. Around 23,000 people were involved in these accidents, leading to 2000 people being injured and the deaths of nearly 370 people [5]. There are few studies available in the current literature exploring crash severity in different cities in the KSA. Furthermore, Qassim Province is one of the 13 administrative provinces of the KSA, and has a high road traffic accident rate, similar to other provinces in the Kingdom [5]. Despite the growing traffic safety situation, no comprehensive study has been undertaken in recent times to assess the causes of these accidents and their severity in Qassim Province. To fill this gap, this research aims to develop a model for traffic accident severity in Qassim Province and identify the factors contributing to severity. To model crash injury severity, two ensemble machine learning (ML) methods, random forest and XGBoost, as well as logistic regression are proposed. Further, to overcome the interpretability issue of the ML methods, this study also proposes the application of the Shapley Additive exPlanations (SHAP) analysis for model interpretation and ranking of crash injury severity contributing factors. The findings of the study are expected to provide useful guidance to traffic engineers and safety practitioners for the proactive deployment of policy-related and engineering countermeasures to mitigate the burden of losses caused by RTAs.




2. Related Works


2.1. Crash Injury Severity Categorization


The injury severity of traffic crashes is typically classified as discrete outcome categories, such as fatal injury, severe injury, minor injury, and no injury. Several countries have established their own labeling system; for instance, the well-known system of KABCO developed by the National Safety Council (NSC), and adopted by the Federal Highway Administration (FHWA) [6], states: K = killed, A = incapacitating injuries, B = evident injuries, C = possible injuries, and O = no apparent injuries. The most common types of injury severity fall under three to five classes [7,8,9,10,11]. Severity can also be classified using a binary system [12,13,14]. Three or more classes represent the degree of severity in descending manner, with death or fatality indicating the worst case, severe or incapacitating referring to the victim being clearly injured, minor or slight indicating the victim is injured but not hospitalized, and the absences of injury or as loss of property as the last severity class. On the other hand, the binary system has also been used for studies with specific objectives, such as the scope of the paper, for instance, fatal/non-fatal, injury/non-injury, serious/minor accident, or property damage only (PDO)injury [14,15,16,17,18,19,20,21,22].




2.2. Modeling Approaches


Machine learning (ML) has been frequently used for severity prediction over the last decade due to its ability to capture complex relations and produce higher accuracy. The statistical means of severity prediction has shown some limitations, such as low accuracy and lack of reality due to the underlying assumptions [23,24]. ML does not require prior assumptions about the variables or the stochastic process that generates them, thus producing more reliable predictions. A number of ML approaches to severity prediction were implemented at the beginning of the millennium.




2.3. Previous Studies


The first study in the KSA used categorical types of attributes in a decision tree (CHAID and J48) and a probabilistic model, achieving 98% accuracy [25]. However, the classifiers were insufficient to represent the minority groups, i.e., injury and death. Driver distraction was found to be an important cause of injury severities. Two studies in the United Arab Emirates (UAE) used the same data and applied a multilayer perceptron (MLP) and ordered probit, with four classes targeted [26,27]. The overall prediction accuracy of the decision tree (J48) model after resampling the training set was 88.08% and 0.93 area under (AUC) of the ROC curve. The studies found that age between 18 and 30 years, gender (male), and collision type were the most important factors associated with fatal severity. The literature identifies the need for advanced approach applications on severity prediction modeling in the Gulf region.



Breiman et al. [28] developed a popular ML algorithm known as the random forest (RF) classifier, which has been frequently used for predicting the severity of RTAs. The random forest always outperformed the decision trees and other algorithms [20,29,30,31,32,33] Random Forest is an effective approach for predicting road traffic crash injury severity [34]. It was also adopted by Khan et al. in its latest application in the field of engineering [35]. Rezapour et al. [36] studied motorcycle crashes on two-lane highways with four-level classes of data, and the study relied on the literature to construct a binary category response. They found that the posted speed limit is the most important predictor, followed by age, highway functional class, and speed compliance. However, the authors stated that there was a possibility of bias identification, as the posted speed limit was the only continuous variable. Mokoatle et al. [37] were among the first to apply extreme gradient boosting trees (XGBoost), a relatively new classifier, to severity prediction [38]. The data was imbalanced, so the synthetic minority oversampling technique (SMOTE), a popular technique developed by [39] to handle imbalanced datasets, was used for the minority classes. Despite utilizing SMOTE, the four-class accuracy of the classifiers did not meet expectations, and the multi-class label was switched to binary classes.



Over the last five years, crash severity research has witnessed a revolution in terms of ML techniques due to the development of data science approaches. Rahim and Hassan [40] developed a framework based on a deep neural network (DNN) and applied ImageNet competition to improve the accuracy of the predictions using a stacking technique, a general procedure developed by [41] to enhance predictive accuracy by combining several predictive algorithms. The stacked model outperformed the other classifiers [10,22]. Tang et al. used Shapley Additive exPlanations (SHAP) to interpolate feature importance, which is a recent approach developed by Lundberg et al. [42]. The SHAP value impact on a model gives a high value for collision type, person count, and vehicle count. The authors in [43] adopted a light gradient boosting machine (LightGBM), novel natural gradient boosting (NGBoost), categorical boosting (CatBoost), and AdaBoost to predict two class responses. LightGBM outperformed the others regardingaccuracy and ROC curve. Feature importance was determined via SHAP. Injury severity was found to be affected by month, age, cause, and collision type.



