Calibration and Validation of Global Horizontal Irradiance Clear Sky Models against McClear Clear Sky Model in Morocco
Abstract
:1. Introduction
2. Literature Review
Study | Year | Clear Sky Model | rMBE (%) | rRMSE (%) | R2 |
---|---|---|---|---|---|
El Alani et al. [11] | McClear | 0.6% | 2.2% | 0.96 | |
2021 | McClear (day ahead) | 0.8% | 3.3% | 0.99 | |
Badescu et al. [57] | 2013 | 54 models | - | 7–14%, | - |
Laaroussi et al. [46] | 2016 | Various models | - | less than 30% | - |
Gairaa et al. [47] | 2019 | European Solar Radiation Atlas (ESRA) | - | 6.26% | - |
Ineichen–Perez | - | 3.84% | - | ||
Sun et al. [50] | 2019 | 75 GHI clear sky irradiance models | - | - | - |
Mghouchi et al. [59] | 2016 | ASHRAE [61,62], Campbell, [63] and Benjamin [64] | - | - | - |
Laguarda and Abal [51] | 2017 | ESRA, Simplified Solis, and Kasten | Negative up to −5.3% | Range between 4.3% and 7% | - |
Ineichen [7] | 2016 | Eight high clear sky solar irradiance models | Negative up to −1% | Range between 4% and 5% | - |
Kwarikunda and Chiguvare [58] | 2021 | Berger–Duffie, Adnot–Bourger– Campana–Gicquel and Robledo–Soler | - | Range between 4% and 8% | Exceeded 0.98 for all three models |
Pérez-Burgos et al. [5] | 2017 | Louche, Robledo–Soler, and European Solar Radiation Atlas | - | 9.9% to 5.7% 7.8% to 7.4%8.8% to 6.7% 5.7% to 9.9% | - |
Alam [67] | 2006 | REST, Yang, and CPCR2 | - | Up to 7%, 13.4%, and 25.9% | - |
3. Description of the Clear Sky Models
4. Materials and Methods
4.1. Study Area
4.2. Data and Methodology
4.2.1. Meteorological Data (Temperature, Humidity, Pressure)
4.2.2. Ozone Data
4.2.3. Linke Turbidity Data
4.2.4. Aerosol Optical Depth
4.2.5. Albedo Data
4.2.6. Solar Geometry
4.2.7. Extraterrestrial Solar Irradiance
4.3. Methodology
4.4. Model Validation Using Statistical Metrics
4.5. Model Benchmark
4.6. Most Feasible Clear Sky Model per Station
5. Results
5.1. SOLCAST Results
5.2. Bird Results
5.3. Adnot–Bourges–Campana–Gicquel (ABCG) Results
5.4. Berger–Duffie (BDD) Results
5.5. Ineichen and Perez (INP) Results
5.6. Simplified Solis Results
5.7. Haurwitz Results
6. Discussions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morocco Submits Enhanced NDC, Raising Ambition to 45.5 Percent by 2030, NDC Partnership. n.d. 2021. Available online: https://ndcpartnership.org/news/morocco-submits-enhanced-ndc-raising-ambition-455-percent-2030 (accessed on 18 April 2021).
