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Abstract: Kingdom of Among the G20 countries, Saudi Arabia (KSA) is facing alarming traffic safety
issues compared to other G-20 countries. Mitigating the burden of traffic accidents has been identified
as a primary focus as part of vision 20230 goals. Driver distraction is the primary cause of increased
severity traffic accidents in KSA. In this study, three different machine learning-based severity
prediction models were developed and implemented for accident data from the Qassim Province,
KSA. Traffic accident data for January 2017 to December 2019 assessment period were obtained
from the Ministry of Transport and Logistics Services. Three classifiers, two of which are ensemble
machine learning methods, namely random forest, XGBoost, and logistic regression, were used for
crash injury severity classification. A resampling technique was used to deal with the problem of
bias due to data imbalance issue. SHapley Additive exPlanations (SHAP) analysis interpreted and
ranked the factors contributing to crash injury. Two forms of modeling were adopted: multi and
binary classification. Among the three models, XGBoost achieved the highest classification accuracy
(71%), precision (70%), recall (71%), F1-scores (70%), and area curve (AUC) (0.87) of receiver operating
characteristic (ROC) curve when used for multi-category classifications. While adopting the target
as a binary classification, XGBoost again outperformed the other classifiers with an accuracy of 94%
and an AUC of 0.98. The SHAP results from both global and local interpretations illustrated that the
accidents classified under property damage only were primarily categorized by their consequences
and the number of vehicles involved. The type of road and lighting conditions were among the other
influential factors affecting injury s severity outcome. The death class was classified with respect
to temporal parameters, including month and day of the week, as well as road type. Assessing the
factors associated with the severe injuries caused by road traffic accidents will assist policymakers in
developing safety mitigation strategies in the Qassim Region and other regions of Saudi Arabia.

Keywords: traffic safety; severity prediction; machine learning; SHapley Additive exPlanations;
SHAP; XGBoost; random forest; regression analysis

1. Introduction

Every year, traffic accidents cause a huge number of injuries and casualties worldwide,
and the socioeconomic and emotional consequences suffered are enormous. It is important
to understand what precedes a road traffic accident (RTA) and the resulting injury severity
so that a reduction in road trauma is given top priority. Although traffic volumes declined
during the COVID-19 pandemic worldwide, the average annual reduction in the number
of deaths due to RTAs was well below the target (50% by 2020) established by the United
Nations Decade of Action for Road Safety [1]. As per the latest global road status report
on road safety published by World Health Organization (WHO), traffic accidents are
responsible for over 1.3 million mortalities worldwide. Motor vehicle accidents are the
leading cause of death among teenagers and young people globally [2]. Over three-quarters,
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(80%) of all deaths in developing countries are from traffic accidents involving men. The
Kingdom of Saudi Arabia (KSA) has faced serious traffic safety issues, particularly since
the oil boom in the early 1970s. With over 300,000 road accidents occurring annually [3],
the KSA surpasses all the G20 countries [3,4]. The KSA suffers through a loss of SAR 13
billion annually associated with RTAs [4], as 30% of hospital capacity is affected. Therefore,
it is critical to understand what precedes a road traffic accident so that a reduction in road
trauma prevalence and severity can be achieved with effective interventions.

The top five provinces in Saudi Arabia in terms of RTA frequency are Riyadh, Jeddah,
Makkah, Madinah, and Qassim [5]. With the lowest population among these top five
provinces, the Traffic Police Department in Qassim recorded more than 18,000 accidents
in 2010. Around 23,000 people were involved in these accidents, leading to 2000 people
being injured and the deaths of nearly 370 people [5]. There are few studies available in
the current literature exploring crash severity in different cities in the KSA. Furthermore,
Qassim Province is one of the 13 administrative provinces of the KSA, and has a high road
traffic accident rate, similar to other provinces in the Kingdom [5]. Despite the growing
traffic safety situation, no comprehensive study has been undertaken in recent times to
assess the causes of these accidents and their severity in Qassim Province. To fill this
gap, this research aims to develop a model for traffic accident severity in Qassim Province
and identify the factors contributing to severity. To model crash injury severity, two
ensemble machine learning (ML) methods, random forest and XGBoost, as well as logistic
regression are proposed. Further, to overcome the interpretability issue of the ML methods,
this study also proposes the application of the Shapley Additive exPlanations (SHAP)
analysis for model interpretation and ranking of crash injury severity contributing factors.
The findings of the study are expected to provide useful guidance to traffic engineers
and safety practitioners for the proactive deployment of policy-related and engineering
countermeasures to mitigate the burden of losses caused by RTAs.

2. Related Works
2.1. Crash Injury Severity Categorization

The injury severity of traffic crashes is typically classified as discrete outcome cate-
gories, such as fatal injury, severe injury, minor injury, and no injury. Several countries have
established their own labeling system; for instance, the well-known system of KABCO
developed by the National Safety Council (NSC), and adopted by the Federal Highway
Administration (FHWA) [6], states: K = killed, A = incapacitating injuries, B = evident
injuries, C = possible injuries, and O = no apparent injuries. The most common types of
injury severity fall under three to five classes [7–11]. Severity can also be classified using a
binary system [12–14]. Three or more classes represent the degree of severity in descending
manner, with death or fatality indicating the worst case, severe or incapacitating refer-
ring to the victim being clearly injured, minor or slight indicating the victim is injured
but not hospitalized, and the absences of injury or as loss of property as the last severity
class. On the other hand, the binary system has also been used for studies with specific
objectives, such as the scope of the paper, for instance, fatal/non-fatal, injury/non-injury,
serious/minor accident, or property damage only (PDO)injury [14–22].

