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Featured Application: In this paper, an improved bistable piezoelectric energy harvester (IBPEH)
suitable for a vibration environment is studied. It can replace polluting batteries to supply power
for low-power sensors. The linear-arch composite beam in this paper solves the defect that the
traditional piezoelectric energy trap can only collect vibration energy in a single direction and
further enhances the collection efficiency of the bistable piezoelectric energy harvester by opti-
mizing the potential well. The energy harvest proposed in this paper provides an application for
the intelligent development of dangerous places such as coal mines.

Abstract: Bistable piezoelectric energy harvester (BPEH) can remove mechanical energy waste, which
is expected to realize the self-power supply of wireless sensors. To further improve the energy
harvesting efficiency, we designed an improved bistable piezoelectric energy harvester (IBPEH). The
restoring force model of the composing beam is acquired based on fitting experimental data, and the
nonlinear magnetic model is obtained by using the magnetic dipole method. The electromechanical
coupling dynamics model of the system is established based on Newton’s second law and Kirchhoff’s
law. Based on the control variable method, the influences of excitation frequency and excitation
amplitude on the vibration characteristics of IBPEH and BPEH are compared in simulation analysis.
Moreover, the correctness of the theoretical analyses is verified by experiments. The results show
that variations in the number of magnets and appropriate adjustments in their positions can broaden
the operating frequency bandwidth of the bistable piezoelectric energy harvester, and realize large-
amplitude periodic motion at lower excitation amplitudes. IBPEH can yield a higher voltage than
BPEH under the same excitation conditions. This paper provides a theoretical basis for optimizing the
potential well and further improving the electric energy harvest efficiency of the bistable piezoelectric
energy harvester device.

Keywords: piezoelectric energy harvester; bistable; nonlinear; vibration characteristics

1. Introduction

In recent years, wireless sensor technology has been widely used in various indus-
tries [1,2], but the energy supply problem of nodes has always restricted its development.
The use of a chemical battery power supply is easy to cause pollution to the environment,
and the cost of replacing the battery is high. There is a large amount of vibrational energy
in the environment [3–5], and harvesting vibration energy from the environment to power
wireless sensors is becoming a popular research activity. At present, vibration energy
harvesting technologies include electrostatic [6], electromagnetic [7], and piezoelectric.
Among them, piezoelectric energy harvesting technology has the characteristics of easy
application and high output voltage and has become a reliable means of energy supply [8].
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The early piezoelectric energy harvesting technology was mainly researched on linear
systems, but the linear piezoelectric energy harvester is affected by the natural frequency,
and it is difficult to adapt to the environment of wide frequency. To solve the problem of
the narrow operating frequency bandwidth of the linear piezoelectric energy harvester,
the array method [9,10] and the special-shaped beam method [11] have become popular
methods for the linear piezoelectric energy harvester to broaden the operating frequency
band. However, these energy harvesters have disadvantages such as large structure size
and low energy density.

Compared with linear piezoelectric energy harvesters, nonlinear piezoelectric energy
harvesters can harvest energy in a wider frequency range. Syta [12] investigated an energy
harvester based on bistable laminated plates by utilizing material properties, and exper-
imental results show that this piezoelectric energy harvester can output higher voltages
at multiple excitation frequencies. However, special carbon fiber materials can only be
completed after complex processing. Masana [13] designed a piezoelectric energy harvester
with variable axial stress, which effectively broadened the operating frequency bandwidth
of the system. Mak [14] developed a cantilever piezoelectric energy harvester with a lim-
iter. The numerical simulation results show that the nonlinear behavior of the system can
broaden the working frequency bandwidth of the energy harvester. Tang [15] fabricated
a piezoelectric energy harvester with an elastic amplifier on the base, and simulated and
analyzed the effect of springs on the performance of the piezoelectric energy harvester. The
results show that this structure can improve harvesting efficiency. However, the spring will
swing during the vibration process, which will damage the stability of the system operation.
The above-mentioned researchers have broadened the operating frequency bandwidth of
piezoelectric energy harvesters by changing material properties or using spring structures,
but these methods pose challenges to the fabrication of materials and the stability of system
operation.

