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Abstract: This study considers the problem of numerical modeling of the PEEK product’s 3D printing
using the FDM technology. The aim of the study is to verify the adequacy of the use of a thermo-
viscoelastic model for numerical computations of the PEEK deposition process and to develop an
algorithm for calculating this process. The Prony model is used to describe the thermoviscoelastic
behavior of the material under study; the temperature-time shift is described by the Williams–Landel–
Ferry function (WLF). To obtain the values of the material constants of the relaxation function, first,
we used data from other authors; however, after their substitution into the numerical simulation, it
was not possible to obtain results close to the full-scale experiment. Therefore, realized our own DMA
experiment. The algorithm was developed and implemented in the ANSYS package to calculate
non-stationary temperature fields and the stress–strain state of the structure during its layer-by-layer
deposition. To solve these problems, the technology of “killing” and subsequent “aliving” of the
PEEK material, implemented in the ANSYS package, is used. The numerical algorithm is verified with
the results of an experiment on printing samples from PEEK. A good consistency of the calculated
data with the experiment is shown.

Keywords: PEEK; additive manufacturing; fused deposition modeling; physical model of material;
material properties; DMA experiment; numerical experiment; mathematical modeling; FEM; FDM

1. Introduction

Polyetheretherketone (PEEK) is a thermoplastic semi-crystalline polymer that is ac-
tively used in modern industries due to a unique combination of a number of operational
properties [1], thermo, heat, and fire resistance, low hygroscopicity, radiation and chemical
resistance, good mechanical and dielectric properties, and biocompatibility [2–4].

It is known from [5,6] that the crystallization temperature of PEEK, depending on
the manufacturer, varies from 287 to 311 ◦C, the melting temperature varies from 339 to
347 ◦C, the decomposition temperature varies from 567 to 589 ◦C, and the glass transition
temperature varies from 140 to 148 ◦C, the upper limits of the operating temperatures being
from 230 to 290 ◦C, respectively.

It is known from [7] that the PEEK density is a function of the degree of crystallinity
and can be assumed constant for a material in the amorphous ρa = 1262.6 Kg/m3 and
crystallized state ρK = 1400.6 Kg/m3.

Similarly to [7], the coefficient of thermal expansion can be considered a constant value
at the temperature intervals of the glassy αc = 100 × 10−6 1/◦C and highly elastic states
αB = 670 × 10−6 1/◦C.

The dependences of thermophysical characteristics of PEEK on temperatusre are
known from [8,9] and represent non-monotonic curves over the studied temperature range
from 25 to 330 ◦C. In the range from 25 to 100 ◦C, a decrease in the specific heat capacity from
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Cp = 1242 J/(kg K) to 1.181 J/(kg K) and a subsequent return to the previous level is
observed for the curves. Similarly, for thermal conductivity: from λ = 0.268 W/(m K) to
0.157 W/(m K). In the temperature range from 100 to 300 ◦C, an almost linear increase in
the described characteristics is observed from Cp = 1282 J/(kg K) to 2412 J/(kg K) and from
λ = 0.230 W/(m K) to 0.264 W/(m K), respectively. When the crystallization temperature
is reached, a sharp increase in both characteristics is observed up to the limit values of
Cp = 3248 J/(kg K) and λ = 0.357 W/(m K) with their further decrease as the melting
temperature is reached. At the same time, when solving a number of problems (for example,
calculating the stress–strain state of the structure [7]), the mentioned thermophysical
properties of the material can be assumed constant and equal to Cp = 1300 J/ (kg K) and
λ = 0.25 W/(m K).

There are a number of comparative calculations on the mechanical behavior of PEEK
in extreme operating conditions (with the transition to plastic) [10]. To describe the thermal
deformation of the PEEK material and calculate the stress–strain state of the structure,
the Johnson–Cook model is mainly used. This model allows taking into account plastic
deformation, strain rate, viscous effects, and the thermal softening of the material [11–15].
However, this model has some drawbacks. It is convenient to use in software packages
with an explicit scheme for calculating non-stationary problems. We had an extremely poor
convergence of the solution when trying to implement it in ANSYS Mechanical APDL. In
addition, the validity of using this model to describe polymers remains an open question.
Moreover, it should be noted that in the process of layer-by-layer growth, the material
works under normal conditions, not associated with large active deformations, but in a
wide temperature range. In this case, the main hypothesis of the formation of residual
deflections [7] is the assumption of the prevailing contribution of the incompatibility
of deformations in individual layers due to the non-synchronous solidification of the
thermoviscoelastic material. A similar mechanism is used in the production of prestressed
glass. For this reason, a viscoelastic model was chosen.