2.2. Modeling Approaches

Machine learning (ML) has been frequently used for severity prediction over the
last decade due to its ability to capture complex relations and produce higher accuracy.
The statistical means of severity prediction has shown some limitations, such as low
accuracy and lack of reality due to the underlying assumptions [23,24]. ML does not require
prior assumptions about the variables or the stochastic process that generates them, thus
producing more reliable predictions. A number of ML approaches to severity prediction
were implemented at the beginning of the millennium.
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2.3. Previous Studies

The first study in the KSA used categorical types of attributes in a decision tree (CHAID
and J48) and a probabilistic model, achieving 98% accuracy [25]. However, the classifiers
were insufficient to represent the minority groups, i.e., injury and death. Driver distraction
was found to be an important cause of injury severities. Two studies in the United Arab
Emirates (UAE) used the same data and applied a multilayer perceptron (MLP) and ordered
probit, with four classes targeted [26,27]. The overall prediction accuracy of the decision
tree (J48) model after resampling the training set was 88.08% and 0.93 area under (AUC) of
the ROC curve. The studies found that age between 18 and 30 years, gender (male), and
collision type were the most important factors associated with fatal severity. The literature
identifies the need for advanced approach applications on severity prediction modeling in
the Gulf region.

Breiman et al. [28] developed a popular ML algorithm known as the random forest
(RF) classifier, which has been frequently used for predicting the severity of RTAs. The
random forest always outperformed the decision trees and other algorithms [20,29–33]
Random Forest is an effective approach for predicting road traffic crash injury severity [34].
It was also adopted by Khan et al. in its latest application in the field of engineering [35].
Rezapour et al. [36] studied motorcycle crashes on two-lane highways with four-level
classes of data, and the study relied on the literature to construct a binary category response.
They found that the posted speed limit is the most important predictor, followed by age,
highway functional class, and speed compliance. However, the authors stated that there
was a possibility of bias identification, as the posted speed limit was the only continuous
variable. Mokoatle et al. [37] were among the first to apply extreme gradient boosting trees
(XGBoost), a relatively new classifier, to severity prediction [38]. The data was imbalanced,
so the synthetic minority oversampling technique (SMOTE), a popular technique developed
by [39] to handle imbalanced datasets, was used for the minority classes. Despite utilizing
SMOTE, the four-class accuracy of the classifiers did not meet expectations, and the multi-
class label was switched to binary classes.

Over the last five years, crash severity research has witnessed a revolution in terms of
ML techniques due to the development of data science approaches. Rahim and Hassan [40]
developed a framework based on a deep neural network (DNN) and applied ImageNet
competition to improve the accuracy of the predictions using a stacking technique, a
general procedure developed by [41] to enhance predictive accuracy by combining several
predictive algorithms. The stacked model outperformed the other classifiers [10,22]. Tang
et al. used Shapley Additive exPlanations (SHAP) to interpolate feature importance, which
is a recent approach developed by Lundberg et al. [42]. The SHAP value impact on a model
gives a high value for collision type, person count, and vehicle count. The authors in [43]
adopted a light gradient boosting machine (LightGBM), novel natural gradient boosting
(NGBoost), categorical boosting (CatBoost), and AdaBoost to predict two class responses.
LightGBM outperformed the others regardingaccuracy and ROC curve. Feature importance
was determined via SHAP. Injury severity was found to be affected by month, age, cause,
and collision type.

Random forest (RF) is an effective approach for predicting RTA injury severity, fol-
lowed by support vector machine, decision tree, and k-nearest neighbor [34]. However,
DNN has been adopted in recent years and its results show promising accuracy [40,44].
Furthermore, the stacking and boosting techniques [45,46] are also accurate and distinguish-
able from a label perspective. Recently, extreme gradient boosting (XGBoost) outperformed
random forest in a study conducted by Jamal et al. [47–50]. Other studies also found
XGBoost to be highly reliable for severity prediction [51–53].

Table of the Appendix A summarizes some of the past studies on severity prediction
discussed earlier. The table contains detailed information on each research study, including
the study theme, study area, duration, and size (i.e., number of crashes) of the study,
approaches adopted, best approach, accident categories, and the most significant factors.
It may be observed from the table that previous studies have adopted different types of
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classification techniques (e.g., KNN, SVM, MLP, and decision trees) for severity prediction.
In literature, sSeveral studies have also used boosting-based methodologies for severity
prediction modeling. Similarly, the application of various statistical modeling techniques
(e.g., logistic regression and ordered probit) has also been proposed.

3. Materials and Methods
3.1. Proposed Severity Prediction Framework

Figure 1 presents the severity prediction framework adopted in the present study. The
framework starts by defining the accident data for the 2017–2019 period, collected from
relevant agencies and authorities, and preprocessed for analysis. Parallel paths for binary
and multi-responses were followed. Each path adopted the same steps for data splitting
built using 10-fold cross-validation. Injury severity modeling was accomplished via logistic
regression (LR) along with two machine ensemble learning algorithms, XGBoost and RF.
Once the optimal model with the best performance was identified based on the evaluation
metrics, an additive attribute was established using the SHAP approach to determine how
important the variables were for injury severity and how each variable contributed to each
severity mode. The following passages provide a detailed description of the methodology.
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3.2. Study Area and Collection of Accident Data