In the current research on nonlinear piezoelectric energy harvesters, the introduction
of magnetic force into piezoelectric energy harvesters is considered an effective way to
broaden the operating frequency bandwidth and improve energy output [16,17]. Among
various stable piezoelectric energy harvesters, bistable piezoelectric energy harvesters
have become one of the most popular research areas [18,19]. Stanton [20] constructed a
common bistable piezoelectric energy harvester by using magnets with opposite axes, and
this structure has a wide operating frequency bandwidth. Wang [21] improved the output
efficiency of the piezoelectric energy harvester by properly adjusting the position of the
fixed-end magnet in the vertical direction. On this basis, Abdelkefi [22] placed the magnet
at the fixed end on top of the magnet at the end of the cantilever beam and established
a system model based on the Euler–Bernoulli beam theory. Electric energy harvesters
are capable of energy harvesting in a wide operating frequency bandwidth. Zhou [23]
replaced the traditional rigid fixed end with a flexible cantilever beam, which is beneficial
for the piezoelectric energy harvester system to realize the large-amplitude motion, and
the output voltage can be increased by 22.58%. Rui [24] proposed a magnetically coupled
piezoelectric energy trap with the addition of an auxiliary beam and developed a centralized
parametric model that broadened the operating bandwidth of the piezoelectric energy trap
by 66.7% and improved the energy harvesting efficiency by 35% compared to that before
the magnet was introduced. Fan [25] developed a piezoelectric energy harvester with
two fixed magnets. This research showed that the operating frequency can be adjusted to
between 22 and 32 Hz with suitable magnet spacing. Lan [26] added a small magnet based
on the traditional bistable piezoelectric energy harvester. The simulation results show that
the reduction in the system potential barrier height can enable the piezoelectric energy
harvester to operate at a lower excitation level. A large response output is achieved under
excitation conditions. Compared with the non-magnetic piezoelectric energy harvester,
the bistable piezoelectric energy harvester with the introduction of magnetic coupling has
superior output performance.
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The above-mentioned scholars have found that changing the number of magnets and
the spacing of magnets can affect the distribution of potential wells in the system. Based on
the research of the research group [27], we found that there is an optimal distance between
the magnets in the BPEH system, and under this condition, the system performance will be
the best. Is there any way to further improve the performance of the bistable piezoelectric
energy harvester? This paper proposes an IBPEH to broaden the operating frequency
bandwidth and enhance the response output of the bistable piezoelectric energy harvester.
In Section 2, the structural models of BPEH and IBPEH are given, the restoring force of the
composite beam is fitted, the magnetic force on magnet A is calculated by the magnetic
dipole theory, and the lumped parameter model of the IBPEH system is established. In
Section 3, based on the control variable method, the nonlinear equations are solved by the
Newton–Raphson iteration method, and the optimal positions of the magnets C and D are
obtained, the vibration characteristics of the BPEH and IBPEH systems are analyzed by
numerical simulation, and the output performance of the system under different excitation
frequencies and excitation amplitudes is compared. In Section 4, an experiment is designed
to verify the correctness of the theoretical analysis. The conclusion follows in Section 5.

2. Structure and Mathematic Model
2.1. Structure of the BPEH and IBPEH

Figure 1a is a structural model of the BPEH. BPEH is mainly composed of a base, a
magnet fixing plate, a linear-arch composite beam, a magnet, piezoelectric material PVDF,
and an external resistor R. One end of the composite beam is fixed on the top of the
base, the other end is glued with magnet A, and magnet B is placed on the fixing plate.
In particular, magnet A and magnet B maintain a mutually repelling relationship. The
total length of the composite beam is L, the height is hS, the width is bs, the arc-shaped
radius is Rs, and the distance between the centers of magnet A and magnet B is d. Based
on this structural model, magnets C and D are added, and magnets C and D are placed
symmetrically concerning magnet B, thereby developing the IBPEH, as shown in Figure 1b.
All magnets are made of NdFeB. The vertical distance between the centers of magnet B
and magnet C is s, and the horizontal distance is dg. Adjusting the positions of magnet C
and magnet D properly can change the magnetic force received by magnet A, effectively
affecting the nonlinearity of the system.
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Figure 1. Structural models of the BPEH and IBPEH: (a) BPEH; (b) IBPEH.

2.2. Modeling of Restoring Force

This paper uses the dynamometer YLK-10 to measure the restoring force at the end of
the composite beam. After fitting the experimental data, the restoring force model diagram
of the composite beam, as shown in Figure 2, is obtained. It can be seen from Figure 2 that
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the structural restoring force Fr of the composite beam and its end displacement y show
a nonlinear relationship, which is caused by the existence of an arched structure in the
composite beam.
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The restoring force expression of the composite beam is

Fr = α1y3(t) + α2y(t) (1)

in the formula, α1 = −23894.2927 N/m3, α2 = −29.3491 N/m3. The restoring force
potential energy of the composite beam can be expressed by the above-restoring force
integral

Ur =
∫

Frdy (2)

2.3. Modeling of the Nonlinear Magnetic Model

In this paper, the magnetic dipole theory is used to establish a nonlinear magnetic
model. Figure 3 is a diagram of the magnetic force model of IBPEH, in which rij represents
the direction vector of the magnetic force that magnet A receives. As can be seen from the
figure, in the IBPEH system, magnet A is subjected to the magnetic force of magnets B, C,
and D. For the BPEH system, magnet A is only subjected to the magnetic force of magnet B.
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The repulsion force of magnet A by magnet B is

Fm1 = µ0 MASA MBSB
4π

{
− σ1

(d2+σ1
2)

3
2
+ σ1

[(ha+d)2+σ1
2]

3
2
+ σ2

[(d−ha)
2+σ2

2]
3
2

− σ2

(d2+σ2
2)

3
2

} (3)

The repulsion force of magnet A by magnet C is

Fm2 = µ0 MASA MCSC
4π

{
− σ3

((d+s)2+σ3
2)

3
2
+ σ3

[(ha+d+s)2+σ3
2]

3
2

+ σ4

[(d+s−ha)
2+σ4

2]
3
2
− σ4

((d+s)2+σ4
2)

3
2

} (4)

The repulsion force of magnet A by magnet D is

Fm3 = µ0 MASA MDSD
4π

{
− σ5

((d+s)2+σ5
2)