The Prony model assumes a preliminary determination of the values of the material
constants of the relaxation function. As traditionally, the data from the tests for uniaxial
tension–compression, not for shear, are used to obtain experimental parameters, the shear
constants are calculated through relations linking them to constants from the tension–
compression experiment, which are found from the experiment to determine the complex
modulus (Sections 2.2 and 2.2.1).

Numerical values of the temperature dependence function of the complex relaxation
modulus E can be calculated on the basis of experimental data from [7,16–18] (Section 2.2.3).
Experimental graphs of the amplitude of the complex relaxation E modulus at sample
cooling rates of 1, 10, and 35 ◦C/s known from [7] demonstrate a sharp increase in the
modulus from 5 × 107 Pa to 3.2 × 109 Pa at a temperature of 173 ◦C and from 5 × 107 Pa to
2.7 × 109 Pa at a temperature of 143 ◦C, respectively. The model for predicting the reaction
of a material during technological cooling, described in these sources, includes temperature
evolution, crystallization kinetics, and a viscoelastic model for predicting thermomechanical
properties. The kinetics of crystallization in semi-crystalline thermoplastic composites is
considered in connection with the influence of the degree of crystallinity on the mechanical
properties and possible contribution of volumetric shrinkage deformation, and the model
of the nucleation and growth of crystals of Velisaris and Seferis is used to describe it [16,17].
To predict dynamic modules in [7], a modified form of the standard linear viscoelastic
solid model was used. This model was expanded to account for the effect of crystallinity
on the behavior of semi-crystalline thermoplastic matrices. Experimental data describing
the process of crystallization of PEEK are known from [7,16,17]. Study [7] presents the
results of modeling the dependence of the material crystallinity degree on temperature
for cooling rates of 1, 10, and 35 ◦C/s. A sharp decrease in the degree of crystallinity of
the material is observed from 0.27 to 0 at 280 ◦C, from 0.24 to 0 in the temperature range
from 200 to 260 ◦C, and from 0.025 to 0 in the temperature range from 200 to 250 ◦C for the
corresponding cooling rates. The experimental curves of the degree of material crystallinity
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for cooling rates of 9.4 ◦C/min, 19.2 ◦C/min, 37.1 ◦C/min, and 55.8 ◦C/min are given
in [16,17]. A decrease in the material crystallinity degree is observed from 0.32 to 0 in 250 s,
from 0.3 to 0 in 100 s, from 0.28 to 0 in 70 s, and from 0.26 to 0 in 25 s for the corresponding
cooling rates. Experimental curves describing the dependence of the material crystallinity
degree on time at set temperatures of 307, 310, 312, and 315 ◦C are also given in [16,17]. The
material crystallinity degree reaches values of 0.3 per 1000 s, 0.34 per 1600 s, and 0.33 per
2100 and 3200 s, respectively, at the corresponding temperatures. The dependence of the
elastic modulus of the material on the crystallinity degree of the material of the sample is
also known from [19]. There is an increase in the elastic modulus of the material from 2.8 to
5.5 GPa with an increase in the material crystallinity degree from 0 to 35%, respectively.

The numerical modeling of the process of layer-by-layer deposition of polymer ma-
terials is considered in [20–23]. The existing solutions cover all stages of the extrusion
deposition process of the material: the feeding, melting, extrusion, and deposition of the
substance. Models of the material feeding process allow us to calculate the optimal feed rate
of the solid filament and the pushing force, as well as to take into account and minimize
the effect of slipping of the filament. Models of the material melting process describe
the viscous behavior of the melt, the dependence of viscosity on temperature, internal
heat exchange, and heat exchange with the surrounding medium, as well as the effect of
the nozzle angle and the material feed rate on pressure changes. Models of the material
extrusion process allow us to calculate the expansion and convective cooling of the material
when exiting the nozzle, and models of the material deposition process—the spreading,
cooling, and adhesion of the material. The results of these studies indicate that numerical
modeling is in good agreement with experimental values when predicting the properties
of materials.