Random forest (RF) is an effective approach for predicting RTA injury severity, followed by support vector machine, decision tree, and k-nearest neighbor [34]. However, DNN has been adopted in recent years and its results show promising accuracy [40,44]. Furthermore, the stacking and boosting techniques [45,46] are also accurate and distinguishable from a label perspective. Recently, extreme gradient boosting (XGBoost) outperformed random forest in a study conducted by Jamal et al. [47,48,49,50]. Other studies also found XGBoost to be highly reliable for severity prediction [51,52,53].



Table of the Appendix A summarizes some of the past studies on severity prediction discussed earlier. The table contains detailed information on each research study, including the study theme, study area, duration, and size (i.e., number of crashes) of the study, approaches adopted, best approach, accident categories, and the most significant factors. It may be observed from the table that previous studies have adopted different types of classification techniques (e.g., KNN, SVM, MLP, and decision trees) for severity prediction. In literature, sSeveral studies have also used boosting-based methodologies for severity prediction modeling. Similarly, the application of various statistical modeling techniques (e.g., logistic regression and ordered probit) has also been proposed.





3. Materials and Methods


3.1. Proposed Severity Prediction Framework


Figure 1 presents the severity prediction framework adopted in the present study. The framework starts by defining the accident data for the 2017–2019 period, collected from relevant agencies and authorities, and preprocessed for analysis. Parallel paths for binary and multi-responses were followed. Each path adopted the same steps for data splitting built using 10-fold cross-validation. Injury severity modeling was accomplished via logistic regression (LR) along with two machine ensemble learning algorithms, XGBoost and RF. Once the optimal model with the best performance was identified based on the evaluation metrics, an additive attribute was established using the SHAP approach to determine how important the variables were for injury severity and how each variable contributed to each severity mode. The following passages provide a detailed description of the methodology.




3.2. Study Area and Collection of Accident Data


Out of 13 provinces in Saudi Arabia, Qassim Province (shown in Figure 2B) was selected as the study area [54]. In geographical terms, Qassim Province lies between 40°000 E and 45°000 E longitude and 23°300 N and 28°000 N latitude, with 10 sub-provinces and 155 localities, divided into 13 governorates, namely Buraidah, Unaizah, AlAsyah, Uyun Al-Jiwa, Al-Badaya’a, Al Bakiriyah, Daria, Al Mithnab, Al Nabhanya, Ar Rass, Riyadh Al-Khabra, Al Shammasiya, and Oklat AlSkoor [55]. There are 1.3 million people living in Qassim, and the province covers 58,046 square kilometers [55]. Approximately 49% of Qassim’s population resides in Buraydah, the province’s capital city. Located in the middle of the KSA with extensive agricultural activities, it links the north with the south and the west with the east, hence heavy carriers travel on its roads for different agricultural, commercial, religious, and cultural purposes. With 205,000 tons of dates produced annually (both for local consumption and export), the region has been able to enhance its economic value, being one of the largest producers of luxury dates in the Middle East. In addition, various types of fruits and vegetables are extensively produced.



It is worth mentioning that the number of traffic accidents has witnessed a decreasing trend in recent years for many reasons, mainly due to the implementation of mitigation strategies [56]. In 2010, more than 4232 injuries and 1054 deaths were recorded in Qassim [5], reducing periodically until 2016 [57]. Figure 2 illustrates the distribution of RTAs for the given assessment period and clearly shows a continuous reduction in the number of accidents. Al-Atit et al. [57] found that speeding, irregular overtaking, irregular turning, failing to prioritize other vehicles, irregular stops, lack of road readiness, driver carelessness, cell phone usage while driving, and disobeying traffic laws were the most important causes of RTAs. Apart from not wearing a seat belt, these are the ten most common causes of RTAs in Qassim Province.



This analysis is based on traffic crash data collected from the Ministry of Transport and Logistic Services. The data contains information about accidents that have occurred on the main highways under the jurisdiction of Ministry of Transport. During the period of data collection, between January 2017 and December 2019, 3506 accidents were reported. The data also consists of detailed information on various explanatory variables, as shown in in Table 1.




3.3. Methods


3.3.1. Platform


The most popular options for classification problems are the Python analytic platform and Waikato Environment for Knowledge Analysis (WEKA). Python is a well-known programming language due to its flexibility and it is an open-source platform [58]. WEKA is a free software developed at the University of Waikato, New Zealand, which is a companion software to the book Data Mining: Practical Machine Learning Tools and Techniques [59]. WEKA is being used extensively for severity predictions [7,11,26,60,61,62]. In 2017, Mitrpanont et al. [63] compared Python with other machine-learning algorithms and found Python to be the best performer in terms of precision, recall, and correct/incorrect instances. Hence, Python was adopted in this research.




3.3.2. Response Process


The dataset is considered imbalanced if one label/class of the data appears significantly more often than others. Imbalanced classifications can be slight or severe; for example, the difference ratio between PDO, injury, and death was found to be 1726:1518:262 in the present research. Figure 3 illustrates death as a minority classification, while PDO and injury are majority classifications. The ML models face difficulty with regard to extracting accurate information from imbalanced data and producing biased results. There are various methods to overcome this problem, for instance, resampling techniques and the synthetic minority oversampling technique (SMOTE).



Resampling can be done through either over-sampling or under-sampling. While performing under-sampling, the run time and storage problems can be improved by reducing the amount of training data, but this might result in a loss of potentially important information. Over-sampling, however, does not lead to information loss but does increase the likelihood of overfitting since it replicates minority class events. Using SMOTE, overfitting is mitigated as synthetic examples are generated instead of replicating instances. In addition, no useful information is lost.