3
2
+ σ5

[(ha+d+s)2+σ5
2]

3
2

+ σ6

[(d+s−ha)
2+σ6

2]
3
2
− σ6

((d+s)2+σ6
2)

3
2

} (5)

For the BPEH system, the magnetic force received by magnet A is Fm1, while in the
IBPEH system, the total magnetic force received by magnet A is

Fm = Fm1 + Fm2 + Fm3 (6)

In the formula,σ1 = y(t), σ2 = y(t) + haθ, σ3 = y(t) + dg, σ4 = y(t) + haθ + dg, σ5 =
y(t)− dg, σ6 = y(t) + haθ − dg. The displacement of the free end of the composite beam
in the y-axis direction at time t is y(t). MA, MB, MC, and MD are the magnetization of
magnets A, B, C, and D, respectively. SB, SC, SD, and SA are the surface areas of magnets B,
C, D, and A facing each other, and the deflection angle θ of magnet A and displacement
y(t) satisfy the following relationship:

θ(t) = arctan
(
y′(t)

)
(7)

where y′(t) = ∂y(t)
∂x .

The potential energy generated between the magnets in the piezoelectric energy
harvester system can be obtained by integrating the magnetic force. For the BPEH system,
the potential energy generated between the magnets is

Um1 =
∫

Fm1dy (8)

For the IBPEH system, the potential energy generated between the magnets is

Um2 =
∫

Fmdy (9)

2.4. Dynamic Model of IBPEH

When the composite beam is in the first-order bending vibration mode, the piezo-
electric energy harvester obeys the law of energy conservation, and the IBPEH model
can be equivalently transformed into a lumped parameter model. Figure 4 is the lumped
parameter model diagram of the IBPEH system, where Meq represents the equivalent mass
of the system, Ceq represents the equivalent damping of the system, R represents the PVDF
external resistance, and Fm represents the magnetic force received by the magnet A.
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According to the equivalent model of lumped parameters of the piezoelectric energy
harvester, based on Newton’s second law and Kirchhoff’s law, the nonlinear motion control
equation of IBPEH system is established:

Meq
..

y(t) + c
.

y(t)− ϑv(t) + Fr + Fm = −γ
..

z(t) (10)

ϑ
.

y(t) + Cp
.

v(t) +
v(t)

R
= 0 (11)

where v(t) is the voltage across the load resistor R, and y(t) is the displacement of the end

of the composite beam at time t.
..

z(t) = Acos(2π f t), where z(t) is the base vibration dis-
placement, A is the excitation amplitude, and f is the excitation frequency. The parameters
of the lumped parameter model of the piezoelectric energy harvester are

ϑ =
βϑe31b

(
hp + hs

)
L

(12)

Cp =
εs

33bL
hp

(13)

In the formula, As = b
(
hs + 2hp

)
, where ϑ represents the equivalent electromechanical

coupling coefficient of the system. e31 and εs
33 represent the piezoelectric constant and

clamping permittivity of the piezoelectric material PVDF, respectively. βϑ represents the
correlation coefficient, and hp represents the thickness of PVDF.

3. Numerical Simulations
3.1. Potential Energy Analysis of the System

In order to analyze the influence of system parameters on the vibration characteristics
of BPEH and IBPEH systems, the potential energy characteristics of the system are first
analyzed, and the structural parameters of the BPEH and IBPEH are shown in Table 1.

The depth of the system potential well has a certain influence on the output of the
piezoelectric energy harvester. The potential well of the potential energy of the BPEH
system is deep at this time, and a large excitation is required to realize the motion between
the wells. In this paper, based on the control variable method, by adjusting the positions of
magnets C and D, the distance between the BPEH and IBPEH wells are kept the same, and
the height of the potential barrier is reduced.
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Table 1. Structural parameters of BPEH and IBPEH.

Parameter Symbol Value Unit

Substrate layer
Density ρs 8300 kg/m3

Arc-shaped radius Rs 10× 10−3 m
Length L 40× 10−3 m
Height hs 2× 10−4 m
Width bs 8× 10−3 m
PVDF

Density ρp 1780 kg/m3

Length Lp 40× 10−3 m
Height hp 1.1× 10−4 m
Width bp 8× 10−3 m

Magnet
Mass m0 3.8× 10−3 kg

Length la, lb, lc, ld 4× 10−3 m
Height ha, hb, hc, hd 10× 10−3 m
Width wa, wb, wc, wd 10× 10−3 m

Magnetization strength Ma, Mb, Mc, Md 5.5× 105 A/m
Vacuum permeability µ0 4π × 10−7 H/m

The total potential energy of the BPEH system is U1 = Um1 + Ur. We selected
d = 18 mm and set the highest point of the barrier (y1, U11) and the lowest point of the
potential well (y2, U12). From the potential energy curve of the BPEH system, we can obtain{

U11
′(y1) = Fm1(y1) + Fr = 0

U12
′(y2) = Fm1(y2) + Fr = 0

(14)

Since the potential energy curve of the system is symmetric about the U axis, the
values of y1 and the lowest point y2 of the potential well on either side are substituted into
the following equation: {