Furthermore, there are a number of studies in which, in a similar way, using the
technology of the birth and death of elements, the processes of melting of wire material are
simulated. The model takes into account the thermal and deformation processes observed
in the sample, and the data of the computational experiment are in good agreement with
the full-scale experiment [24,25].

In [26–28], the influence of printing parameters on the change of the finished product
shape is analyzed, and their optimal values for PEEK are given.

2. Materials and Methods
2.1. Mathematical Formulation

Taking into account small deformations and negligibly small dissipative heat release,
it is possible to separate the boundary value problem of unsteady thermal conductivity and
the boundary value problem of thermomechanics on the stress–strain state (SSS), which
are unrelated in this formulation. The technology of “killing” and subsequent “aliving”
(Elements Birth and Death technology in ANSYS) of a part of the material that was initially
absent in the model and appearing during the deposition process is used to solve them. At
the same time, the domain occupied by the finished product is considered as the compu-
tational one. The continuous deposition of the material is carried out discretely; at each
calculation sub-stage corresponding to the “aliving” of the next subdomain of the “killed”
elements, the boundary value problem of thermal conductivity and thermomechanics is
solved, and the result of solving the previous sub-stage serves as the initial conditions for
the next one (see Sections 2.3.1 and 2.3.2 for a detailed illustration of the simulation of the
material deposition process). Modeled geometry is presented in Figure 1.
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equilibrium equations: divσෝ = 0, 𝐱 ∈ 𝑉, (5) 

Figure 1. Modeled geometry: the calculated scheme of the problem: (1) the domain occupied by
the final product; (2) the platform on which deposition is carried out; Vk—the domain occupied
by platform and part of the printed sample at the k-th sub-stage of the solution; S1,k—free surfaces
of the platform and part of the printed sample at the k-th sub-stage of the solution; S2—heated
platform surface.

At the k-th sub-stage of the solution, the formulation of the boundary value problem
of unsteady thermal conductivity for determining temperature fields T(x, t) in a domain
Vk with a boundary S1,k ∪ S2, taking into account the accepted hypotheses, includes [29]:

heat conductivity equation:

ρ(x)c(x, T)
∂T
∂t

= div(λ(x, T)grad(T)) + ρ(x)
.
q(x, t), x ∈ Vk, (1)

where c(x, T), λ(x, T), and ρ(x) are the heat capacity, heat conductivity, and density of the
material, respectively.

.
q(x, t) is the specific power of an external heat source, which means

the energy that is taken by the extruder heater for heating PEEK up to 430 ◦C;
boundary conditions:

−λ(x, T)grad(T) · n = h(T) · (T − Tc(t)), x ∈ S1,k, (2)

T(x, t) = To(x), x ∈ S2, (3)

where the first equation describes convective heat transfer, and the second one describes
platform heating; h(T) is the heat transfer coefficient, Tc(t) is the ambient tempera-
ture, n is the normal vector to the boundary S1,k of objects, and To(x) is the platform
heating temperature;

initial conditions:
T(x, t0,k) = Tk−1(x), x ∈ Vk, (4)

where T(x, t0,k) is the initial temperature distribution for the k-th sub-stage and Tk−1(x) is
the temperature determined at the end of the previous one.

These relations take into account the condition that the research domain
Vk = V liv

k ∪ Vkil
k remains unchanged throughout the sub-stage. Here, V liv

k and Vkil
k in-

dicate zones occupied by “alive” and “killed” elements, respectively. At the same time,
the thermophysical properties of the material in the zone of “killed” elements are subject
to degradation:

c(x), x ∈ Vkil
k << c(x, T), x ∈ V liv

k , ρ(x), x ∈ Vkil
k << ρ(x, T), x ∈ V liv

k ,
λ(x), x ∈ Vkil

k >> λ(x, T), x ∈ V liv
k .

The unrelated quasi-static boundary value problem of solid mechanics taking into ac-
count the insignificance of the contribution of mass forces at the k-th sub-stage includes [30]:

equilibrium equations:
divσ̂ = 0, x ∈ Vk, (5)

where σ̂(x, t) is the stress tensor;
geometric Cauchy relations:
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ε̂ =
1
2

(
∇u + (∇u)T

)
, x ∈ Vk, (6)

where u(x, t) is the displacement vector and ε̂(x, t) is the tensor of total deformations;
boundary conditions in displacements:

u = U, x ∈ Su,k, (7)

and tensions:
σ̂ · n = P, x ∈ Sσ,k, (8)

where Su and Sσ are the parts of the boundary with the specified displacements and
loads, respectively.