- Green, M.A.; Keevers, M.J.; Thomas, I.; Lasich, J.B.; Emery, K.; King, R.R. 40% efficient sunlight to electricity conversion. Prog. Photovolt. Res. Appl. 2015, 23, 685–691. [Google Scholar] [CrossRef]
- Lan, D.; Green, M.A. Pathways towards a 50% efficiency spectrum-splitting photovoltaic system: Application of built-in filters and generalization of concept. Energy Procedia 2018, 150, 83–86. [Google Scholar] [CrossRef]
- Gueymard, C.A. Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models. Sol. Energy 2012, 86, 2145–2169. [Google Scholar] [CrossRef]
- Pérez-Burgos, A.; Díez-Mediavilla, M.; Alonso-Tristán, C.; Rodríguez-Amigo, M.C. Analysis of solar direct irradiance models under clear-skies: Evaluation of the improvements for locally adapted models. J. Renew. Sustain. Energy 2017, 9, 023703. [Google Scholar] [CrossRef] [Green Version]
- Popov, Z.; Nagy, Z.; Baranka, G.; Weidinger, T. Assessments of Solar, Thermal and Net Irradiance from Simple Solar Geometry and Routine Meteorological Measurements in the Pannonian Basin. Atmosphere 2021, 12, 935. [Google Scholar] [CrossRef]
- Ineichen, P. Validation of models that estimate the clear sky global and beam solar irradiance. Sol. Energy 2016, 132, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Hunt, L.A.; Kuchar, L.; Swanton, C.J. Estimation of solar radiation for use in crop modelling. Agric. For. Meteorol. 1998, 91, 293–300. [Google Scholar] [CrossRef]
- Badescu, V.; Gueymard, C.A.; Cheval, S.; Oprea, C.; Baciu, M.; Dumitrescu, A.; Iacobescu, F.; Milos, I.; Rada, C. Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models. Renew. Sustain. Energy Rev. 2012, 16, 1636–1656. [Google Scholar] [CrossRef]
- Denhard, A.; Bandyopadhyay, S.; Habte, A.; Sengupta, M. Evaluation of Time-Series Gap-Filling Methods for Solar Irradiance Applications; National Renewable Energy Lab (NREL): Golden, CO USA, 2021; p. 33. [CrossRef]
- El Alani, O.; Ghennioui, H.; Ghennioui, A.; Dahr, F.-E. Detection of clear sky instants from high frequencies pyranometric measurements of global horizontal irradiance. E3S Web Conf. 2021, 229, 1008. [Google Scholar] [CrossRef]
- Pattarapanitchai, S.; Janjai, S. A semi-empirical model for estimating diffuse solar irradiance under a clear sky condition for a tropical environment. Procedia Eng. 2012, 32, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Bird, R.E.; Riordan, C. Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres. J. Appl. Meteorol. Climatol. 1986, 25, 87–97. [Google Scholar] [CrossRef]
- Ianetz, A.; Kudish, A. A Method for Determining the Solar Global and Defining the Diffuse and Beam Irradiation on a Clear Day. In Modeling Solar Radiation at the Earth’s Surface: Recent Advances; Badescu, V., Ed.; Springer: Cham, Switzerland, 2008; pp. 93–113. [Google Scholar] [CrossRef]
- Gueymard, C. REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation—Validation with a benchmark dataset. Solar Energy 2008, 82, 272–285. [Google Scholar] [CrossRef]
- Hay, J.E. Satellite based estimates of solar irradiance at the earth’s surface—I. Modelling approaches. Renew. Energy 1993, 3, 381–393. [Google Scholar] [CrossRef]
- Nwokolo, S.C.; Ogbulezie, J.C. A qualitative review of empirical models for estimating diffuse solar radiation from experimental data in Africa. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 367–396. [Google Scholar] [CrossRef]
- Bayrakçı, H.C.; Demircan, C.; Keçebas, A. The development of empirical models for estimating global solar radiation on horizontal surface—A case study. Renew. Sustain. Energy Rev. 2018, 81, 2771–2782. [Google Scholar] [CrossRef]
- Benkaciali, S.; Haddadi, M.; Khellaf, A. Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria. Renew. Energy 2018, 125, 694–711. [Google Scholar] [CrossRef]