U21
′(y1) = Fm

(
y1, dg, s

)
+ Fr = 0

U22
′(y2) = Fm

(
y2, dg, s

)
+ Fr = 0

(15)

When the position of magnet C and magnet D is greater than a certain distance from
magnet A, magnet A is not affected by the magnetic force of magnet C and magnet D. At
this time, the potential energy curves of IBPEH and BPEH systems are consistent, and
the equations have countless solutions. Therefore, within a certain range, the initial value
is based on the fact that the distances between magnets C and D and magnet B are zero,
respectively. We take the values near s = 0 mm and dg = 4 mm as the initial values, use
the Newton–Raphson iteration method to solve the nonlinear equation system through
MATLAB, and obtain the distance value when the system potential well is the shallowest
through verification: {

s = 2 mm
dg = 8.5 mm

(16)

Figure 5 shows the potential energy curve of the system when d = 18 mm, s = 2 mm,
and dg = 8.5 mm. It can be seen from Figure 5 that the potential well depth of the BPEH
system is 0.23 mJ, while that of IBPEH system is 0.12 mJ.
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3.2. Influence of Excitation Frequency on Vibration Characteristics

In order to study the output performance of IBPEH and BPEH, we set d = 18 mm,
unchanged, and take s = 2 mm and dg = 8.5 mm. Under different excitation frequencies
and excitation amplitudes, the Runge–Kutta algorithm is used to numerically solve the
dynamic equations, and the vibration characteristics of IBPEH and BPEH are analyzed and
compared.

In order to compare and analyze the influence of different excitation frequencies on
the response characteristics of BPEH and IBPEH, we set A = 14 m/s2, unchanged, and
study the system performance through numerical simulation. Figure 6 shows bifurcation
diagrams of BPEH and IBPEH systems with excitation frequency as the parameter. It
can be seen from Figure 6 that the change in excitation frequency causes the piezoelectric
energy harvester to exhibit diverse motion states. It can be seen from Figure 6a that
BPEH experiences small-amplitude intrawell, large-amplitude interwell, chaos, and small-
amplitude intrawell various motion states. It can be seen from Figure 6b that IBPEH
undergoes complex motion states such as chaos, large-amplitude interwell, chaos, and
small-amplitude intrawell oscillation in sequence. To further explore the response output
of the piezoelectric energy harvester, the root mean square (RMS) voltage is used for
comparison, and the calculation formula is as follows:

URMS =

√
∑n

i=1 Ui
2

n
(17)
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In the formula, n is the total number of sampling points, and Ui represents the real-
time voltage of the i-th sampling point. Sampling in the range of excitation frequency under
study, the RMS voltage diagram with excitation frequency as a parameter is obtained in
Figure 7.
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It can be seen from Figure 6 that when the excitation frequency is in the range of
2–6.3 Hz, the BPEH system performs small-amplitude intrawell oscillation, and the IBPEH
system performs chaotic motion. Combined with Figure 7, it can be seen that the RMS
voltage produced by IBPEH is larger than that of BPEH, which is caused by the existence of
some large-amplitude interwell and small-amplitude intrawell motions in chaotic motion.
When the excitation frequency is greater than 6.3 Hz, IBPEH can adapt to this excitation
frequency, and the system changes from chaotic motion to large-amplitude interwell pe-
riodic motion. Combined with Figure 7b, it can be seen that the RMS voltage produced
by IBPEH is improved, while BPEH still maintains small-amplitude intrawell oscillation.
When the excitation frequency continues to increase to f = 10.2 Hz, BPEH transitions
from small-amplitude intrawell motion to large interwell periodic motion state and the
RMS voltage increases significantly, while the IBPEH system continues to maintain large-
amplitude interwell periodic oscillation. The operating frequency bandwidth of BPEH
is 3.2 Hz in the state of large-amplitude interwell periodic motion, and the operating fre-
quency bandwidth of IBPEH is 6.1 Hz. Continuing to increase the excitation frequency,
after the large-amplitude interwell periodic motion of the system ends, the BPEH and
IBPEH will decay from the large-amplitude interwell periodic motion state to the chaotic
motion state. Because the system is difficult to adapt to the higher excitation frequency,
small-amplitude intrawell motion is finally performed. The above analysis shows that
before the system realizes large-amplitude motion, the IBPEH behaves in a state of chaotic
motion. In this state, the response output of the energy harvester is between the motion
state of small-amplitude intrawell and large-amplitude interwell. Compared with BPEH,
IBPEH can achieve high-energy yield at a lower excitation frequency, and the operating
frequency bandwidth is broadened by 93.55%.

In order to further explore the influence of the excitation frequency on the output of the
piezoelectric energy harvester, keep A = 14 m/s2 unchanged, in the excitation frequency
range studied, and take f = 6 Hz, f = 9 Hz, and f = 12 Hz for comparative analysis.
Figure 8a,b shows the simulation results of time-domain velocity versus the displacement
and voltage–time diagram with the conditions of A = 14 m/s2 and f = 6 Hz, respectively.
It can be seen from Figure 8 that the BPEH system performs small-amplitude intrawell
periodic oscillation, and the IBPEH system performs chaotic motion. In some periods, the
response speed and vibration displacement amplitude of IBPEH are larger. Under this
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excitation condition, the RMS voltage produced by IBPEH is 16.96 V, while that BPEH is
only 2.65 V.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

motion state of small-amplitude intrawell and large-amplitude interwell. Compared with 
BPEH, IBPEH can achieve high-energy yield at a lower excitation frequency, and the op-
erating frequency bandwidth is broadened by 93.55%. 