Thermomechanical parameters of the material in the zone of “killed” elements exclude
physical nonlinearity and are ideally elastic with degraded values:

4Ĉ(x), x ∈ Vkil
k << 4Ĉ(x, T), x ∈ V liv

k ,

where 4Ĉ is the fourth-rank tensor of elastic constants of the material.

2.2. Constitutive Relations for the PEEK Material and Their Adaptation to the Physical Models
Available in ANSYS

The general system of equations of the boundary value problem of solid mechanics
also includes constitutive relations.

The viscoelastic Prony model using the sum of exponentials with a constant volume
compression modulus as the relaxation core is chosen as the constitutive relations:

σ =
∫ t

0
2G(t− τ) de

dτ
dτ+ IKθ, (9)

where σ is the Cauchy stress tensor, e is the deviatory part of the deformations, I is the unit
tensor, K is the volume compression modulus, and G(t) is the shear modulus:

G(t) = G0

[
αG

∞ +
nG

∑
i=1
αG

i exp

(
− t
τG

i

)]
, (10)

where αG
i is the relative shear modulus for the shear relaxation times τG

i and nG is the
number of shear relaxation times. From the conditions G0 = G|t=0, G∞ = G|t=∞, it
follows that:

αG
∞ =

G∞

G0
,

nG

∑
i=1
αG

i =
G0 − G∞

G0
. (11)

2.2.1. Experimental Determination of Model Parameters

The use of the viscoelastic Prony model implies a preliminary determination of the
material constants of the relaxation function. It is assumed that the material experiences
only shear relaxation, and the volume compression modulus is constant in the model
presented above. Traditionally, data from uniaxial tension-compression tests, rather than
tests for shear, are used to obtain experimental parameters. The relaxation module for
uniaxial stretching–compression has the form similar to (10):

E(t) = E0

[
c∞ +

Ne

∑
i=1

ci exp
(
− t
βi

)]
,

where ci are the relative modules of tension–compression for relaxation times βi and Ne is
the number of relaxation times of tension–compression. From the conditions E0 = E|t=0,
E∞ = E|t=∞, it follows that:
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c∞ =
E∞

E0
,

Ne

∑
i=1

ci =
E0 − E∞

E0
. (12)

Assuming that the relaxation times for shear (τG
i ) and stretch–compression (βi) coin-

cide and their number is equal to (Ne = nG = n). Then, from (11) and (12), we can obtain a
relation of the form:

n

∑
i=1
αG

i =
n

∑
i=1

ci

[
G0 − G∞

G0
· E0

E0 − E∞

]
.

Denoting B =
[

G0−G∞
G0

· E0
E0−E∞

]
, we receive

αG
i = ci · B, (13)

It is known that
G0 =

E0

2(1 + ν0)
, (14)

G∞ =
E∞

2(1 + ν∞)
, (15)

where ν0 and ν∞ are the values of the Poisson’s ratio at the times t = 0 and t = ∞,
respectively. We find ν∞ from the condition of constancy of the volume compression
modulus K∗:

K∗ =
E0

3(1− 2ν0)
= const, (16)

K∞ = K∗ =
E∞

3(1− 2ν∞)
⇒ ν∞ = 0.5

(
1− E∞

3K∗

)
. (17)

Substituting (17) into (15), we receive:

G∞ =
E∞

2
(

1 + 0.5
(

1− E∞
3K∗

)) = E∞
3

9− E∞
K∗

. (18)

Consequently, from (13), (16), (14), and (18) it is possible to calculate αG
i , K∗, G0, and

G∞, having previously found ci, E0, E∞, and ν0 from the tension–compression experiment.
For this, we used the constitutive relations for the uniaxial case in the form:

σ(t) =
∫ t

0

[
E∞ + E0 ∑Ne

i=1 ci exp
(
− t− τ

β′i

)]
dε(τ), (19)

where β′i =
βi

A(T) is the reduced time, A(T) is the shift function. The material is assumed to
be thermorheologically simple, so the Williams–Landel–Ferry shift function is used:

lg(A(T)) =
C1(T − Tr)