Out of 13 provinces in Saudi Arabia, Qassim Province (shown in Figure 2B) was
selected as the study area [54]. In geographical terms, Qassim Province lies between 40◦000
E and 45◦000 E longitude and 23◦300 N and 28◦000 N latitude, with 10 sub-provinces and
155 localities, divided into 13 governorates, namely Buraidah, Unaizah, AlAsyah, Uyun
Al-Jiwa, Al-Badaya’a, Al Bakiriyah, Daria, Al Mithnab, Al Nabhanya, Ar Rass, Riyadh
Al-Khabra, Al Shammasiya, and Oklat AlSkoor [55]. There are 1.3 million people living
in Qassim, and the province covers 58,046 square kilometers [55]. Approximately 49%
of Qassim’s population resides in Buraydah, the province’s capital city. Located in the
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middle of the KSA with extensive agricultural activities, it links the north with the south
and the west with the east, hence heavy carriers travel on its roads for different agricultural,
commercial, religious, and cultural purposes. With 205,000 tons of dates produced annually
(both for local consumption and export), the region has been able to enhance its economic
value, being one of the largest producers of luxury dates in the Middle East. In addition,
various types of fruits and vegetables are extensively produced.
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Figure 2. Description of study area: (A) Qassim Province highlighted on a map of Saudi Arabia;
(B) study area boundaries; (C) yearly distribution of data collected.

It is worth mentioning that the number of traffic accidents has witnessed a decreasing
trend in recent years for many reasons, mainly due to the implementation of mitigation
strategies [56]. In 2010, more than 4232 injuries and 1054 deaths were recorded in Qassim [5],
reducing periodically until 2016 [57]. Figure 2 illustrates the distribution of RTAs for the
given assessment period and clearly shows a continuous reduction in the number of
accidents. Al-Atit et al. [57] found that speeding, irregular overtaking, irregular turning,
failing to prioritize other vehicles, irregular stops, lack of road readiness, driver carelessness,
cell phone usage while driving, and disobeying traffic laws were the most important causes
of RTAs. Apart from not wearing a seat belt, these are the ten most common causes of RTAs
in Qassim Province.

This analysis is based on traffic crash data collected from the Ministry of Transport
and Logistic Services. The data contains information about accidents that have occurred on
the main highways under the jurisdiction of Ministry of Transport. During the period of
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data collection, between January 2017 and December 2019, 3506 accidents were reported.
The data also consists of detailed information on various explanatory variables, as shown
in in Table 1.

Table 1. Descriptive statistics of research data explanatory variables *.

Variables Description Variable Categories Frequencies

Dependent Variable

Accident_categories Severity of crash Property damage only
(PDO)/Injury/Death 49.2%, 43.3%, 7.5%

Independent Variables

Temporal Attributes

Day Day of the week
Sunday/Monday/Tuesday/
Wednesday/Thursday/
Friday/Saturday

15%, 15%, 15%, 16%, 15%, 11%,
13%

Day_Type Weekday or weekend Weekday/Weekend 76%, 24%

Rush_Hour Time of the day (TOD) Peak hours/Non-peak hours 59%, 41%

Season Season of the year Summer/Autumn/Winter/Spring 62%, 11%, 15%, 12%

Month Month of the year

January/February/March/
April/May/June/July/
August/September/October
/November/December

4.7%, 4.7%, 6.5%, 6%, 6.5%, 5%,
30%, 15%, 5%, 5.7%, 5.4%, 5.5%

Quarter Quarter of the year Q1/Q2/Q3/Q4 15.8%, 17.5%, 50.1%, 16.6%

Environmental Factors

Lighting Condition Light condition at time of accident Twilight/Daylight/Darkness/Dusk 3%, 57%, 36%, 4%

Weather condition Weather status at time of
the accident Good/Rainy/Dusty/Other 95.9%, 1.9%, 1.9%, 0.3%

Roadway Characteristics

Road_Status Condition of the road Good/Road Works/Other 99.5%, 0.1%, 0.4%

Road_Type Type of road the accident
occurred in

Single Carriageway/Dual
Carriageways/Highway 19.9%, 28.6%, 51.5%

Geometric_Road_Type Road geometric characteristics Straight road/Vertical curve/Horizontal
curve/Intersection/U Turn 96.2%, 0.4%, 2.5%, 0.6%, 0.3%

Paints Existence of road paint marking True/False 99%, 1%

Eyes Existing of cat’s eyes on road True/False 99%, 1%

Vehicle Characteristics

Vehicle_Type Type of vehicles in accident Private car/Light truck/Heavy truck/Bus 81%, 5.3%, 13.4%, 0.3%

No_Vehicles_Involved Number of vehicles in accident 1–17

Crash Characteristics

Accident_Type Collision type

Swerving/Burning/Collision/
Rollover/Rear-end collision/Head-on
collision/Faulty tire/Animal
runover/Human runover

12.1%, 3.8%, 50.5%, 24.9%, 6%,
0.5%, 0.1%, 1.7%, 0.4%

ACC_Cause Cause of accident Driver/Vehicle/Driver + Vehicle/Road 83.8%, 13.2%, 2.6%, 0.4%

Main_Cause Root cause of accident
Speeding/Inattention/Tire
explosion/Obstacles/Vehicle
malfunction/Traffic violation

31.8%, 49.3%, 11.8%, 1.2%,
2.9%, 3%

Damage_Road_Type Type of damage to
accident surroundings

No damage/Flexible barrier/Fixed
barrier/Road sign/Road
surface/Light post

75%, 18.4%, 2%, 2.5%, 0.6%, 1.5%

Consequence What are the consequences of
that accident?