In order to further explore the influence of the excitation frequency on the output of 
the piezoelectric energy harvester, keep 𝐴 = 14 m/s2 unchanged, in the excitation fre-
quency range studied, and take 𝑓 = 6Hz, 𝑓 = 9 Hz, and 𝑓 = 12 Hz for comparative 
analysis. Figure 8a,b shows the simulation results of time-domain velocity versus the dis-
placement and voltage–time diagram with the conditions of 𝐴 = 14 m/s2 and 𝑓 = 6 Hz, 
respectively. It can be seen from Figure 8 that the BPEH system performs small-amplitude 
intrawell periodic oscillation, and the IBPEH system performs chaotic motion. In some 
periods, the response speed and vibration displacement amplitude of IBPEH are larger. 
Under this excitation condition, the RMS voltage produced by IBPEH is 16.96 V, while 
that BPEH is only 2.65 V. 

  
(a) (b) 

Figure 8. Simulation results of time-domain velocity versus the displacement and voltage–time di-
agram when 𝐴 = 14 m/s2 and 𝑓 = 6 Hz. (a) Simulation results of time-domain velocity versus the 
displacement; (b) voltage–time diagram. 

Increase the excitation frequency to 𝑓 = 9 Hz, and keep 𝐴 = 14 m/s2 unchanged. 
Figure 9a,b shows the simulation results of time-domain velocity versus the displacement 
and voltage–time diagram under this condition. It can be seen from Figure 9 that com-
pared with the small-amplitude intrawell motion state of BPEH, IBPEH can realize a large-
interwell periodic motion state, and the response displacement and speed have been 
greatly improved. In this case, IBPEH can yield a higher voltage, and the RMS voltage is 6.21 times that of BPEH. 

Continue to increase the excitation frequency to 𝑓 = 12 Hz, and keep 𝐴 = 14 m/s2. 
Figure 10a,b shows the simulation results of time-domain velocity versus the displace-
ment and voltage–time diagram, respectively. From this figure, it can be seen that both 
BPEH and IBPEH systems can achieve large-amplitude interwell period motion, and the 
response displacement and speed of the system have been greatly improved. Compared 
with BPEH, the RMS voltage of the IBPEH is increased by 23.51%. 

  

Figure 8. Simulation results of time-domain velocity versus the displacement and voltage–time
diagram when A = 14 m/s2 and f = 6 Hz. (a) Simulation results of time-domain velocity versus the
displacement; (b) voltage–time diagram.

Increase the excitation frequency to f = 9 Hz, and keep A = 14 m/s2 unchanged.
Figure 9a,b shows the simulation results of time-domain velocity versus the displacement
and voltage–time diagram under this condition. It can be seen from Figure 9 that compared
with the small-amplitude intrawell motion state of BPEH, IBPEH can realize a large-
interwell periodic motion state, and the response displacement and speed have been
greatly improved. In this case, IBPEH can yield a higher voltage, and the RMS voltage is
6.21 times that of BPEH.
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Continue to increase the excitation frequency to f = 12 Hz, and keep A = 14 m/s2.
Figure 10a,b shows the simulation results of time-domain velocity versus the displacement
and voltage–time diagram, respectively. From this figure, it can be seen that both BPEH
and IBPEH systems can achieve large-amplitude interwell period motion, and the response
displacement and speed of the system have been greatly improved. Compared with BPEH,
the RMS voltage of the IBPEH is increased by 23.51%.
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It can be seen from the above analysis that different excitation frequencies have a
significant influence on the output efficiency of the piezoelectric energy harvester. Com-
pared with BPEH, IBPEH can adapt to lower excitation frequency and has wider operating
frequency bandwidth. Piezoelectric energy harvesters are capable of generating higher and
more intensive electrical energy in large-amplitude interwell period motion than in chaotic
motion.