C2 + (T − Tr)
, (20)

where T is the current temperature, Tr is the constant base temperature, and C1 and C2
are the empirical constants for the material. When representing the deformation as a
harmonic function:

ε(t) = εa sin(ωt), (ω = const, T = var) , t→ ∞

expression (19) is converted to the form:

σ(t) = εa

{
sin(ωt)

[
E∞ + ω2E0

nG

∑
i=1

β′i
2ci

1 + β′i2ω2

]
+ cos(ωt)ωE0

nG

∑
i=1

β′ici

1 + β′i2ω2

}
.
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Hence, the expressions for the real and imaginary parts of the complex modulus will
have the form:

E′ = E∞ + ω2E0

nG

∑
i=1

β′i
2ci

1 + β′i2ω2 , (21)

E′′ = ωE0

nG

∑
i=1

β′ici

1 + β′i2ω2 , (22)

Thus, Equations (9)–(20) constitute the PEEK physical model (Prony model and WLF),
the parameters (material constants of the relaxation function and WLF constants) of which
can be calculated from (21) and (22), knowing the temperature dependence of the real and
imaginary parts of the PEEK complex modulus.

2.2.2. Identification of PEEK Properties according to Third-Party Sources Taking into
Account the Kinetics of Crystallization

The numerical values of the temperature dependence function of the complex modulus
firstly were determined from experimental data of third-party sources [7,16–18]. The papers
describe (1) PEEK crystallization kinetics taking into account the cooling rate, (2) the PEEK
viscoelastic model for predicting thermomechanical properties, and (3) the PEEK thermal
deformation model.

Crystallization model formulation. The crystallization kinetics in semi-crystalline ther-
moplastic composites is considered in connection with the influence of the degree of crys-
tallinity on the mechanical properties and possible contribution of volumetric shrinkage
deformation. For a pure PEEK in dynamic conditions, it is set as follows:

Xvc = X∞
vc(w1Fvc1 + w2Fvc2), (23)

with weight coefficients w1 and w2 = 1− w1, where

Fvc1 = 1− exp
[
−C11

∫ t
0 T exp

{
−n1t(n1−1)

[
C21

T−Tg+51.6 + C31
T(Tm1−T)2

]}
dt
]

,

Fvc2 = 1− exp
[
−C12

∫ t
0 T exp

{
−n2t(n2−1)

[
C22

T−Tg+51.6 + C32
T(Tm2−T)2

]}
dt
]

,
(24)

where Xvc is the volume fraction of the crystal phase, X∞
vc is the equilibrium volume

fraction, Tg is the glass transition temperature, Tmi is the melting point of crystals for the
process (i = 1, 2), and C1i, C2i, and C3i are constants.

Viscoelastic model formulation. The real and imaginary parts of compliance of the mate-
rial J′ and J ′′ are composed of amorphous (J′am, J ′′am ) and crystalline (J′cr, J ′′cr) components:

J′ = J′am(1− Xvc) + J′crXvc,

J ′′ = J ′′am(1− Xvc) + J ′′crXvc.
(25)

The thermorelaxation transition is described by the following relations:

J′am = Jua + (Jua − Jra) + (cosψ)α cos(αψ),

J ′′am = (Jra − Jua)(cosψ)α sin(αψ).
(26)

The real part of the compliance of the crystalline phase of the material is assumed to
be constant, and the imaginary part is equal to zero:

J′cr = Juc,

J ′′cr = 0,
(27)

ψ = arctg(ωτam) (28)
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where Jua is the compliance of the amorphous phase in the glassy state (instantaneous), Jra
is the compliance of the amorphous phase in the equilibrium state (long-term), Juc is the
elastic compliance of the crystalline phase, ω is the angular frequency of deformation of
the sample in the DMA experiment, and α is the relaxation distribution coefficient (in the
range from 0 to 1), taking into account the tilt shift of the dynamic mechanical module in
the glass transition domain due to changes in the degree of crystallinity.