SMOTE, however, does not consider neighboring examples from other classes when generating synthetic examples. Consequently, classes can overlap, and noise can be introduced. Furthermore, SMOTE does not support categorical data in Python yet; even if categorical data are transformed into numerical; SMOTE would generate data that did not make sense. Therefore, a resampling technique with a typical random over-sampling was adopted in this research to overcome the ML bias problem.




3.3.3. Logistic Regression


The logistic regression (LR) or logit model is commonly used for classification and prediction. The method creates probabilities between one and zero. Using a given dataset of independent variables, LR estimates the probability of the occurrence of an event. In this study, LR predicted the probability of injury, death, and PDO with three possible outcomes: y1 = property damage; y2 = injury, and y3 = death (coded as y1 = 0; y2 = 1; y3 = 2). For LR, the modeling function described the relationship between a class’s probability and the set of independent or predictor variables. For the current problem, a typical LR model equation may be expressed as:


  P   y = 1 | x   =  1  1 +  e    − z       =    e   z      1 +  e   z      ∈   0 , 1    



(1)






  z = β _ 0 + β _ 1   x _ 1 + β _ 2   x _ 2 + ⋯ ⋯ + β _ n   x _ n = x β  



(2)




where xβ represents the sigmoid S-shaped function. In the event that the probability is greater than 0.5, the dataset is classified as a death, an injury, or property damage. The parameters included in LR were the number of iterations, epsilon, learning rate strategy, step size, and regularization. Moreover, the learning rate strategy and regularization were considered fixed and uniform.




3.3.4. Extreme Gradient Boosting (XGBoost)


XGBoost was used to solve problems requiring supervised learning, where multiple features were used to predict the target variable from the training data. XGBoost is based on the gradient boosting technique, which is a term coined by [64], in a paper titled “Greedy Function Approximation: A Gradient Boosting Machine”. The gradient-boosting decision tree (GBDT) algorithm was improved by Chen and Guestrin in 2016, resulting in the XGBoost algorithm [38]. This method helps models to predict more accurately, reduce computational efforts, and avoid overfitting issues. In addition, it has been reported that XGBoost demonstrates better predictive performance compared with traditional machine learning algorithms. XGBoost provides a parallel tree boosting and is a leading machine-learning library for regression, classification, and ranking. XGBoost is an ensemble algorithm, which refers to the use of multiple learning algorithms to achieve better predictive performance than any single algorithm.



The general form of the XGBoost objective function is presented in Equation (3), where l is the training loss function, and Ω is the regularization term. It uses the training data (with multiple features)    x i    to predict a target variable    y i  ,   and     y ^  i    is the prediction; k refers to the number of trees; and    f k    represents a function in the functional space. However, the XGBoost objective function at iteration t needs to be minimized using Equation (4):


  O b j e c t i v e   O b j =   ∑   i = 1  n  l (  y i  ,   y ^  i  ) +   ∑   k = 1  K  Ω    f k     



(3)






  o b  j   t    =   ∑   i = 1  n  l    y i  ,   y ^  i       t − 1       +  f t     x i    + Ω    f t     



(4)







In the regularization term in Equation (5), XGBoost uses two parameters to define the complexity of a tree, … as the number of leaves and L2 as the norm of leaf scores, while γ and λ are hyperparameters. The overall complexity is defined as the sum of the number of leaves weighted by γ and a λ weighted L2 norm of the leaf score-leaf weight:


  Ω    f t    = γ T +  1 2  λ   ∑   j = 1  T   w j    2   



(5)







The second part is the training loss, which can be represented as an additive model since it is under the boosting space as given in Equation (6). This is the final model ŷ of t composed of the previous model, which is     y ^  i       t − 1       plus the new model that we want to learn:


  F i n a l   m o d e l    t  =   y ^  i      t    =   ∑   k = 1  t   f k     x i    =   y ^  i       t − 1     +  f t     x i     



(6)







To use traditional optimization techniques, the objective function must be transformed into a Euclidean domain via Taylor approximation using Equation (7). To simplify the objective function’s training loss, Taylor’s equation is applied on the two terms in Equation (8), which will introduce two new terms    g i    and    h i    in Equation (9), representing the values of each leaf in the tree. Making the original function in quadratic form:


  T a y l o r   a p p r o x i m a t i o n = f   x + Δ x   ≃ f  x  +  f ′   x  Δ x +  1 2   f ″   x  Δ  x 2   



(7)







XGBoost Simplified with Taylor Approximation:


  o b  j   t    ≃   ∑   i = 1  n    l    y i  ,   y ^  i       t − 1       +  g i   f t     x i    +  1 2   h i   f t    2     x i      + Ω    f t     



(8)






    g i  =  ∂    y ^  i       t − 1       l    y i  ,   y ^  i       t − 1           h i  =  ∂ 2       y ^  i       t − 1       l    y i  ,   y ^  i       t − 1         



(9)




where the    g i    term indicates the first-order differentiation, and    h i    is the second order differentiation for approximating the function. The new form is when it is put together, i.e., training loss and regularization, and it is simplified in Equation (10) by using G and H to refer to the summation of    g   s      and    h   s     , respectively. G and H now represent the entire tree structure for this formulation:



XGBoost Objective Function Representing Trees:


  o b  j   t    =   ∑   j = 1  T     G j   w j  +  1 2     H j  + λ    w j    2    + γ T  



(10)




where,    G j  =   ∑   i ∈  I j     g i    and    H j  =   ∑   i ∈  I j     h i   .