3.3. Influence of Excitation Amplitude on Vibration Characteristics

In order to study the influence of excitation amplitude on piezoelectric energy har-
vesters, under the condition of f = 11 Hz, the influence of different excitation amplitudes
on the response produced by IBPEH and BPEH is compared and analyzed. Figure 11 is
a bifurcation diagram with excitation amplitude as a parameter. Figure 12 is the RMS
voltage diagram. It can be seen from Figure 11 that BPEH and IBPEH can always achieve a
large-amplitude interwell motion state with the increase in excitation amplitude. When
the excitation amplitude is in the range of 4–9.7 m/s2, it is difficult for the BPEH system to
obtain enough energy to eliminate the limitation of the potential well and to oscillate within
the well. However, IBPEH presents a state of chaotic motion. Chaotic motion is an irregu-
lar motion that is composed of small-amplitude intrawell and large-amplitude interwell.
Although it is difficult for IBPEH to maintain high-energy yield, the RMS voltage produced
by IBPEH is greater than that of BPEH. Increasing the excitation amplitude to more than 9.7
m/s2, the BPEH maintains a small-amplitude intrawell motion, and the IBPEH system has
enough energy to cross the bistable potential barrier to achieve a large-amplitude periodic
oscillation; therefore, the piezoelectric energy harvester can continuously produce high en-
ergy. Continuing to increase the excitation amplitude, when A = 12.2 m/s2, BPEH can end
the small-amplitude intrawell motion state, and the transition realizes the large-amplitude
interwell periodic motion state. After that, with the increase in excitation amplitude, the
piezoelectric energy harvester will continuously output high energy. Within the analyzed
excitation amplitude range, the excitation level threshold for the BPEH system to enter a
large-amplitude interwell periodical motion is A = 12.2 m/s2, and when A = 9.7 m/s2,
IBPEH can continuously output high energy. Compared with BPEH, the excitation ampli-
tude threshold of IBPEH to achieve a large-amplitude periodic motion state is reduced by
2.5 m/s2.



Appl. Sci. 2023, 13, 258 12 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 19 
 

irregular motion that is composed of small-amplitude intrawell and large-amplitude in-
terwell. Although it is difficult for IBPEH to maintain high-energy yield, the RMS voltage 
produced by IBPEH is greater than that of BPEH. Increasing the excitation amplitude to 
more than 9.7 m/s2, the BPEH maintains a small-amplitude intrawell motion, and the 
IBPEH system has enough energy to cross the bistable potential barrier to achieve a large-
amplitude periodic oscillation; therefore, the piezoelectric energy harvester can continu-
ously produce high energy. Continuing to increase the excitation amplitude, when 𝐴 =12.2 m/s2, BPEH can end the small-amplitude intrawell motion state, and the transition 
realizes the large-amplitude interwell periodic motion state. After that, with the increase 
in excitation amplitude, the piezoelectric energy harvester will continuously output high 
energy. Within the analyzed excitation amplitude range, the excitation level threshold for 
the BPEH system to enter a large-amplitude interwell periodical motion is 𝐴 = 12.2 m/s2, 
and when 𝐴 = 9.7 m/s2, IBPEH can continuously output high energy. Compared with 
BPEH, the excitation amplitude threshold of IBPEH to achieve a large-amplitude periodic 
motion state is reduced by 2.5 m/s2. 

  
(a) (b) 

Figure 11. Bifurcation diagram with excitation amplitude as parameter: (a) BPEH; (b) IBPEH. 

  
(a) (b) 

Figure 12. RMS voltage diagram with excitation amplitude as parameter: (a) BPEH; (b) IBPEH. 

To further explore the influence of excitation amplitude on the response of BPEH and 
IBPEH, and keep 𝑓 = 11 Hz unchanged, based on the above research and analysis, within 
the range of excitation amplitudes studied, we take excitation amplitudes 𝐴 = ଼୫ୱమ , 𝐴 =ଵଵ୫ୱమ , and 𝐴 = 14 m/sଶ. When 𝑓 = 11 Hz and 𝐴 = 8 m/s2, Figure 13a,b shows the simula-
tion results of time-domain velocity versus the displacement and the voltage–time 

Figure 11. Bifurcation diagram with excitation amplitude as parameter: (a) BPEH; (b) IBPEH.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 19 
 

irregular motion that is composed of small-amplitude intrawell and large-amplitude in-
terwell. Although it is difficult for IBPEH to maintain high-energy yield, the RMS voltage 
produced by IBPEH is greater than that of BPEH. Increasing the excitation amplitude to 
more than 9.7 m/s2, the BPEH maintains a small-amplitude intrawell motion, and the 
IBPEH system has enough energy to cross the bistable potential barrier to achieve a large-
amplitude periodic oscillation; therefore, the piezoelectric energy harvester can continu-
ously produce high energy. Continuing to increase the excitation amplitude, when 𝐴 =12.2 m/s2, BPEH can end the small-amplitude intrawell motion state, and the transition 
realizes the large-amplitude interwell periodic motion state. After that, with the increase 
in excitation amplitude, the piezoelectric energy harvester will continuously output high 
energy. Within the analyzed excitation amplitude range, the excitation level threshold for 
the BPEH system to enter a large-amplitude interwell periodical motion is 𝐴 = 12.2 m/s2, 
and when 𝐴 = 9.7 m/s2, IBPEH can continuously output high energy. Compared with 
BPEH, the excitation amplitude threshold of IBPEH to achieve a large-amplitude periodic 
motion state is reduced by 2.5 m/s2. 

  
(a) (b) 

Figure 11. Bifurcation diagram with excitation amplitude as parameter: (a) BPEH; (b) IBPEH. 

  
(a) (b) 

Figure 12. RMS voltage diagram with excitation amplitude as parameter: (a) BPEH; (b) IBPEH. 

To further explore the influence of excitation amplitude on the response of BPEH and 
IBPEH, and keep 𝑓 = 11 Hz unchanged, based on the above research and analysis, within 
the range of excitation amplitudes studied, we take excitation amplitudes 𝐴 = ଼୫ୱమ , 𝐴 =ଵଵ୫ୱమ , and 𝐴 = 14 m/sଶ. When 𝑓 = 11 Hz and 𝐴 = 8 m/s2, Figure 13a,b shows the simula-
tion results of time-domain velocity versus the displacement and the voltage–time 

Figure 12. RMS voltage diagram with excitation amplitude as parameter: (a) BPEH; (b) IBPEH.