The relaxation time of the amorphous phase τam is directly proportional to the viscosity
µ in the model of a standard viscoelastic body:

τam = µ(Jra − Jua). (29)

The temperature dependence of the delay time is described by two different laws:
Arrhenius and Williams–Landel–Ferry (WLF). The first one operates in the range below the
glass transition temperature, while:

τ = τ0e
Ea(1/T−1/T0)

R for T ≤ T0a. (30)

The base temperature T0 is assumed to be a linear function of the degree of crystal-
lization in the range from T0a to T0c. Ea and R are the specific activation energy and the
universal gas constant, respectively. The approximation of WLF is given by the expression:

τ = τ010
−C1(T−T0)
C2+(T−T0) for T > T0a. (31)

Constants C1 and C2 are determined from experiments on deformation at variable
temperatures. The relaxation experiments are carried out in the interval up to 170 ◦C to
fully identify the model (30, 31).

From the relations below, it is possible to calculate the real and imaginary parts of the
complex modulus of the material:

E′ = J′

J′2+J′′ 2
,

E′′ = J′′

J′2+J′′ 2
.

(32)

Thermal deformation model formulation. A model based on the following hypotheses was
chosen to describe the temperature deformation of the PEEK material: (1) the coefficient
of thermal expansion of the material is constant over the temperature ranges of the glassy
and highly elastic states. At the same time, it takes the following values:

αth(T) = α1, T < Tg1 glassy state

αth(T) = α2, T > Tg2 highly elastic state
(33)

The boundaries of the glass transition interval depend on the experimentally observed
width of the relaxation transition:

Tg1 = Tg − ∆Tg/2,

Tg2 = Tg + ∆Tg/2,

where Tg, ∆Tg are the temperature and the glass transition interval, respectively. (2) In the
interval of the relaxation transition, the coefficient of linear thermal expansion (CLTE) is
calculated by the formula:

αth(T) =
α2 − α1

2
sin
(
π

T − Tg

∆Tg

)
+
α2 + α1

2
, Tg1 ≤ T ≤ Tg2. (34)

At the same time, the CTLE is interpreted as follows:

αth(T) =
dεth(T)

dT
(35)
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εth(T) =
∫ T

T0

αth(T)dT (36)

Total free deformation also includes the shrinkage of the material εcr as a result of the
partial crystallization of PEEK:

ε f = εcr + εth. (37)

The expression for εcr can be obtained by knowing the dependence of the density of
the material on the volume content of the crystalline phase:

ρ(Xvc) = ρam(1− Xvc) + ρcrXvc,

herewith

εcr(Xvc) = 1/3
(ρam − ρ(Xvc))

ρam
. (38)

Thus, Equations (23)–(32) constitute the PEEK physical model (micromechanical model
of crystallization kinetics taking into account the cooling rate), and Equations (33)–(38),
the PEEK thermal deformation model. These expressions were used to reproduce the
experimentally obtained graphs [7], which, in turn, were used to identify the constants of
the Prony and WLF models. It was carried out as follows.

Crystallization model calculation. The identification of the parameters of the crystalliza-
tion model (23-24) was carried out in [16]. The verification showed that the parameter
values presented in the paper (found from the condition of the minimum discrepancy
between the calculation and the experiment) fail to ensure the achievement of the claimed
accuracy in practice. Therefore, the search for their optimal values was implemented in the
Matlab package. The following vector of the required constants varied:

x =
{

Xvc∞, n1, n2, Tm1, Tm2, C11, C12, C21, C22, C31, C32, Tg, w1

( .
Ti

)}
, i = 1, 3

The method of a deformable polyhedron (Nelder–Mead) was used to search for the
minimum specific discrepancy of the calculated and experimental data:

Φ(x) =
∑Me

i=1

∣∣Xe
vci − Xs

vci(x)
∣∣

∑Me
i=1

∣∣Xe
vci

∣∣ → min. (39)

The experimental data of paper [7], presented in Figure 2 by red curves, were used as
reference data. The experimental curves of the degree of crystallization for cooling rates
Ti = 1, 10 and 35 K·s−1 are given in the work.

The result of (39) is presented in Tables 1 and 2.

Table 1. Values of parameters of the PEEK material crystallization kinetics model.

Xvc∞ n1 n2 Tm1, K Tm2, K C11, c−nK−1

0.2721 2.7986 1.4963 5.9246× 102 6.1696× 102 3.4052× 1010

C12, c−nK−1 C21, K C22, K C31, K3 C32, K3 Tg, K

3.4052× 1010 5.0698× 103 4.2589× 103 3.6516× 107 4.6533× 107 4.1700× 102

Table 2. Weight coefficients of the mechanisms of crystallization of the PEEK material.