- Lefèvre, M.; Oumbe, A.; Blanc, P.; Espinar, B.; Gschwind, B.; Qu, Z.; Wald, L.; Schroedter-Homscheidt, M.; Hoyer-Klick, C.; Arola, A.; et al. McClear: A new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos. Meas. Tech. 2013, 6, 2403–2418. [Google Scholar] [CrossRef] [Green Version]
- Antonanzas, J.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas-Torres, F. Solar irradiation mapping with exogenous data from support vector regression machines estimations. Energy Convers. Manag. 2015, 100, 380–390. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Gueymard, C.A. Worldwide inter-comparison of clear-sky solar radiation models. AIP Conf. Proc. 2016, 1850, 140018. [Google Scholar] [CrossRef] [Green Version]
- Noia, M.; Ratto, C.F.; Festa, R. Solar irradiance estimation from geostationary satellite data: I. Statistical models. Sol. Energy 1993, 51, 449–456. [Google Scholar] [CrossRef]
- Beyer, H.G.; Costanzo, C.; Heinemann, D. Modifications of the heliosat procedure for irradiance estimates from satellite images. Sol. Energy 1996, 56, 207–212. [Google Scholar] [CrossRef]
- Zarzalejo, L.F.; Polo, J.; Martin, L.; Ramirez, L.; Espinar, B. A new statistical approach for deriving global solar radiation from satellite images. Sol. Energy 2009, 83, 480–484. [Google Scholar] [CrossRef]
- Cano, D.; Monget, J.M.; Albuisson, M.; Guillard, H.; Regas, N.; Wald, L. A method for the determination of the global solar radiation from meteorological satellite data. Sol. Energy 1986, 37, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Polo, J.; Antonanzas-Torres, F.; Vindel, J.M.; Ramirez, L. Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models. Renew. Energy 2014, 68, 785–792. [Google Scholar] [CrossRef]
- Daryl, R.M. Solar radiation modeling and measurements for renewable energy applications: Data and model quality. Energy 2005, 30, 1517–1531. [Google Scholar] [CrossRef]
- Müller, R.; Dagestad, K.-F.; Ineichen, P.; Schroedter-Homscheidt, M.; Cros, S.; Dumortier, D.; Kuhlemann, R.; Olseth, J.; Izquierdo, G.; Reise, C.; et al. Rethinking satellite-based solar irradiance modelling The SOLIS clear-sky module. Remote Sens. Environ. 2004, 91, 160–174. [Google Scholar] [CrossRef]
- Ineichen, P. A broadband simplified version of the Solis clear sky model. Sol. Energy 2008, 82, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Ineichen, P.; Perez, R. A new airmass independent formulation for the Linke turbidity coefficient. Sol. Energy 2002, 73, 151–157. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Moore, K.; Kmiecik, M.; Chain, C.; George, R.; Vignola, F. A new operational model for satellite-derived irradiances: Description and validation. Sol. Energy 2002, 73, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Berger, X. Chauffage solaire et stratégies de chauffage. Rev. Phys. Appl. 1981, 16, 225–235. [Google Scholar] [CrossRef]
- Adnot, J.; Bourges, B.; Campana, D.; Gicquel, R. Utilisation de Courbes de Fréquences Cumulées d’Irradiation Solaire Globale pour le Calcul des Installations Solaires. In Analyse Statistique des Processus Météorologiques Appliquée à l’Énergie Solaire; Lestienne, R., Ed.; CNRS: Strasbourg, France, 1979; pp. 9–40. Available online: https://hal.archives-ouvertes.fr/hal-00993193 (accessed on 10 March 2022).
- Haurwitz, B. Insolation in relation to cloudiness ans cloud density. J. Atmos. Sci. 1945, 2, 154–166. [Google Scholar] [CrossRef]
- Haurwitz, B. Insolation in relation to cloud type. J. Atmos. Sci. 1948, 5, 110–113. [Google Scholar] [CrossRef]
- SOLCAST. 2022. Available online: https://solcast.com/historical-and-tmy/ (accessed on 16 January 2022).