To further explore the influence of excitation amplitude on the response of BPEH
and IBPEH, and keep f = 11 Hz unchanged, based on the above research and anal-
ysis, within the range of excitation amplitudes studied, we take excitation amplitudes
A = 8m

s2 , A = 11m
s2 , and A = 14 m/s2. When f = 11 Hz and A = 8 m/s2, Figure 13a,b

shows the simulation results of time-domain velocity versus the displacement and the
voltage–time diagram, respectively. It can be seen from Figure 13a and the bifurcation
diagram in Figure 11 that IBPEH is a chaotic motion state under the action of this low exci-
tation level, while BPEH is a small-amplitude intrawell oscillation state, and the response
displacement and vibration velocity are much smaller than IBPEH. It can be seen from
Figure 13b that the RMS voltage produced by IBPEH is 13.18 V, while that of BPEH is only
2.14 V.

When f = 11 Hz, increase the excitation amplitude to A = 11 m/s2. Figure 14a,b
shows the simulation results of time-domain velocity versus the displacement and the
voltage–time diagram, respectively. It can be seen from Figure 14a that the BPEH is still
in a small-amplitude intrawell motion state, while IBPEH has achieved a large-amplitude
interwell periodical motion state, and the response displacement and velocity have been
greatly improved. Combined with Figure 14b, IBPEH can continuously produce voltage
with high energy, and the RMS voltage produced is 8.07 times that of BPEH. It fully
demonstrates the performance of IBPEH that can achieve high efficiency produced under
the condition of lower excitation amplitude.
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Figure 13. Simulation results of time-domain velocity versus the displacement and voltage–time
diagram when f = 11 Hz and A = 8 m/s2. (a) Simulation results of time-domain velocity versus the
displacement; (b) voltage–time diagram.
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Figure 14. Simulation results of time-domain velocity versus the displacement and voltage–time
diagram when f = 11 Hz and A = 11 m/s2. (a) Simulation results of time-domain velocity versus
the displacement; (b) voltage–time diagram.

When f = 11 Hz, continue to increase the excitation amplitude to the condition of
A = 14 m/s2. Figure 15a,b shows the simulation results of time-domain velocity versus the
displacement and the voltage–time diagram, respectively. It can be seen from Figure 15a
combined with the bifurcation diagram in Figure 11 that both BPEH and IBPEH are in a state
of large-amplitude interwell periodic motion under this excitation condition. Concerning
Figure 15b, it can be seen that BPEH and IBPEH can continuously yield voltage with high
energy. Compared with BPEH, the RMS voltage produced by IBPEH increased by 24.56%.

For a bistable energy harvesting system, the bistable large-amplitude period oscillation
is a motion state in which the energy harvester operates with high efficiency. It can be
seen from the above analysis that with the increase in the excitation amplitude, the kinetic
energy obtained by the system increases, which will help the piezoelectric energy harvester
to achieve a large-amplitude periodic motion state. In addition, compared with BPEH,
IBPEH can achieve a large-amplitude periodic oscillation motion state at a lower excitation
level, and within the range of excitation amplitude studied, IBPEH can produce a higher
voltage.
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4. Experimental Validation and Discussion
4.1. Experimental Prototype and Experimental Platform

In order to verify the correctness of the simulation results, an experimental prototype is
made and an experimental platform is built in this paper. Figure 16 shows the experimental
prototype and experimental platform. On this basis, magnet C and magnet D are removed
as the BPEH system test platform. The IBPEH system test platform is mainly composed of a
computer, voltage stabilizer, exciter controller (VT-9008, ECON, Hangzhou, China), power
amplifier (VSA-1000A, ECON, Hangzhou, China), exciter (LT-50ST, ECON, Hangzhou,
China), oscilloscope (DSOX3024T, KEYSIGHT, Santa Rosa, CA, USA), laser vibrometer (LV-
S01, SDPTOP, Shanghai, China), laser vibrometer controller (LV-S01, SDPTOP, Shanghai,
China), and vibration signal analyzer (COCO80X, CRYSTAL, Silicon Valley, CA, USA). The
experimental prototype consists of a base, a linear-arch composite beam, a PVDF film, and
a magnet. PVDF is evenly bonded to the surface of the composite beam. One end of the
composite beam is fixed on the top of the base, and the other end is bonded with magnet A.
Magnet B is placed on the fixed end of the base, and magnet C and magnet D are placed
symmetrically on both sides of magnet B.
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During the experiment, the experimental prototype was installed on the exciter, and
the computer control software issued control commands to control the exciter through
the exciter controller and power amplifier. In particular, the stable output of the power
amplifier was ensured by connecting a voltage stabilizer. The experimental prototype
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vibrated under the action of the exciter, and the generated voltage data were collected
by the oscilloscope. The vibration speed of the composite beam passed through the laser
vibrometer and its controller and was finally recorded by the vibration signal analyzer.