.
Ti, K·s−1 1 10 35

w1(
.
Ti) 8.1209× 10−2 7.1103× 10−1 9.9980× 10−1
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Viscoelastic model calculation. The results from calculating the temperature dependence
of the complex modulus according to (32) from paper [7] were used as a reference to
identify the parameters of (9)–(20) available in ANSYS. The values of the material constants
accepted in the calculation are presented in Table 3.

Table 3. Values of constants for calculating the dependence of a complex modulus.

Jua, Pa−1 Jra, Pa−1 Juc, Pa−1 ω, rad s−1 τ0, s Ea, J mol−1 R, J mol−1 K−1

380× 10−12 15000× 10−12 120× 10−12 1 1 600× 103 8.314462618

T0a, K T0c, K C1 C2 α αam αcr

414 533 25 100 0.5 1 0.4

The calculation result is shown in Figure 3a,b shows experimental graphs of the
complex modulus amplitude from [7].

Thermal deformation model calculation. Figure 4 shows the results of calculating the free
deformation ε f = εcr + εth and its component obtained from (33)–(38). The thermomechan-
ical constant values of the model are presented in Table 4.

Table 4. Thermomechanical values of constants.

ρam, kg·m−3 ρcr, kg·m−3 α2, K−1 α2, K−1 ∆Tg, K

1262.6 1400.6 50× 10−6 200× 10−6 10
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Identification of the Prony model constants from graph data. The temperature dependence
of the complex modulus at the cooling rate of

.
T= 1 K·s−1, shown in Figure 3a with thin

lines, was used to determine the parameters of the Prony model with the temperature–
time analogy WLF (9)–(20). The formulation of the problem of finding constants of the
model is similar to (39). The obtained values are shown in Figures 5 and 6. Figure 5
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shows the temperature dependence of the real E′ and imaginary E′′ parts of the complex
modulus obtained during the experiment and numerical solution. Tables 5 and 6 show
the instantaneous properties of the material and the temperature–time shift constants,
respectively. The dependence of the weight coefficients ci on the relaxation times βi is
shown in Table 7 and Figure 6.
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Figure 5. The result of the approximation of the temperature dependence of the complex PEEK
module when cooled at a rate of

.
T = 1 K·s−1: (a) is the real part; (b) is the imaginary part.

“Experiment” is a reproduction of experiment results [7] by calculating (32), “Calculation” is the
calculation by (21–22).

Table 5. Values of instantaneous properties of viscoelastic material.

E0, Pa ν0

3.2335877× 109 0.3

Table 6. Values of constants of the Williams–Landel–Ferry shift function.

Tr, K C1 C2

397.24846 61.682023 150.11259
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Table 7. Values of viscoelastic constants of the relaxation function for 10 relaxation times.

i 1 2 3 4 5 6 7 8 9 10

αG
i 1.37× 10−4 2.62× 10−8 8.92× 10−4 1.10× 10−3 3.78× 10−4 6.29× 10−4 1.12× 10−3 1.05× 10−3 4.96× 10−4 9.74× 10−1

βi 1.00× 10−4 7.74× 10−3 5.99× 10−1 4.64× 10 3.59× 103 2.78× 105 2.15× 107 1.67× 109 1.29× 1011 1.00× 1013
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Figure 7 shows the result of testing the model (9)–(20) in the finite element package
of ANSYS. The calculation was performed without taking into account temperature and
shrinkage deformations. At the initial moment, the virtual cubic sample instantly (in 10−9 s)
is stretched along the x-axis by an amount of εx = 0.01. At the same time, the faces normal
to the other axes remain free. Thus, a uniaxial stress state (USS) is realized. Further, the
sample is heated at a fixed deformation at a constant rate from room temperature to 200 ◦C.
The transition to a highly elastic state is accompanied by a drop in modulus and voltage. It
can be seen from the figure that the transition zone shifts to a zone of higher temperatures
with an increase in the heating rate, which is typical for viscoelastic polymers of the studied
class. Thus, the adequacy of the obtained model of the thermomechanical behavior of the
PEEK material is qualitatively confirmed.
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2.2.3. Identification of PEEK Properties Based on the Results of Our DMA Experiment

When using the data obtained from [7,16–18] in numerical simulation, it was not
possible to obtain results close to the full-scale experiment. The resulting deflections of
PEEK plates differed significantly from the experimental ones even with an increase in the
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degree of detail of the slicer’s trajectory. Due to the fact that the data presented in these
papers were obtained at room temperature under loading conditions that are not typical
for the printing process, it was decided to conduct our own DMA experiment in a wide
temperature range.