Vehicle/Vehicles damage/Vehicle and
infrastructure damage/Rollover/Run off
the road/Animal
runover/Human runover

40.3%, 11.7%, 36.9%, 9.2%,
1.6%, 0.3%

* All the explanatory variables are categorical type, except “No_Vehicles_Involved”.
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3.3. Methods
3.3.1. Platform

The most popular options for classification problems are the Python analytic platform
and Waikato Environment for Knowledge Analysis (WEKA). Python is a well-known
programming language due to its flexibility and it is an open-source platform [58]. WEKA
is a free software developed at the University of Waikato, New Zealand, which is a
companion software to the book Data Mining: Practical Machine Learning Tools and Tech-
niques [59]. WEKA is being used extensively for severity predictions [7,11,26,60–62]. In
2017, Mitrpanont et al. [63] compared Python with other machine-learning algorithms and
found Python to be the best performer in terms of precision, recall, and correct/incorrect
instances. Hence, Python was adopted in this research.

3.3.2. Response Process

The dataset is considered imbalanced if one label/class of the data appears significantly
more often than others. Imbalanced classifications can be slight or severe; for example,
the difference ratio between PDO, injury, and death was found to be 1726:1518:262 in the
present research. Figure 3 illustrates death as a minority classification, while PDO and
injury are majority classifications. The ML models face difficulty with regard to extracting
accurate information from imbalanced data and producing biased results. There are various
methods to overcome this problem, for instance, resampling techniques and the synthetic
minority oversampling technique (SMOTE).
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Figure 3. Number of accidents under each injury severity classification for highway crashes in Qassim
Region between January 2017 and December 2019.

Resampling can be done through either over-sampling or under-sampling. While
performing under-sampling, the run time and storage problems can be improved by re-
ducing the amount of training data, but this might result in a loss of potentially important
information. Over-sampling, however, does not lead to information loss but does increase
the likelihood of overfitting since it replicates minority class events. Using SMOTE, overfit-
ting is mitigated as synthetic examples are generated instead of replicating instances. In
addition, no useful information is lost.

SMOTE, however, does not consider neighboring examples from other classes when
generating synthetic examples. Consequently, classes can overlap, and noise can be in-
troduced. Furthermore, SMOTE does not support categorical data in Python yet; even if
categorical data are transformed into numerical; SMOTE would generate data that did not
make sense. Therefore, a resampling technique with a typical random over-sampling was
adopted in this research to overcome the ML bias problem.

3.3.3. Logistic Regression

The logistic regression (LR) or logit model is commonly used for classification and
prediction. The method creates probabilities between one and zero. Using a given dataset
of independent variables, LR estimates the probability of the occurrence of an event. In this
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study, LR predicted the probability of injury, death, and PDO with three possible outcomes:
y1 = property damage; y2 = injury, and y3 = death (coded as y1 = 0; y2 = 1; y3 = 2). For
LR, the modeling function described the relationship between a class’s probability and the
set of independent or predictor variables. For the current problem, a typical LR model
equation may be expressed as:

P(y = 1|x) = 1
1 + e(−z)

=
e(z)

1 + e(z)
∈ [0, 1] (1)

z = β_0 + β_1 x_1 + β_2 x_2 + · · · · · ·+ β_n x_n = xβ (2)

where xβ represents the sigmoid S-shaped function. In the event that the probability is
greater than 0.5, the dataset is classified as a death, an injury, or property damage. The
parameters included in LR were the number of iterations, epsilon, learning rate strategy,
step size, and regularization. Moreover, the learning rate strategy and regularization were
considered fixed and uniform.

3.3.4. Extreme Gradient Boosting (XGBoost)

XGBoost was used to solve problems requiring supervised learning, where multi-
ple features were used to predict the target variable from the training data. XGBoost
is based on the gradient boosting technique, which is a term coined by [64], in a paper
titled “Greedy Function Approximation: A Gradient Boosting Machine”. The gradient-
boosting decision tree (GBDT) algorithm was improved by Chen and Guestrin in 2016,
resulting in the XGBoost algorithm [38]. This method helps models to predict more ac-
curately, reduce computational efforts, and avoid overfitting issues. In addition, it has
been reported that XGBoost demonstrates better predictive performance compared with
traditional machine learning algorithms. XGBoost provides a parallel tree boosting and is
a leading machine-learning library for regression, classification, and ranking. XGBoost is
an ensemble algorithm, which refers to the use of multiple learning algorithms to achieve
better predictive performance than any single algorithm.

The general form of the XGBoost objective function is presented in Equation (3), where
l is the training loss function, and Ω is the regularization term. It uses the training data
(with multiple features) xi to predict a target variable yi, and ŷi is the prediction; k refers
to the number of trees; and fk represents a function in the functional space. However, the
XGBoost objective function at iteration t needs to be minimized using Equation (4):

Objective Obj = ∑n
i=1 l(yi, ŷi) + ∑K

k=1 Ω( fk) (3)

obj(t) = ∑n
i=1 l

(
yi, ŷi

(t−1)
)
+ ft(xi) + Ω( ft) (4)

In the regularization term in Equation (5), XGBoost uses two parameters to define the
complexity of a tree, . . . as the number of leaves and L2 as the norm of leaf scores, while γ
and λ are hyperparameters. The overall complexity is defined as the sum of the number of
leaves weighted by γ and a λ weighted L2 norm of the leaf score-leaf weight:

Ω( ft) = γT +
1
2

λ ∑T
j=1 wj

2 (5)

The second part is the training loss, which can be represented as an additive model
since it is under the boosting space as given in Equation (6). This is the final model ŷ
of t composed of the previous model, which is ŷi

(t−1) plus the new model that we want
to learn:

Final model (t) = ŷi
(t) = ∑t

k=1 fk(xi) = ŷi
(t−1) + ft(xi) (6)

To use traditional optimization techniques, the objective function must be transformed
into a Euclidean domain via Taylor approximation using Equation (7). To simplify the objective
function’s training loss, Taylor’s equation is applied on the two terms in Equation (8), which
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will introduce two new terms gi and hi in Equation (9), representing the values of each leaf in
the tree. Making the original function in quadratic form:

Taylor approximation = f (x + ∆x) ' f (x) + f ′(x)∆x +
1
2

f ′′ (x)∆x2 (7)

XGBoost Simplified with Taylor Approximation:

obj(t) '∑n
i=1

[
l
(

yi, ŷi
(t−1)

)
+ gi ft(xi) +

1
2

hi ft
2(xi)

]
+ Ω( ft) (8)

gi = ∂ŷi
(t−1) l

(
yi, ŷi

(t−1)
)

hi = ∂2
ŷi

(t−1) l
(

yi, ŷi
(t−1)

) (9)

where the gi term indicates the first-order differentiation, and hi is the second order dif-
ferentiation for approximating the function. The new form is when it is put together, i.e.,
training loss and regularization, and it is simplified in Equation (10) by using G and H to
refer to the summation of g(s) and h(s), respectively. G and H now represent the entire tree
structure for this formulation:

XGBoost Objective Function Representing Trees:

obj(t) = ∑T
j=1

[
Gjwj +

1
2
(

Hj + λ
)
wj

2
]
+ γT (10)

where, Gj = ∑i∈Ij
gi and Hj = ∑i∈Ij

hi.
The equation above is now becoming sum T quadratic equations. For each quadratic

function, it is now possible to drive optimal weight which is wj the purpose to drive its
simplified, as in Equation (11):

XGBoost Objective Function Optimal Weight:

Optimal weight = wj
∗ = −

Gj

Hj + λ
(11)

The final step is to substitute wj back into the original objective function. At this
point, a new objective function without any w(S) is Equation (12). This objective function is
known as the minimum objective function, and this is the most simplified form of quadratic
approximation of the original objective function [65]:

XGBoost Minimum Objective Function:

MinObj = −1
2 ∑T

j=1

Gj
2

Hj + λ
+ γT (12)

3.3.5. Random Forest

To implement the RF utilizing decision trees, three steps must be followed. Start by
generating an NC size bootstrap sample from the overall N data to grow a tree by randomly
selecting predictors X = (xi, i = 1, . . . , p). Then use the predictors’ Xi at different nodes n of
the tree to vote for the class label y for the same node. Further adjustments are made at
each node before the best predictor for the split is obtained. As a last step, the out-of-bag
(OOB) data (N–Nc) are run down the tree to determine the misclassification error. Repeat
these procedures until the minimum out-of-bag error rate (OOBER) is reached for a large
number of trees. Averaging the series of trees allows each observation to be assigned to a
final class ‘y’ by majority vote. Moreover, this method uses the information gain ratio as its
split criterion, which may be calculated from Equation (13):

In f ormation Gain Ration (IGR) =
In f ormation Gain (x)

Split in f o (x)
(13)
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where x represents the randomly chosen example in the training set. In short, split info
refers to information needed to determine which branch an instance or example belongs to.

3.3.6. Hyperparameter Tuning

Hyperparameter tuning plays a crucial role in the outcome of ML algorithms by iden-
tifying the optimal parameters for an algorithm. A hyperparameter is a set of values tuned
before the learning process begins to reduce model complexity, improve generalization
performance, and avoid overfitting. Iteratively traversing the entire space of available
hyperparameter values is time-consuming for larger parameter spaces. It is possible to tune
hyperparameters using several techniques, such as grid search and random search. Grid
search was used to tune the hyperparameters and the performance metrics based on the
model’s classification accuracy. Table 2 lists the hyperparameter range used for XGBoost.
Several parameters were tuned, and the accuracy of the model was found to be affected by
them. Table 2 also includes the RF and LR hyperparameter range. The parameter values as
stated, were tuned for optimal accuracy value via grid search.

Table 2. Hyperparameter optimization off ML models.

XGBoost Hyperparameter Optimization

Parameter Typical Value Values

learning_rate 0.01 to 0.2 0.05, 0.10, 0.15, 0.20, 0.25, 0.30

max_depth 3 to 10 3, 4, 5, 6, 8, 10, 12, 15

min_child_weight N/A 1, 3, 5, 7

gamma N/A 0.0, 0.1, 0.2, 0.3, 0.4

n_estimators N/A 10, 50, 100, 150, 200, 250, 300

colsample_bytree 0.5–0.9 0.3, 0.4, 0.5, 0.7

Random Forest Hyperparameter Optimization

max_depth 3 to 10 3, 4, 5, 6, 8, 10, 12, 15

min_samples_leaf
N/A

1, 5, 10

min_samples_split 2, 4, 10, 12, 16

n_estimators 10, 50, 100, 150, 200, 250, 300

criterion Gini or Entropy Gini or Entropy

Logistic Regression Hyperparameter Optimization

c_values
N/A

100, 10, 1.0, 0.1, 0.01

penalty l1 and l2

solvers Newton-cg, lbfgs, or liblinear

3.3.7. Model Interpretation

SHapley Additive exPlanations (SHAP) is a method to explain the individual predic-
tions of any machine learning model. SHAP is based on the game theoretically optimal
Shapley values [66]. SHAP aims to explain the prediction of instance x by computing
the contribution of each feature [67]. It is frequently adopted due to its durability, solid
theoretical foundation, fair distribution of prediction among features, fast implementation
for tree-based models, and global model interpretations. It includes feature importance,
feature dependence, interactions, clustering, and summary plots.