- Gschwind, B.; Wald, L.; Blanc, P.; Lefèvre, M.; Schroedter-Homscheidt, M.; Arola, A. Improving the McClear model estimating the downwelling solar radiation at ground level in cloud free conditions—McClear-V3. Meteorol. Z. Contrib. Atmos. Sci. 2019, 28, 147–163. [Google Scholar] [CrossRef]
- Mabasa, B.; Lysko, M.D.; Moloi, S.J. Validating Hourly Satellite Based and Reanalysis Based Global Horizontal Irradiance Datasets over South Africa. Geomatics 2021, 1, 429–449. [Google Scholar] [CrossRef]
- Yang, D.; Bright, J.M. Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27 years. Sol. Energy 2020, 210, 3–19. [Google Scholar] [CrossRef]
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network BSRN: Structure and data description 1992–2017. Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Bright, J. Solcast: Validation of a satellite-derived solar irradiance dataset. Sol. Energy 2019, 189, 435–449. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Lefèvre, M.; Wald, L. Validation of the McClear clear-sky model in desert conditions with three stations in Israel. Adv. Sci. Res. 2016, 13, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Mabasa, B.; Lysko, M.D.; Tazvinga, H.; Zwane, N.; Moloi, S.J. The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa. Energies 2021, 14, 2583. [Google Scholar] [CrossRef]
- Laaroussi, N.; El Azhary, K.; Garoum, M.; Raefat, S.; Feiz, A. Semi-empirical models for the estimation of global solar irradiance measurements in Morocco. In Proceedings of the 2016 3rd International Conference on Renewable Energies for Developing Countries REDEC, Zouk Mosbeh, Lebanon, 13–15 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Gairaa, K.; Benkaciali, S.; Guermoui, M. Clear-sky models evaluation of two sites over Algeria for PV forecasting purpose. Eur. Phys. J. Plus 2019, 134, 534. [Google Scholar] [CrossRef]
- Beyer, H.-G.; Czeplak, G.; Terzenbach, U.; Wald, L. Assessment of the method used to construct clearness index maps for the new european solar radiation atlas ESRA. Sol. Energy 1997, 61, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Rigollier, C.; Bauer, O.; Wald, L. On the clear sky model of the 4th European Solar Radiation Atlas with respect to the Heliosat method. Sol. Energy 2000, 68, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Xixi, S.; Bright, J.M.; Gueymard, C.A.; Acord, B.; Wangd, P.; Engerer. N.A. Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis. Renew. Sustain. Energy Rev. 2019, 111, 550–570. [Google Scholar] [CrossRef]
- Laguarda, A.; Abal, G. Clear-Sky Broadband Irradiance: First Model Assessment in Uruguay. In Proceedings of the SWC2017/SHC2017, IEA SHC Solar Heating and Cooling Conference 2017, Abu Dhabi, United Arab Emirates, 29 October–2 November 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Kasten, F.; Czeplak, G. Solar and terrestrial radiation dependant on the amount of type of cloud. Sol. Energy 1980, 24, 177–189. [Google Scholar] [CrossRef]
- Kasten, F. Parametriserung der Globalstrahlung durch Bedeckungsgrad und Trübungsfaktor. Ann. Meteorol. Neue 1983, 20, 49–50. [Google Scholar]
- Reno, M.; Hansen, C.; Stein, J. Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis; Sadina Report, SAND2012-2389; Sandia National Laboratories: Albuquerque, NM, USA, 2014; p. 69. [CrossRef]
- Yang, D.; Jirutitijaroen, P.; Walsh, W.M. The estimation of clear sky global horizontal irradiance at the equator. Energy Procedia 2012, 25, 141–148. [Google Scholar] [CrossRef]
- Gueymard, V.B.; Cheval, S.; Oprea, C.; Baciu, M.; Dumitrescu, A.; Iacobescu, F.; Milos, I.; Rada, C. Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania. Renew. Energy 2013, 55, 85–103. [Google Scholar] [CrossRef]
- Badescu, V.; Gueymard, C.A.; Cheval, S.; Oprea, C.; Baciu, M.; Dumitrescu, A.; Iacobescu, F.; Milos, I.; Rada, C. Accuracy and sensitivity analysis for 54 models of computing hourly diffuse solar irradiation on clear sky. Theor. Appl. Climatol. 2013, 111, 379–399. [Google Scholar] [CrossRef]