4.2. Discussion of Excitation Frequency on Vibration Characteristics

In order to verify the influence of excitation frequency on the performance of the piezo-
electric energy harvester, we first set the excitation amplitude to 14 m/s2, and measured the
response output characteristics under the conditions of f = 6 Hz, f = 9 Hz, and f = 12 Hz.

Figure 17a–c shows the simulation results of time-domain velocity versus the dis-
placement when A = 14 m/s2 and the excitation frequency is 6 Hz, 9 Hz, and 12 Hz,
respectively. Figure 18a–c shows the voltage–time diagrams of A = 14 m/s2 and excitation
frequency of 6 Hz, 9 Hz, and 12 Hz, respectively. It can be seen from Figure 17 combined
with Figure 18 that the IBPEH system exhibits chaotic motion under the condition of an
excitation frequency of 6 Hz, and the RMS voltage produced by IBPEH is 15.42 V. BPEH
is small-amplitude intrawell motion state, and the RMS voltage is only 2.32 V. When the
excitation frequency is increased to 9 Hz, the IBPEH system can adapt to this frequency
and perform large-amplitude interwell motion, and the RMS voltage is 22.32 V, while the
BPEH still maintains small-amplitude intrawell motion, and the RMS voltage is only 3.52 V.
The RMS voltage of IBPEH is 6.64 times and 6.34 times that of BPEH RMS voltage in turn.
Continuing to increase the excitation frequency to 12 Hz, both BPEH and IBPEH show a
state of large-amplitude intrawell periodic motion, the RMS voltage produced by BPEH
is 20.81 V, and the IBPEH is 27.02 V. Under this excitation condition, the RMS voltage
produced by IBPEH is 29.84% higher than that of BPEH, and the experimental results are
in agreement with the theoretical analysis results.
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4.3. Discussion of Excitation Amplitude on Vibration Characteristics

In order to verify the influence of the excitation amplitude on the performance of the
piezoelectric energy harvester, the excitation frequency is set to 11Hz, and the response
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and output characteristics of the piezoelectric energy harvester were measured under the
conditions of A = 8 m/s2, A = 11 m/s2, and A = 14 m/s2.

Figure 19a–c shows the simulation results of time-domain velocity versus the dis-
placement when f = 11 Hz and the excitation amplitude is 8 m/s2, 11 m/s2, and 14 m/s2,
respectively. Figure 20a–c shows the voltage–time diagrams when f = 11 Hz and the
excitation amplitude is 8 m/s2, 11 m/s2, and 14 m/s2, respectively. Under the excitation
conditions of A = 8 m/s2 and A = 11 m/s2, the RMS voltages produced by BPEH are
2.03 V and 3.22 V, while IBPEH is 10.47 V and 25.29 V, respectively. The RMS voltage of the
yield of the IBPEH is 5.15 times and 6.85 times that of the RMS voltage of the output of the
BPEH in turn. When the excitation amplitude is 14 m/s2, the RMS voltages of the BPEH
and IBPEH are 19.77 V and 26.37 V, respectively, and the output of IBPEH is 33.38% higher
than that of BPEH. Compared with the simulation results, when the excitation frequency is
11 Hz and the excitation amplitude is 8m/s2, although the IBPEH shows a chaotic motion
state in both the simulation and the experiment, the RMS voltage output in the experiment
is low, which is why there are more small-amplitude intrawell motions in the experiment,
resulting in a less high-energy output of IBPEH. The experimental results show that the
response output characteristics of IBPEH are always higher than those of BPEH under
different excitation amplitudes, and that IBPEH can achieve sustained high-energy output
at lower excitation amplitude.
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Figure 19. Simulation results of time-domain velocity versus the displacement when f = 11 Hz:
(a) A = 8 m/s2; (b) A = 11 m/s2; (c) A = 14 m/s2.
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5. Conclusions

In this work, we designed an improved magnetic coupling bistable piezoelectric energy
harvester. The electromechanical coupling dynamics model was established, the nonlinear
equation system was solved by the Newton–Raphson iteration method, the distribution
of potential wells was improved by adjusting the magnet spacing, and the influences of
excitation frequency and excitation amplitude on the vibration characteristics of BPEH and
IBPEH were compared and analyzed by numerical simulation. Finally, an experimental
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platform was designed and built to verify the simulation results. The following main
conclusions are drawn from the simulation and experiment:

(1) IBPEH has a wider operating frequency bandwidth. In particular, when the excitation
amplitude is 14 m/s2, the operating frequency bandwidth of BPEH is only 3.2 Hz,
while that of IBPEH is 6.1 Hz, which is a 93.55% improvement.

(2) For BPEH, adding magnets and properly adjusting the magnet spacing can make the
potential well of the system shallow, and thus optimize the potential well. Compared
with BPEH, IBPEH relieves the low excitation threshold to achieve large amplitude
cross-hole periodic motion and can achieve dense high-energy output at low excitation
amplitude.

(3) IBPEH can remove the restriction of BPEH potential well depth and improve the
power output. In the whole range of excitation frequency and amplitude, the voltage
generated by IBPEH is always higher than that of BPEH under the same excitation
conditions. This further proves that the change in nonlinearity can affect the collection
efficiency of piezoelectric energy harvesters.
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