Equation (14) generates the Shapley value for a feature i. For a specific feature value
(float number), the inputs for the blackbox model f , and the input datapoint x, this dat-
apoint will be a singular row in the dataset. Iterate the overall possible subset prime
combination of features to ensure that the interaction between individual feature values is
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accounted for. One of the subsets could be any other feature, and the remaining are treated
as unknown values. By this, consideration is left only to the selected feature:

φi( f , x) = ∑z′⊆x′
|z′|!(M− |z′| − 1)!

M!
[ fx

(
z′
)
− fx

(
z′/i

)
] (14)

where φi ( f , x) is the Shapley value for a feature i, f corresponds to the blackbox model, x
refers to the input data point, z′ represents the subset feature, x′ stands for the simplified
data input, and M denotes the total number of features.

The core step is to get the blackbox model f output for the subset with fx(z′) and
without fx(z′/i) for the feature desired (i.e., interested in i). The difference in these two
terms reveals how much i contributes to the prediction in the subset known as the marginal
value. Repeating these for all the possible combinations, each permutation of subsets for
each of those is additionally weighted according to how many players in that collation.

3.3.8. Model Evaluation

In modeling a classification problem, the metrics to test the model’s performance are
the same for statistical and machine learning. Figure 4 presents the four types of outcomes
that can occur when performing classification predictions.
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When an observation is predicted to belong to a class and does belong to that class,
it is considered a true positive (TP). True negatives (TN) occur when a prediction of an
observation does not belong to a class, and it actually does not belong to one. A false
positive (FP) occurs when an observation is predicted to belong to a class when it actually
does not. In false negative (FN) situations, the prediction of an observation does not belong
to a particular class, but in reality, it does. Figure 4 presents a confusion matrix with a
commonly used binary classification system. The true positive ratio (TPR) quantifies the
proportion of positives that are correctly identified, while the false positive ratio (FPR),
using Equation (15), quantifies the proportion of negatives that are incorrectly classified
as positives:

False Positive Ratio (FPR) =
FP

FP + TN
(15)

Accuracy, precision, F1-score, and recall were used to evaluate the performance of
the classification model. Accuracy is the percentage of correct predictions for the test data
using the following equation:

Accuracy =
Coorect predictions

All predictions
=

TP + TN
TP + FN + TN + FP

(16)

The precision is the percentage of true positive examples among all the examples
predicted to belong to a particular class using Equation (17). Low precision indicates a high
number of false positives (FPs):

Precision =
TP

TP + FP
(17)

The sensitivity/recall of an algorithm determines its completeness using Equation (18).
A low recall indicates the presence of a large number of FNs:

Recall =
TP

TP + FP
(18)
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By taking the harmonic mean of a classifier’s precision and recall, the F1-score is
calculated. The F1-score comes into play when one classifier has a high recall, while the
other has high precision. The F1-scores of both classifiers can be used in this case to
determine which classifier produces better results via Equation (19):

F1− score =
2(Precision× Recall)

Precision + Recall
=

TP
TP + 1

2 (FP + FN)
(19)

Moreover, the area under the receiver operating characteristic (AUC-ROC) curve is
used for evaluating the model performance and is one of the most important metrics,
indicating how well the model distinguishes between injury classes. If the AUC is high, the
model is more accurate in predicting severity classes to label injury as injury and death as
death. The ROC curve is plotted with TPR on the y-axis and FPR on the x-axis.

4. Results and Discussion
4.1. Multi-Classification

We investigated the model performance prediction using the evaluation metrics of
accuracy, precision, recall, F1-score, and AUC. It is worth mentioning that non-resampling
models were employed, and their performance was poor and biased toward the majority
classes, as predicted earlier. The combined classifiers could not achieve more than 0.57
accuracy. Even if the accuracy was ignored, the F1 the score was also very poor. Therefore,
that eliminated the need to check the recall and precision scores.

The importance of balancing the data is illustrated in Figure 5. Clearly, the ensemble
models were capable of learning and predicting, not only in terms of accuracy but also in
terms of sensitivity and precision (Table 3). It should be noted that the results demonstrated
in Table 3 are the optimal models via a grid search process and by taking their macro average.
Apart from LR, the other two models performed spectacularly in Figure 5. RF and XGBoost
were able to distinguish between the classes by seeing the AUC reach 0.87. Furthermore,
the XGBoost precision, recall, and F1-score were 0.7, 0.71, and 0.71, respectively. XGBoost
gained an edge over RF in all evaluation metrics. In addition, RF had a low observation to
be predicted to belong to a class when it actually did not (i.e., FP). These finding supports
the claim of the ability of RF to generate desirable outcomes with accuracies of 0.69 and
0.87 AUC.

Table 3. Models’ multi-class performances.

Multi-Classes

Classifier Accuracy Precision Recall F1-Score AUC

XGBoost 0.71 0.7 0.71 0.7 0.87
Random Forest 0.69 0.68 0.69 0.68 0.87

Logistic Regression 0.43 0.43 0.43 0.43 0.62

The confusion matrix of both RF and XGBoost in Figure 5a,b were analyzed along
with their ROC curves. Previously, the ensembled algorithm was not able to identity the
minority classes, while in Figure 5a,b, it is vice versa. From their confusion matrices in
Figure 5a, XGBoost was better able to correctly classify the minority classes than RF. The
ROC curves complete the story by showing the class curves, and that the minority class
area is much greater than the majority class area. Moreover, the outcomes are within other
researchers’ range of outcomes [10,43,62,68,69].
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Figure 5. Multi-class model confusion matrix and ROC curves: (a) XGBoost model; (b) random forest
model; (c) classifier accuracies by 10-fold multi-class.