- Kwarikunda, N.; Chiguvare, Z. Performance Analysis of Clear Sky Global Horizontal Irradiance Models: Simple Models Adapted for Local Conditions. J. Renew. Energy 2021, 2021, 4369959. [Google Scholar] [CrossRef]
- El Mghouchi, Y.; El Bouardi, A.; Sadouk, A.; Fellak, I.; Ajzoula, T. Comparison of three solar radiation models and their validation under all sky conditions—Case study: Tetuan city in northern of Morocco. Renew. Sustain. Energy Rev. 2016, 58C, 1432–1444. [Google Scholar] [CrossRef]
- ASHRAE. Handbook of Fundamentals; American Society of Heating, Refrigeration, and Air-Conditioning Engineers: Atlanta, GA, USA, 1985. [Google Scholar]
- Yao, W.; Xu, C.; Zhao, J.; Wang, X.; Wang, Y.; Li, X.; Cao, J. The modified ASHRAE model based on the mechanism of multi-parameter coupling. Energy Convers. Manag. 2021, 209, 112642. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics, 2nd ed.; Springer: New York, NY, USA, 1988; 306p, ISBN 0-387-94937-2. [Google Scholar]
- Bird, R.E. A simple, solar spectral model for direct normal and diffuse horizontal irradiance. Sol. Energy 1984, 32, 461–471. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Kallio, V.; Riihelä, A. Comparative Validation of Clear Sky Irradiance Models over Finland. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1199–1202. [Google Scholar] [CrossRef]
- Holmgren, W.F.; Hansen, C.W.; Mikofski, M.A. pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef]
- Alam, S. Prediction of direct and global solar irradiance using broadband models: Validation of REST model. Renew. Energy 2006, 31, 1253–1263. [Google Scholar] [CrossRef]
- Gueymard, C.A. Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data. Sol. Energy 1993, 51, 121–138. [Google Scholar] [CrossRef]
- Ineichen, P. Comparison of eight clear sky broadband models against 16 independent data banks. Sol. Energy 2006, 80, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Younes, S.; Muneer, T. Clear-sky classification procedures and models using a world-wide data-base. Appl. Energy 2007, 84, 623–645. [Google Scholar] [CrossRef]
- Gueymard, C. Progress in direct irradiance modeling and validation. In Proceedings of the Solar 2010 Conference, American Solar Energy Society, Phoenix, AZ, USA, 17–22 May 2010; Available online: https://www.solarconsultingservices.com/public/Gueymard-DNI_models_validation-ASES10.pdf (accessed on 12 May 2022).
- Ianetz, A.; Lyubansky, V.; Setter, I.; Kriheli, B.; Evseev, E.G.; Kudish, A.I. Inter-comparison of different models for estimating clear sky solar global radiation for the Negev region of Israel. Energy Convers. Manag. 2007, 48, 259–268. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1983; ISBN 9780323151818. [Google Scholar]
- Lingamgunta, C.; Veziroglu, T.N. A universal relationship for estimating clear sky insolation. Energy Convers. Manag. 2004, 45, 27–52. [Google Scholar] [CrossRef]
- Kondratyev, K.Y. Radiation in the Atmosphere, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1969; Volume 12, ISBN 9780080954479. [Google Scholar]
- Holtslag, A.A.M.; Van Ulden, A.P. A Simple Scheme for Daytime Estimates of the Surface Fluxes from Routine Weather Data. J. Appl. Meteorol. 1983, 22, 517–529. [Google Scholar] [CrossRef]
- Bálint, R.; Fodor, A.; Szalkai, I.; Szalkai, Z.; Magyar, A. Modeling and calculatuionn of the global solar irradiance on slopes. Hung. J. Ind. Chem. 2019, 47, 57–63. [Google Scholar] [CrossRef]
- Brimicombe, C.; Quintino, T.; Smart, S.; Di Napoli, C.; Hogan, R.; Cloke, H.L.; Pappenberger, F. Calculating the Cosine of the Solar Zenith Angle for Thermal Comfort Indices; ECMWF Technical Memorandum No. 895; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2022; 18p. [Google Scholar]
- Available online: https://climateknowledgeportal.worldbank.org/country/morocco/climate-data-historical (accessed on 26 October 2021).