The equation above is now becoming sum T quadratic equations. For each quadratic function, it is now possible to drive optimal weight which is    w j    the purpose to drive its simplified, as in Equation (11):



XGBoost Objective Function Optimal Weight:


  O p t i m a l   w e i g h t =  w j    *  = −    G j     H j  + λ    



(11)







The final step is to substitute    w j    back into the original objective function. At this point, a new objective function without any    w   S      is Equation (12). This objective function is known as the minimum objective function, and this is the most simplified form of quadratic approximation of the original objective function [65]:



XGBoost Minimum Objective Function:


  M i n O b j = −  1 2    ∑   j = 1  T     G j    2     H j  + λ   + γ T  



(12)








3.3.5. Random Forest


To implement the RF utilizing decision trees, three steps must be followed. Start by generating an NC size bootstrap sample from the overall N data to grow a tree by randomly selecting predictors X = (xi, i = 1, …, p). Then use the predictors’ Xi at different nodes n of the tree to vote for the class label y for the same node. Further adjustments are made at each node before the best predictor for the split is obtained. As a last step, the out-of-bag (OOB) data (N–Nc) are run down the tree to determine the misclassification error. Repeat these procedures until the minimum out-of-bag error rate (OOBER) is reached for a large number of trees. Averaging the series of trees allows each observation to be assigned to a final class ‘y’ by majority vote. Moreover, this method uses the information gain ratio as its split criterion, which may be calculated from Equation (13):


  I n f o r m a t i o n   G a i n   R a t i o n     I G R   =   I n f o r m a t i o n   G a i n    x    S p l i t   i n f o    x     



(13)




where x represents the randomly chosen example in the training set. In short, split info refers to information needed to determine which branch an instance or example belongs to.




3.3.6. Hyperparameter Tuning


Hyperparameter tuning plays a crucial role in the outcome of ML algorithms by identifying the optimal parameters for an algorithm. A hyperparameter is a set of values tuned before the learning process begins to reduce model complexity, improve generalization performance, and avoid overfitting. Iteratively traversing the entire space of available hyperparameter values is time-consuming for larger parameter spaces. It is possible to tune hyperparameters using several techniques, such as grid search and random search. Grid search was used to tune the hyperparameters and the performance metrics based on the model’s classification accuracy. Table 2 lists the hyperparameter range used for XGBoost. Several parameters were tuned, and the accuracy of the model was found to be affected by them. Table 2 also includes the RF and LR hyperparameter range. The parameter values as stated, were tuned for optimal accuracy value via grid search.




3.3.7. Model Interpretation


SHapley Additive exPlanations (SHAP) is a method to explain the individual predictions of any machine learning model. SHAP is based on the game theoretically optimal Shapley values [66]. SHAP aims to explain the prediction of instance x by computing the contribution of each feature [67]. It is frequently adopted due to its durability, solid theoretical foundation, fair distribution of prediction among features, fast implementation for tree-based models, and global model interpretations. It includes feature importance, feature dependence, interactions, clustering, and summary plots.



Equation (14) generates the Shapley value for a feature i. For a specific feature value (float number), the inputs for the blackbox model  f , and the input datapoint  x , this datapoint will be a singular row in the dataset. Iterate the overall possible subset prime combination of features to ensure that the interaction between individual feature values is accounted for. One of the subsets could be any other feature, and the remaining are treated as unknown values. By this, consideration is left only to the selected feature:


   ϕ i    f , x   =   ∑    z ′  ⊆  x ′        z ′   !   M −   z ′   − 1   !   M !   [  f x    z ′   −  f x     z ′  / i   ]  



(14)




where    ϕ  i       f , x     is the Shapley value for a feature  i ,  f  corresponds to the blackbox model,  x  refers to the input data point,    z ′    represents the subset feature,   x ′   stands for the simplified data input, and   M   denotes the total number of features.



The core step is to get the blackbox model  f  output for the subset with    f x    z ′     and without    f x     z ′  / i     for the feature desired (i.e., interested in   i  ). The difference in these two terms reveals how much  i  contributes to the prediction in the subset known as the marginal value. Repeating these for all the possible combinations, each permutation of subsets for each of those is additionally weighted according to how many players in that collation.




3.3.8. Model Evaluation


In modeling a classification problem, the metrics to test the model’s performance are the same for statistical and machine learning. Figure 4 presents the four types of outcomes that can occur when performing classification predictions.



When an observation is predicted to belong to a class and does belong to that class, it is considered a true positive (TP). True negatives (TN) occur when a prediction of an observation does not belong to a class, and it actually does not belong to one. A false positive (FP) occurs when an observation is predicted to belong to a class when it actually does not. In false negative (FN) situations, the prediction of an observation does not belong to a particular class, but in reality, it does. Figure 4 presents a confusion matrix with a commonly used binary classification system. The true positive ratio (TPR) quantifies the proportion of positives that are correctly identified, while the false positive ratio (FPR), using Equation (15), quantifies the proportion of negatives that are incorrectly classified as positives:


  F a l s e   P o s i t i v e   R a t i o     F P R   =   F P   F P + T N    



(15)







Accuracy, precision, F1-score, and recall were used to evaluate the performance of the classification model. Accuracy is the percentage of correct predictions for the test data using the following equation:


  A c c u r a c y =   C o o r e c t   p r e d i c t i o n s   A l l   p r e d i c t i o n s   =   T P + T N   T P + F N + T N + F P    



(16)







The precision is the percentage of true positive examples among all the examples predicted to belong to a particular class using Equation (17). Low precision indicates a high number of false positives (FPs):


  P r e c i s i o n =   T P   T P + F P    



(17)







The sensitivity/recall of an algorithm determines its completeness using Equation (18). A low recall indicates the presence of a large number of FNs:


  R e c a l l =   T P   T P + F P    



(18)







By taking the harmonic mean of a classifier’s precision and recall, the F1-score is calculated. The F1-score comes into play when one classifier has a high recall, while the other has high precision. The F1-scores of both classifiers can be used in this case to determine which classifier produces better results via Equation (19):


  F 1 − s c o r e =   2   P r e c i s i o n × R e c a l l     P r e c i s i o n + R e c a l l   =   T P   T P +  1 2    F P + F N      



(19)







Moreover, the area under the receiver operating characteristic (AUC-ROC) curve is used for evaluating the model performance and is one of the most important metrics, indicating how well the model distinguishes between injury classes. If the AUC is high, the model is more accurate in predicting severity classes to label injury as injury and death as death. The ROC curve is plotted with TPR on the y-axis and FPR on the x-axis.