4.2. Binary Classification

The outcome of the previous models’ performance is more than satisfying if it is com-
pared with previous studies in the literature. The Pillajo et al. [69] approach achieved more
than 70% accuracy, with 77% precision, an AUC of 0.8. was obtained by Tang et al. [10];
and an accuracy and ROC curve value of 0.73 and 0.71, respectively, was attained by
Dong et al. [43]. Further, some studies treated the target as a binary classification [37,70].
To maximize the potential of the dataset, the present study adopted the same approach by
merging PDO and injury in a non-fatal class and using the minority class as the fatal class.
By merging them, the accuracy was increased; however, the ability to distinguish the class
remained an issue. Table 4 shows the performance of the three models when they were
balanced to prevent the misclassification of minority classes.
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Table 4. Models’ binary-class performances.

Binary-Classes

Classifier Accuracy Precision Recall F1-Score AUC

XGBoost 0.94 0.94 0.94 0.94 0.98
Random Forest 0.9 0.91 0.9 0.9 0.97

Logistic Regression 0.65 0.65 0.65 0.65 0.70

In Table 4 and Figure 6, the accuracies are self-explanatory in their increments. Even RF
and LR generated a high precision of 0.91 and 0.65, respectively. XGBoost improved in terms
of accuracy, precision, recall, and F1-score (all 0.94), making its prediction reliable and truly
representative of the minority class (Figure 6). The XGBoost area under the ROC curve was 0.98,
which indicates its ability to classify the injury severity classes correctly. Meanwhile, RF precision,
recall, and F1-score improved significantly with 0.91, 0.9, and 0.9, respectively. Moreover, the
TP and low FP of the confusion matrix enhanced the AUC to achieve 0.97 (Figure 6a). These
outcomes also comply with those of other studies [11,25,70–75]. The average fold accuracy of
LR is not competitive (Figure 6b), as in the previous situation; however, the evaluation metrics
further improved.
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forest model; (c) classifier accuracies by 10-fold binary-class.

4.3. Model Interpretations

An enhanced model analysis was conducted through a SHAP summary assessment.
The calculated quantitative value that sums the Shapley values by each severity class and
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represents the contribution of each variable to the model can be seen in Figure 7. The
input variables are arranged vertically according to their influence, beginning with the
most influential variable. In this figure, the horizontal axis represents the SHAP value, and
the color scales indicate the significance level of each variable, with blue indicating low
significance and pinkish-red indicating high significance. Data points within a range of
SHAP values with more data points show a stronger correlation between input variables
and injury severity. Figure 7a is the summary plot of the PDO class, which identifies that
PDO accidents were mainly classified depending on the consequences and the number
of vehicles involved. Moreover, the main cause of the accident is a factor in the higher
severity level. Figure 7b identifies the most important parameters for classifying the injury
class: main cause followed by road type and lighting condition. The most severe class (i.e.,
death class) is affected mostly by temporal parameters: month and day of the week, and,
again, road type (Figure 7c). Based on the summary plots in Figure 7, it can be seen that
a feature’s value directly correlates with its impact on prediction. However, only SHAP
dependence plots can reveal the exact shape of the relationships.
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4.4. Dependence Plot

A SHAP dependence contribution plot provides similar insights to a partial depen-
dence plot (PDP) but yields much more information. Dots represent the data rows. The
horizontal location indicates the actual value in the dataset, while the vertical location
indicates how it affected the prediction. In the interaction analysis, trends were examined
in terms of month of the year, day of the week, consequences, main causes of accidents,
lighting conditions, accident types, and vehicle types. It is also possible, however, to
evaluate other variable interactions.

The SHAP value in Figure 8a, lighting condition, is greater when PDO accidents occur
in daylight and at dusk. It can be seen that the vehicles involved were private cars and light
trucks, while the heavy trucks were mostly quarantined during the peak hours, occupying
the road areas far less than at dusk. When a vehicle malfunctions, it is more likely to interact
with other vehicles or infrastructure. This type of impact positively favors PDO severity
(Figure 8b). In Figure 8c, it can be seen that rear-end collision, rollover, and swerving were
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positively categorized as injury severity. For instance, in rear-end collisions, there is a
higher risk that the driver will suffer a spinal cord injury, and such a scenario is positively
classified as injury severity.
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The national weekend in Saudi Arabia falls on Friday and Saturday, and as the
weekend approaches, accidents are more likely to cause death (Figure 8e). As head-on
collisions, burns, and human runovers have a higher likelihood of resulting in fatal injuries,
they do not positively qualify as injury severity. The national summer holiday in Saudi
Arabia is from June to late August, so in Figure 8f, it can be seen that June and July had the
highest SHAP value. On the other hand, in March and May, death severity was found to be
less likely.
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5. Conclusions

Traffic accidents cause a large number of fatalities and enormous socioeconomic
consequences every year in KSA. The current study proposes an application of machine
learning-based algorithms and SHAP for modeling and interpreting traffic accident in-
jury severity in the Al-Qassim province of KSA. Using two ensemble machine learning
methods, random forest and XGBoost, as well as logistic regression, revealed that XGBoost
outperformed the others by achieving an accuracy of 0.71 and an AUC of 0.87. Further
analysis conducted by treating the target variable as a binary classification revealed that
XGBoost achieved an accuracy of 0.94 and distinguished the class with an AUC of 0.98.
SHapley Additive exPlanations can effectively extract the feature importance and explore
the relationships with the help of dependence plots.

Results revealed that the following factors primarily impact the accident injury sever-
ity: month of the year, road type, consequences of the accident, and day of the week.
Furthermore, the presence of paint, cateyes and road conditions have the least impact on
the severity of the injury. A precise analysis for each injury severity class revealed that
PDO accidents mainly depend on the consequences and the number of vehicles involved.
The main cause of accidents is the most important parameter for classifying an injury class,
followed by road type and lighting conditions. For the death class, month of the year, day
of the week, and road type were the most significant variables.