- Allouhi, A.; Kousksou, T.; Jamil, A.; El Rhafiki, T.; Mourad, Y.; Zeraouli, Y. Economic and environmental assessment of solar air-conditioning systems in Morocco. Renew. Sustain. Energy Rev. 2015, 50, 770–781. [Google Scholar] [CrossRef]
- Allouhi, A.; Jamil, A.; Kousksou, T.; El Rhafiki, T.; Mourad, Y.; Zeraouli, Y. Solar domestic heating water systems in Morocco: An energy analysis. Energy Convers. Manag. 2015, 92, 105–113. [Google Scholar] [CrossRef]
- Meteomanz. Available online: http://www.meteomanz.com/index?l=1 (accessed on 16 January 2022).
- Zahumenský, I. Guidelines on Quality Control Procedures for Data from Automatic Weather Stations; World Meteorological Organization: Geneva, Switzerland, 2004; pp. 1–10. [Google Scholar]
- Born, K.; Fink, A.; Paeth, H. Dry and wet periods in the northwestern Maghreb for present day and future climate conditions. Meteorol. Z. 2008, 17, 533–551. [Google Scholar] [CrossRef]
- Filahi, S.; Tanarhte, M.; Mouhir, L.; El Morhit, M.; Tramblay, Y. Trends in indices of daily temperature and precipitations extremes in Morocco. Theor. Appl. Climatol. 2016, 124, 959–972. [Google Scholar] [CrossRef]
- Hong, C.; Qin, W.; Wang, L.; Hu, B.; Zhang, M. Hourly clear-sky solar irradiance estimation in China: Model review and validations. Sol. Energy 2021, 226, 468–482. [Google Scholar] [CrossRef]
- Keogh, W.M.; Blakers, A.W. Accurate measurement, using natural sunlight, of silicon solar cells. Prog. Photovolt. 2004, 12, 1–19. [Google Scholar] [CrossRef]
- Gueymard, C. Analysis of monthly average atmospheric precipitable water and turbidity in Canada and northern United States. Sol. Energy 1994, 53, 57–71. [Google Scholar] [CrossRef]
- Gueymard, C. Assessment of the Accuracy and Computing Speed of Simplified Saturation Vapor Equations Using a New Reference Dataset. J. Appl. Meteorol. 1993, 32, 1294–1300. [Google Scholar] [CrossRef]
- Schroedter-Homscheidt, M.; Arola, A.; Killius, N.; Lefèvre, M.; Saboret, L.; Wandji, W.; Wey, E. The Copernicus atmosphere monitoring service CAMS radiation service in a nutshell. In Proceedings of the Sixteenth European Photovoltaic Solar Energy Conference, SolarPACES16, Glasgow, UK, 1–5 May 2016; pp. 11–14. Available online: https://hal-mines-paristech.archives-ouvertes.fr/hal-01386187 (accessed on 12 January 2021).
- SODA Portal. Available online: http://www.soda-pro.com/web-services/atmosphere/linke-turbidity-factor-ozone-water-vapor-and-angstrome (accessed on 21 November 2021).
- SODA Portal. Available online: http://www.soda-pro.com/web-services/atmosphere/cams-aod (accessed on 26 October 2021).