4. Results and Discussion


4.1. Multi-Classification


We investigated the model performance prediction using the evaluation metrics of accuracy, precision, recall, F1-score, and AUC. It is worth mentioning that non-resampling models were employed, and their performance was poor and biased toward the majority classes, as predicted earlier. The combined classifiers could not achieve more than 0.57 accuracy. Even if the accuracy was ignored, the F1 the score was also very poor. Therefore, that eliminated the need to check the recall and precision scores.



The importance of balancing the data is illustrated in Figure 5. Clearly, the ensemble models were capable of learning and predicting, not only in terms of accuracy but also in terms of sensitivity and precision (Table 3). It should be noted that the results demonstrated in Table 3 are the optimal models via a grid search process and by taking their macro average. Apart from LR, the other two models performed spectacularly in Figure 5. RF and XGBoost were able to distinguish between the classes by seeing the AUC reach 0.87. Furthermore, the XGBoost precision, recall, and F1-score were 0.7, 0.71, and 0.71, respectively. XGBoost gained an edge over RF in all evaluation metrics. In addition, RF had a low observation to be predicted to belong to a class when it actually did not (i.e., FP). These finding supports the claim of the ability of RF to generate desirable outcomes with accuracies of 0.69 and 0.87 AUC.



The confusion matrix of both RF and XGBoost in Figure 5a,b were analyzed along with their ROC curves. Previously, the ensembled algorithm was not able to identity the minority classes, while in Figure 5a,b, it is vice versa. From their confusion matrices in Figure 5a, XGBoost was better able to correctly classify the minority classes than RF. The ROC curves complete the story by showing the class curves, and that the minority class area is much greater than the majority class area. Moreover, the outcomes are within other researchers’ range of outcomes [10,43,62,68,69].




4.2. Binary Classification


The outcome of the previous models’ performance is more than satisfying if it is compared with previous studies in the literature. The Pillajo et al. [69] approach achieved more than 70% accuracy, with 77% precision, an AUC of 0.8. was obtained by Tang et al. [10]; and an accuracy and ROC curve value of 0.73 and 0.71, respectively, was attained by Dong et al. [43]. Further, some studies treated the target as a binary classification [37,70]. To maximize the potential of the dataset, the present study adopted the same approach by merging PDO and injury in a non-fatal class and using the minority class as the fatal class. By merging them, the accuracy was increased; however, the ability to distinguish the class remained an issue. Table 4 shows the performance of the three models when they were balanced to prevent the misclassification of minority classes.



In Table 4 and Figure 6, the accuracies are self-explanatory in their increments. Even RF and LR generated a high precision of 0.91 and 0.65, respectively. XGBoost improved in terms of accuracy, precision, recall, and F1-score (all 0.94), making its prediction reliable and truly representative of the minority class (Figure 6). The XGBoost area under the ROC curve was 0.98, which indicates its ability to classify the injury severity classes correctly. Meanwhile, RF precision, recall, and F1-score improved significantly with 0.91, 0.9, and 0.9, respectively. Moreover, the TP and low FP of the confusion matrix enhanced the AUC to achieve 0.97 (Figure 6a). These outcomes also comply with those of other studies [11,25,70,71,72,73,74,75]. The average fold accuracy of LR is not competitive (Figure 6b), as in the previous situation; however, the evaluation metrics further improved.




4.3. Model Interpretations


An enhanced model analysis was conducted through a SHAP summary assessment. The calculated quantitative value that sums the Shapley values by each severity class and represents the contribution of each variable to the model can be seen in Figure 7. The input variables are arranged vertically according to their influence, beginning with the most influential variable. In this figure, the horizontal axis represents the SHAP value, and the color scales indicate the significance level of each variable, with blue indicating low significance and pinkish-red indicating high significance. Data points within a range of SHAP values with more data points show a stronger correlation between input variables and injury severity. Figure 7a is the summary plot of the PDO class, which identifies that PDO accidents were mainly classified depending on the consequences and the number of vehicles involved. Moreover, the main cause of the accident is a factor in the higher severity level. Figure 7b identifies the most important parameters for classifying the injury class: main cause followed by road type and lighting condition. The most severe class (i.e., death class) is affected mostly by temporal parameters: month and day of the week, and, again, road type (Figure 7c). Based on the summary plots in Figure 7, it can be seen that a feature’s value directly correlates with its impact on prediction. However, only SHAP dependence plots can reveal the exact shape of the relationships.




4.4. Dependence Plot


A SHAP dependence contribution plot provides similar insights to a partial dependence plot (PDP) but yields much more information. Dots represent the data rows. The horizontal location indicates the actual value in the dataset, while the vertical location indicates how it affected the prediction. In the interaction analysis, trends were examined in terms of month of the year, day of the week, consequences, main causes of accidents, lighting conditions, accident types, and vehicle types. It is also possible, however, to evaluate other variable interactions.