The nature of the available data resulted in the present study having some limitations.
The explanatory variables were categorical, except the number of vehicles involved. There
was also an absence of some important variables, such as the physiology of the driver,
age, and gender. The authors suggest the adoption of XGBoost and SHapley Additive
exPlanations in injury severity classification studies and recommend investigating the
implementation of DNN or hybrid neural networks in future research.
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Appendix A. Summary of Past Studies on Injury Severity Prediction

No. Year Country Duration Size
Injury Severity

Classes
Approach Best Approach Significant Factors Reference

1 2022 Pakistan
2015–
2019

1784
- Fatal
- Non-Fatal

- Naive Bayes (NB)
- K-Nearest Neighbor (K-NN)
- Binary Logistic Regression (BLR)
- Random Forest (RF)
- Extreme Gradient Boosting

(XGBoost)

- XGBoost

- Vehicle type
- Month of the year
- Driver’s age
- Alignment of the road

S. Zhang, Khattak,
Matara, Hussain, &
Farooq (2022) [55]

2 2022 China 2018 567

- Property
Loss

- Fatal
- Injury

- XGBoost
- Bayesian network

- Bayesian
Network

- Roadside protection
facilities

- Roadway type
- Central isolation

facilities
- Light condition
- Crash time
- Weather conditions

Yang, Wang, Yuan, &
Liu (2022) [75]

3 2021
Saudi

Arabia

Jan 2017–
Dec
2019

13,546

- Fatal
- Injury
- PDO

- XGBoost
- Logistic regression
- Random Forest
- Decision Tree

- XGBoost

- Collision type
- Weather condition
- Road surface
- On-site damage
- Vehicle type
- No. of lanes
- Crash cause

Jamal et al. (2021) [47]

4 2021 US
2004–
2021

204,758
- PDO
- Injury

- Gradient Boosting (GB)
- AdaBoost
- MLP
- Stacking Ensemble

- Stacking
Ensemble

- Collision type
- Person count
- Vehicle count

Niyogisubizo et al.
(2021) [19]
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No. Year Country Duration Size
Injury Severity

Classes
Approach Best Approach Significant Factors Reference

5 2020 US
2010–
2018

8859

- Suspected
Serious
Injury

- Non-
Incapacitating
Injury

- Possible
Injury

- Killed

- Random Forest
- XGBoost

- XGBoost
- Road class
- Speed limit
- First harmful event

Lin, Wu, Liu, Xia, &
Bhattarai (2020) [51]

6 2020 India
2016–
2018

7654

- No Injury
- Simple

Injury
- Grievous

Injury
- Fatal

Injury

- Ordered Probit
- Random Forest
- Conditional Inference Forest

-
Conditional
Inference
Forest

- Type of colliding
vehicle

- Collision type
- Driver age
- Visibility of the road.

Panicker & Ramadurai
(2022) [9]

7 2019 US 2017 201,581

- Property
Damage

- Injury
- Fatal

- Multinomial Logit
- Random Forest

- Random
Forest

- Collision type
- Occupant age
- Speed limit

Wang & Kim (2019) [32]

8 2019
South
Africa

2015–
2017

1525

- No Injury
- Serious
- Slight
- Killed

- Multivariate Logistic Regression
- XGBoost

- XGBoost

- Truck license
- Light motor duty

license
- Vehicle type

Mokoatle et al.
(2019) [37]
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No. Year Country Duration Size
Injury Severity

Classes
Approach Best Approach Significant Factors Reference

9 2018 US
2008–
2012

32,730

- No Injury
- Minor

Injury
- Severe

Injury

- Decision Tree C4.5
- Nearest-Neighbor

Instance-Based
- Random Forest

- Random
Forest

- Age/gender groups
- Area type
- Median width
- Crash contributing

factors

Mafi et al. (2018) [30]

10 2018 US
2012–
2015

15,164

- No Injury
- Non-

Incapacitating
Injury

-
Incapacitating/Fatal

- SVM
- Back Propagation Neural

Network
- Ordered Logit

- SVM
- Relative speed
- Gross vehicle weight Liao et al. (2018) [74]

11 2017 Malaysia
2009–
2015

1130

- PDO
- Evident

Injury
- Disabling

Injury

- Recurrent Neural Network
- Bayesian Logistic Regression
- Multilayer Perceptron

- Recurrent
Neural
Network

- Dry surface
- Lighting conditions

(dark with and
without street lights)

Sameen and Pradhan
(2017) [75]

12 2017 UAE
2008–
2013

5973

- Minor
- Moderate
- Severe
- Death

- Decision Tree (J48)
- Naive Bayes
- Rule Induction (PART)
- Multilayer Perceptron

- Decision
Tree (J48)

- Nationality
- Collision type

(pedestrian–vehicle)
- Age (18–30)
- Male

Taamneh et al.
(2017) [25]

13 2016
Saudi

Arabia
2014–
2015

85,605

- Injury
- No Injury
- Deaths

- Decision Tree (CHAID)
- Decision Tree (J48)
- Naive Bayes

- Decision
Tree

- Distraction while
driving

Al-Turaiki et al.
(2016) [24]
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No. Year Country Duration Size
Injury Severity

Classes
Approach Best Approach Significant Factors Reference

14 2015 Iran 2007 1063

- Fatality
- Evident

Injury
- No Injury

- SVM, Kernels
- Multilayer Perceptron (MLP)
- Genetic Algorithm
- Combined Genetic Algorithm

and Pattern Search

- MLP
- Speed of impact

distance
Aghayan et al.

(2015) [72]
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