- Ångström, A. On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geogr. Ann. 1929, 11, 156–166. [Google Scholar] [CrossRef]
- Ångström, A. Techniques of Determinig the Turbidity of the Atmosphere1. Tellus 1961, 13, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, K.-G.; Anttila, K.; Trentmann, J.; Stengel, M.; Fokke Meirink, J.; Devasthale, A.; Hanschmann, T.; Kothe, S.; Jääskeläinen, E.; Sedlar, J.; et al. CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys. 2017, 17, 5809–5828. [Google Scholar] [CrossRef] [Green Version]
- Reda, I.; Andreas, A. Solar position algorithm for solar radiation applications. Sol. Energy 2004, 76, 577–589. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1980; pp. 6–13, 22. [Google Scholar]
- Cooper, P.I. The absorption of radiation in solar stills. Sol. Energy 1969, 12, 333–346. [Google Scholar] [CrossRef]
- Spencer, J.W. Fourier series reprensentation of the position of the sun. Search 1971, 2, 172. [Google Scholar]
- Kasten, F.; Young, A.T. Revised optical air mass tables and approximation formula. Appl. Opt. 1989, 28, 4735–4738. [Google Scholar] [CrossRef]
- Bird, R.E.; Hulstrom, R.L. Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces; No. SERI/TR-642-761; Solar Energy Research Institute: Golden, CO, USA, 1981. [Google Scholar]
- Gueymard, C.A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 2004, 76, 423–453. [Google Scholar] [CrossRef]
- Engerer, N.A.; Mills, F.P. Validating nine clear sky radiation models in Australia. Sol. Energy 2015, 120, 9–24. [Google Scholar] [CrossRef]
- Javu, L.; Winkler, H.; Roro, K. Validating clear-sky irradiance models in five South African locations. In Proceedings of the Southern African Solar Energy Conference 2019 SASEC2019, Mpekweni, Eastern Cape, South Africa, 25–27 November 2019; Available online: http://hdl.handle.net/10204/11889 (accessed on 15 February 2022).
- Farahat, A.; Kambezidis, H.D.; Almazroui, M.; Ramadan, E. Solar Potential in Saudi Arabia for Southward-Inclined Flat-Plate Surfaces. Appl. Sci. 2021, 11, 4101. [Google Scholar] [CrossRef]
Station | WMO Code | Latitude (° N) | Longitude (° E) | Altitude (m) | Köppen Climate Type | Number of Clear-Sky Days | Relative Humidity (%) | Water Vapor (g/kg) |
---|---|---|---|---|---|---|---|---|
Marrakech | 60230 | 31.617 | −8.033 | 466 | Mid-Latitude Steppe and Desert Climate (Bsh). | 196 (24.5%) | 55 | 0.16 |
Fes | 60141 | 33.933 | −4.983 | 579 | Mediterranean Climate (Csa) | 138 (17.25%) | 38 | 0.11 |
Agadir | 60252 | 30.383 | −9.567 | 23 | Mid-Latitude Steppe and Desert Climate (Bsh) | 130 (16.25%) | 61 | 0.17 |
Tangier | 60100 | 35.733 | −5.803 | 21 | Mediterranean Climate (Csa) | 38 (4.75%) | 73 | 0.19 |
Ouarzazate | 60262 | 30.933 | −6.910 | 1140 | Tropical and Subtropical Desert Climate (Bwh) | 232 (29%) | 59 | 0.16 |
Tantan | 60285 | 28.437 | −11.103 | 45 | Tropical and Subtropical Desert Climate (Bwh) | 62 (7.75%) | 64 | 0.18 |
Input/Model | Bird | Simple Solis | Ineichen–Perez | McClear | Haurwitz | Berger–Duffie | ABCG |
---|---|---|---|---|---|---|---|
Zenith Angle | X | X | X | X | X | X | X |
Albedo | X | - | - | X | - | - | - |