The SHAP value in Figure 8a, lighting condition, is greater when PDO accidents occur in daylight and at dusk. It can be seen that the vehicles involved were private cars and light trucks, while the heavy trucks were mostly quarantined during the peak hours, occupying the road areas far less than at dusk. When a vehicle malfunctions, it is more likely to interact with other vehicles or infrastructure. This type of impact positively favors PDO severity (Figure 8b). In Figure 8c, it can be seen that rear-end collision, rollover, and swerving were positively categorized as injury severity. For instance, in rear-end collisions, there is a higher risk that the driver will suffer a spinal cord injury, and such a scenario is positively classified as injury severity.



The national weekend in Saudi Arabia falls on Friday and Saturday, and as the weekend approaches, accidents are more likely to cause death (Figure 8e). As head-on collisions, burns, and human runovers have a higher likelihood of resulting in fatal injuries, they do not positively qualify as injury severity. The national summer holiday in Saudi Arabia is from June to late August, so in Figure 8f, it can be seen that June and July had the highest SHAP value. On the other hand, in March and May, death severity was found to be less likely.





5. Conclusions


Traffic accidents cause a large number of fatalities and enormous socioeconomic consequences every year in KSA. The current study proposes an application of machine learning-based algorithms and SHAP for modeling and interpreting traffic accident injury severity in the Al-Qassim province of KSA. Using two ensemble machine learning methods, random forest and XGBoost, as well as logistic regression, revealed that XGBoost outperformed the others by achieving an accuracy of 0.71 and an AUC of 0.87. Further analysis conducted by treating the target variable as a binary classification revealed that XGBoost achieved an accuracy of 0.94 and distinguished the class with an AUC of 0.98. SHapley Additive exPlanations can effectively extract the feature importance and explore the relationships with the help of dependence plots.



Results revealed that the following factors primarily impact the accident injury severity: month of the year, road type, consequences of the accident, and day of the week. Furthermore, the presence of paint, cateyes and road conditions have the least impact on the severity of the injury. A precise analysis for each injury severity class revealed that PDO accidents mainly depend on the consequences and the number of vehicles involved. The main cause of accidents is the most important parameter for classifying an injury class, followed by road type and lighting conditions. For the death class, month of the year, day of the week, and road type were the most significant variables.



The nature of the available data resulted in the present study having some limitations. The explanatory variables were categorical, except the number of vehicles involved. There was also an absence of some important variables, such as the physiology of the driver, age, and gender. The authors suggest the adoption of XGBoost and SHapley Additive exPlanations in injury severity classification studies and recommend investigating the implementation of DNN or hybrid neural networks in future research.
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Appendix A. Summary of Past Studies on Injury Severity Prediction
















	No.
	Year
	Country
	Duration
	Size
	Injury Severity Classes
	Approach
	Best Approach
	Significant Factors
	Reference



	1
	2022
	Pakistan
	2015–2019
	1784
	
	-

	
Fatal




	-

	
Non-Fatal






	
	-

	
Naive Bayes (NB)




	-

	
K-Nearest Neighbor (K-NN)




	-

	
Binary Logistic Regression (BLR)




	-

	
Random Forest (RF)




	-

	
Extreme Gradient Boosting (XGBoost)






	
	-

	
XGBoost






	
	-

	
Vehicle type




	-

	
Month of the year




	-

	
Driver’s age




	-

	
Alignment of the road






	S. Zhang, Khattak, Matara, Hussain, & Farooq (2022) [55]



	2
	2022
	China
	2018
	567
	
	-

	
Property Loss




	-

	
Fatal




	-

	
Injury






	
	-

	
XGBoost




	-

	
Bayesian network






	
	-

	
Bayesian Network






	
	-

	
Roadside protection facilities




	-

	
Roadway type




	-

	
Central isolation facilities




	-

	
Light condition




	-

	
Crash time




	-

	
Weather conditions






	Yang, Wang, Yuan, & Liu (2022) [75]



	3
	2021
	Saudi Arabia
	Jan 2017–Dec 2019
	13,546
	
	-

	
Fatal




	-

	
Injury




	-

	
PDO






	
	-

	
XGBoost




	-

	
Logistic regression




	-

	
Random Forest




	-

	
Decision Tree






	
	-

	
XGBoost






	
	-

	
Collision type




	-

	
Weather condition




	-

	
Road surface




	-

	
On-site damage




	-

	
Vehicle type




	-

	
No. of lanes




	-

	
Crash cause






	Jamal et al. (2021) [47]



	4
	2021
	US
	2004–2021
	204,758
	
	-

	
PDO




	-

	
Injury






	
	-

	
Gradient Boosting (GB)




	-

	
AdaBoost




	-

	
MLP




	-

	
Stacking Ensemble






	
	-

	
Stacking Ensemble






	
	-

	
Collision type




	-

	
Person count




	-

	
Vehicle count






	Niyogisubizo et al. (2021) [19]



	5
	2020
	US
	2010–2018
	8859
	
	-

	
Suspected Serious Injury




	-

	
Non-Incapacitating Injury




	-

	
Possible Injury




	-

	
Killed






	
	-

	
Random Forest




	-

	
XGBoost






	
	-

	
XGBoost






	
	-

	
Road class




	-

	
Speed limit




	-

	
First harmful event






	Lin, Wu, Liu, Xia, & Bhattarai (2020) [51]



	6
	2020
	India
	2016–2018
	7654
	
	-

	
No Injury




	-

	
Simple Injury




	-

	
Grievous Injury




	-

	
Fatal Injury






	
	-

	
Ordered Probit




	-

	
Random Forest




	-

	
Conditional Inference Forest






	
	-

	
Conditional Inference Forest






	
	-

	
Type of colliding vehicle




	-

	
Collision type




	-

	
Driver age




	-

	
Visibility of the road.






	Panicker & Ramadurai (2022) [9]



	7
	2019
	US
	2017
	201,581
	
	-

	
Property Damage




	-

	
Injury




	-

	
Fatal






	
	-

	
Multinomial Logit




	-

	
Random Forest






	
	-

	
Random Forest






	
	-

	
Collision type




	-

	
Occupant age




	-

	
Speed limit






	Wang & Kim (2019) [32]



	8
	2019
	South Africa
	2015–2017
	1525
	
	-

	
No Injury




	-

	
Serious




	-

	
Slight




	-

	
Killed






	
	-

	
Multivariate Logistic Regression




	-

	
XGBoost






	
	-

	
XGBoost






	
	-

	
Truck license




	-

	
Light motor duty license




	-

	
Vehicle type






	Mokoatle et al. (2019) [37]



	9
	2018
	US
	2008–2012
	32,730
	
	-

	
No Injury




	-

	
Minor Injury




	-

	
Severe Injury






	
	-

	
Decision Tree C4.5




	-

	
Nearest-Neighbor Instance-Based




	-

	
Random Forest






	
	-

	
Random Forest






	
	-

	
Age/gender groups




	-

	
Area type




	-

	
Median width




	-

	
Crash contributing factors






	Mafi et al. (2018) [30]



	10
	2018
	US
	2012–2015
	15,164
	
	-

	
No Injury




	-

	
Non-Incapacitating Injury




	-

	
Incapacitating/Fatal






	
	-

	
SVM




	-

	
Back Propagation Neural Network




	-

	
Ordered Logit






	
	-

	
SVM






	
	-

	
Relative speed




	-

	
Gross vehicle weight






	Liao et al. (2018) [74]



	11
	2017
	Malaysia
	2009–2015
	1130
	
	-

	
PDO




	-

	
Evident Injury




	-

	
Disabling Injury






	
	-

	
Recurrent Neural Network




	-

	
Bayesian Logistic Regression




	-

	
Multilayer Perceptron






	
	-

	
Recurrent Neural Network






	
	-

	
Dry surface




	-

	
Lighting conditions (dark with and without street lights)






	Sameen and Pradhan (2017) [75]



	12
	2017
	UAE
	2008–2013
	5973
	
	-

	
Minor




	-

	
Moderate




	-

	
Severe




	-

	
Death






	
	-

	
Decision Tree (J48)




	-

	
Naive Bayes




	-

	
Rule Induction (PART)




	-

	
Multilayer Perceptron






	
	-

	
Decision Tree (J48)






	
	-

	
Nationality




	-

	
Collision type (pedestrian–vehicle)




	-

	
Age (18–30)




	-

	
Male






	Taamneh et al. (2017) [25]



	13
	2016
	Saudi Arabia
	2014–2015
	85,605
	
	-

	
Injury




	-

	
No Injury




	-

	
Deaths






	
	-

	
Decision Tree (CHAID)




	-

	
Decision Tree (J48)




	-

	
Naive Bayes






	
	-

	
Decision Tree






	
	-

	
Distraction while driving






	Al-Turaiki et al. (2016) [24]



	14
	2015
	Iran
	2007
	1063
	
	-

	
Fatality




	-

	
Evident Injury




	-

	
No Injury






	
	-

	
SVM, Kernels




	-

	
Multilayer Perceptron (MLP)




	-

	
Genetic Algorithm




	-

	
Combined Genetic Algorithm and Pattern Search






	
	-

	
MLP






	
	-

	
Speed of impact distance






	Aghayan et al. (2015) [72]
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Figure 1. Severity prediction framework. 
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Figure 2. Description of study area: (A) Qassim Province highlighted on a map of Saudi Arabia; (B) study area boundaries; (C) yearly distribution of data collected. 
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Figure 3. Number of accidents under each injury severity classification for highway crashes in Qassim Region between January 2017 and December 2019. 
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Figure 4. Typical confusion matrix scenario for classification problems. 
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Figure 5. Multi-class model confusion matrix and ROC curves: (a) XGBoost model; (b) random forest model; (c) classifier accuracies by 10-fold multi-class. 






Figure 5. Multi-class model confusion matrix and ROC curves: (a) XGBoost model; (b) random forest model; (c) classifier accuracies by 10-fold multi-class.



[image: Applsci 13 00233 g005]







[image: Applsci 13 00233 g006 550] 





Figure 6. Binary-class model confusion matrix and ROC curves: (a) XGBoost model; (b) random forest model; (c) classifier accuracies by 10-fold binary-class. 
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Figure 7. SHAP plots for variable importance per class: (a) PDO class; (b) injury class; (c) death class. 
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Figure 8. SHAP dependence plot for variable importance per class: (a,b) PDO class; (c,d) injury class; (e,f) death class. 
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Table 1. Descriptive statistics of research data explanatory variables *.
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Variables

	
Description

	
Variable Categories

	
Frequencies






	
Dependent Variable




	
Accident_categories

	
Severity of crash

	
Property damage only (PDO)/Injury/Death

	
49.2%, 43.3%, 7.5%




	
Independent Variables




	
Temporal Attributes




	
Day

	
Day of the week

	
Sunday/Monday/Tuesday/Wednesday/Thursday/Friday/Saturday

	
15%, 15%, 15%, 16%, 15%, 11%, 13%




	
Day_Type

	
Weekday or weekend

	
Weekday/Weekend

	
76%, 24%




	
Rush_Hour

	
Time of the day (TOD)