AOD1240 nm | X | X | - | - | - | - | - |
AOD550 nm | X | X | - | X | - | - | - |
AOD380 nm | X | - | - | - | - | - | - |
AOD500 nm | X | - | - | - | - | - | - |
AOD700 nm | - | X | - | - | - | - | - |
Temperature | X | X | - | X | - | - | - |
Humidity | X | X | - | X | - | - | - |
X | X | X | X | - | X | X | |
D (Julian day) | X | X | X | X | X | X | X |
Solar constant | X | X | X | X | - | - | - |
Pressure | X | X | X | X | - | - | - |
Altitude | X | X | X | X | X | X | X |
Linke Turbidity | - | - | X | - | - | - | |
Ozone | X | - | - | X | - | - | - |
Absolute airmass | - | - | X | - | - | - | - |
Relative airmass | X | - | X | - | - | - | - |
Apparent Elevation | - | X | - | - | - | - | - |
Asymmetry | X | - | - | - | - | - | - |
Total inputs | 16 | 12 | 9 | 11 | 3 | 4 | 4 |
Model Skill | rMBE | rRMSE | R2 |
---|---|---|---|
Poor | ≥|±10|% | ≥15% | ≤0.97 |
Average | ≥|±5|%, <|±10|% | ≥10%, <15% | >0.97, ≤0.98, |
Good | ≥|±2|%, <|±5|% | ≥5%, <10% | >0.98, ≤0.99, |
Excellent | <|±2|% | <5% | >0.99 |
Station | Mean GHI (W/m2) | Solis | SOLCAST | Bird | Haurwitz | Ineichen and Perez | ABCG | Berger |
---|---|---|---|---|---|---|---|---|
Marrakech | 518.1 | 0.997 | 0.999 | 0.998 | 0.99 | 0.998 | 0.99 | 0.99 |
Fes | 494.7 | 0.999 | 0.985 | 0.999 | 0.997 | 0.998 | 0.996 | 0.996 |
Agadir | 485.9 | 0.988 | 0.995 | 0.997 | 0.99 | 0.997 | 0.99 | 0.99 |
Tangier | 545.2 | 0.998 | 0.999 | 0.999 | 0.996 | 0.998 | 0.996 | 0.998 |
Ouarzazate | 518.3 | 0.99 | 0.96 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 |
Tantan | 379.5 | 0.95 | 0.97 | 0.97 | 0.98 | 0.97 | 0.98 | 0.97 |
Station | Minimum rMBE | Minimum rRMSE | Minimum rMAE | Maximum R2 | Most Feasible | Rating |
---|---|---|---|---|---|---|
Marrakech | BIRD | BIRD | BIRD | BIRD/ SOLCAST | BIRD | 4/4 |
Fes | SOLCAST | BIRD | Solis | Bird/SOLIS/ IPN | Solis | 2/4 |
Agadir | HWZT | BIRD | BIRD | BIRD/IPN | BIRD | ¾ |
Tangier | IPN | IPN | IPN | BIRD/ SOLCAST | IPN | ¾ |
Ouarzazate | BIRD | BIRD | BIRD | SOLIS/IPN | BIRD | ¾ |
Tantan | ABCG | ABCG | ABCG | ABCG | ABCG | 4/4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendyl, A.; Mabasa, B.; Bouzghiba, H.; Weidinger, T. Calibration and Validation of Global Horizontal Irradiance Clear Sky Models against McClear Clear Sky Model in Morocco. Appl. Sci. 2023, 13, 320. https://doi.org/10.3390/app13010320
Mendyl A, Mabasa B, Bouzghiba H, Weidinger T. Calibration and Validation of Global Horizontal Irradiance Clear Sky Models against McClear Clear Sky Model in Morocco. Applied Sciences. 2023; 13(1):320. https://doi.org/10.3390/app13010320
Chicago/Turabian StyleMendyl, Abderrahmane, Brighton Mabasa, Houria Bouzghiba, and Tamás Weidinger. 2023. "Calibration and Validation of Global Horizontal Irradiance Clear Sky Models against McClear Clear Sky Model in Morocco" Applied Sciences 13, no. 1: 320. https://doi.org/10.3390/app13010320
APA StyleMendyl, A., Mabasa, B., Bouzghiba, H., & Weidinger, T. (2023). Calibration and Validation of Global Horizontal Irradiance Clear Sky Models against McClear Clear Sky Model in Morocco. Applied Sciences, 13(1), 320. https://doi.org/10.3390/app13010320