	
Peak hours/Non-peak hours

	
59%, 41%




	
Season

	
Season of the year

	
Summer/Autumn/Winter/Spring

	
62%, 11%, 15%, 12%




	
Month

	
Month of the year

	
January/February/March/April/May/June/July/August/September/October/November/December

	
4.7%, 4.7%, 6.5%, 6%, 6.5%, 5%, 30%, 15%, 5%, 5.7%, 5.4%, 5.5%




	
Quarter

	
Quarter of the year

	
Q1/Q2/Q3/Q4

	
15.8%, 17.5%, 50.1%, 16.6%




	
Environmental Factors




	
Lighting Condition

	
Light condition at time of accident

	
Twilight/Daylight/Darkness/Dusk

	
3%, 57%, 36%, 4%




	
Weather condition

	
Weather status at time of the accident

	
Good/Rainy/Dusty/Other

	
95.9%, 1.9%, 1.9%, 0.3%




	
Roadway Characteristics




	
Road_Status

	
Condition of the road

	
Good/Road Works/Other

	
99.5%, 0.1%, 0.4%




	
Road_Type

	
Type of road the accident occurred in

	
Single Carriageway/Dual Carriageways/Highway

	
19.9%, 28.6%, 51.5%




	
Geometric_Road_Type

	
Road geometric characteristics

	
Straight road/Vertical curve/Horizontal curve/Intersection/U Turn

	
96.2%, 0.4%, 2.5%, 0.6%, 0.3%




	
Paints

	
Existence of road paint marking

	
True/False

	
99%, 1%




	
Eyes

	
Existing of cat’s eyes on road

	
True/False

	
99%, 1%




	
Vehicle Characteristics




	
Vehicle_Type

	
Type of vehicles in accident

	
Private car/Light truck/Heavy truck/Bus

	
81%, 5.3%, 13.4%, 0.3%




	
No_Vehicles_Involved

	
Number of vehicles in accident

	
1–17

	




	
Crash Characteristics




	
Accident_Type

	
Collision type

	
Swerving/Burning/Collision/Rollover/Rear-end collision/Head-on collision/Faulty tire/Animal runover/Human runover

	
12.1%, 3.8%, 50.5%, 24.9%, 6%, 0.5%, 0.1%, 1.7%, 0.4%




	
ACC_Cause

	
Cause of accident

	
Driver/Vehicle/Driver + Vehicle/Road

	
83.8%, 13.2%, 2.6%, 0.4%




	
Main_Cause

	
Root cause of accident

	
Speeding/Inattention/Tire explosion/Obstacles/Vehicle malfunction/Traffic violation

	
31.8%, 49.3%, 11.8%, 1.2%, 2.9%, 3%




	
Damage_Road_Type

	
Type of damage to accident surroundings

	
No damage/Flexible barrier/Fixed barrier/Road sign/Road surface/Light post

	
75%, 18.4%, 2%, 2.5%, 0.6%, 1.5%




	
Consequence

	
What are the consequences of that accident?

	
Vehicle/Vehicles damage/Vehicle and infrastructure damage/Rollover/Run off the road/Animal runover/Human runover

	
40.3%, 11.7%, 36.9%, 9.2%, 1.6%, 0.3%








* All the explanatory variables are categorical type, except “No_Vehicles_Involved”. 
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Table 2. Hyperparameter optimization off ML models.
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XGBoost Hyperparameter Optimization






	
Parameter

	
Typical Value

	
Values




	
learning_rate

	
0.01 to 0.2

	
0.05, 0.10, 0.15, 0.20, 0.25, 0.30




	
max_depth

	
3 to 10

	
3, 4, 5, 6, 8, 10, 12, 15




	
min_child_weight

	
N/A

	
1, 3, 5, 7




	
gamma

	
N/A

	
0.0, 0.1, 0.2, 0.3, 0.4




	
n_estimators

	
N/A

	
10, 50, 100, 150, 200, 250, 300




	
colsample_bytree

	
0.5–0.9

	
0.3, 0.4, 0.5, 0.7




	
Random Forest Hyperparameter Optimization




	
max_depth

	
3 to 10

	
3, 4, 5, 6, 8, 10, 12, 15




	
min_samples_leaf

	
N/A

	
1, 5, 10




	
min_samples_split

	
2, 4, 10, 12, 16




	
n_estimators

	
10, 50, 100, 150, 200, 250, 300




	
criterion

	
Gini or Entropy

	
Gini or Entropy




	
Logistic Regression Hyperparameter Optimization




	
c_values

	
N/A

	
100, 10, 1.0, 0.1, 0.01




	
penalty

	
l1 and l2




	
solvers

	
Newton-cg, lbfgs, or liblinear
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Table 3. Models’ multi-class performances.
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Multi-Classes




	
Classifier

	
Accuracy

	
Precision

	
Recall

	
F1-Score

	
AUC






	
XGBoost

	
0.71

	
0.7

	
0.71

	
0.7

	
0.87




	
Random Forest

	
0.69

	
0.68

	
0.69

	
0.68

	
0.87




	
Logistic Regression

	
0.43

	
0.43

	
0.43

	
0.43

	
0.62
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Table 4. Models’ binary-class performances.
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Binary-Classes




	
Classifier

	
Accuracy

	
Precision

	
Recall

	
F1-Score

	
AUC






	
XGBoost

	
0.94

	
0.94

	
0.94

	
0.94

	
0.98




	
Random Forest

	
0.9

	
0.91

	
0.9

	
0.9

	
0.97




	
Logistic Regression

	
0.65

	
0.65

	
0.65

	
0.65

	
0.70
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