To determine the numerical values of the temperature dependence function of the
complex modulus, full-scale and numerical experiments were carried out, and the model
was verified. A thermomechanical experiment for the glass-transiting material was carried
out using a dynamic mechanical analyzer DMA Q800 TA.

After separation from the platform, the samples showed residual bending, the direction
of which (edges up from the platform) can be seen in Figure 8. Next, the samples were
subjected to heat treatment according to two different scenarios:
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Figure 8. PEEK sample before and after DMA experiment.

Scenario 1. Heating in the furnace up to 250 ◦C, followed by cooling together with the
furnace (approximate cooling rate 2760 ◦C/min = 46 ◦C/s);

Scenario 2. Heating in the furnace to 250 ◦C, followed by cooling in running water
(approximate cooling rate 3.8 ◦C/min = 0.064 ◦C/s). Only 2 samples.

It was assumed that for samples cooled at such different rates, it would be possible
to reveal differences in thermomechanical behavior due to different conditions for the
formation of the crystal structure of the material and the final values of the degree of
crystallinity (see Section 3). Only 2 samples.

It was observed that the residual bending after additional heat treatment for all
samples increased by approximately 1.5 times.

A three-point bending flexural test was carried out in accordance with the requirements
of State All-Union standard 4648-2014 [31], according to which, the test samples were
formed with overall dimensions: 4.7 × 1.76 × 79 mm (Figure 1).

Next, 2 experiments were carried out on a three-point bending for a couple of
“fast”–“slow” samples:

1. In the temperature range 30–220 ◦C;
2. In the temperature range 30–330 ◦C. Figure 8 shows a sample after these tests.
In both cases, the frequency of the kinematic impact was 1 Hz.
The results of measuring the parameters of the complex modulus are shown in Figure 9.

From the figure, in particular, it follows that there is no effect of the cooling rate of the
sample on its thermomechanical behavior. Graphs marked with a dash correspond to
cooling in water, and solid graphs correspond to cooling in air. The stiffness of the “fast”
sample in Figure 9a is less, and in Figure 9b, it is greater than that of the one cooled
together with the furnace. In addition, there are no significant shifts of the drop region
of the complex modulus E′ for different samples up or down the temperature scale. We
can conclude that the differences in the experimental curves lie within the limits of the
experimental error.



Appl. Sci. 2023, 13, 341 15 of 31

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 31 
 

A three-point bending flexural test was carried out in accordance with the require-
ments of State All-Union standard 4648-2014 [31], according to which, the test samples 
were formed with overall dimensions: 4.7 × 1.76 × 79 mm (Figure 1). 

Next, 2 experiments were carried out on a three-point bending for a couple of “fast”–
“slow” samples: 

1. In the temperature range 30–220 °C; 
2. In the temperature range 30–330 °C. Figure 8 shows a sample after these tests. 
In both cases, the frequency of the kinematic impact was 1 Hz. 
The results of measuring the parameters of the complex modulus are shown in Figure 

9. From the figure, in particular, it follows that there is no effect of the cooling rate of the 
sample on its thermomechanical behavior. Graphs marked with a dash correspond to 
cooling in water, and solid graphs correspond to cooling in air. The stiffness of the “fast” 
sample in Figure 9a is less, and in Figure 9b, it is greater than that of the one cooled to-
gether with the furnace. In addition, there are no significant shifts of the drop region of 
the complex modulus 𝐸′ for different samples up or down the temperature scale. We can 
conclude that the differences in the experimental curves lie within the limits of the exper-
imental error. 

 
Figure 8. PEEK sample before and after DMA experiment.  

(a) 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 31 
 

(b) 

Figure 9. Results of DMA tests of PEEK samples cooled in water (dashed lines) and together with 
the furnace (solid lines). 

Identification of the Prony model constants from graph data. The search for unknown con-
stants was carried out by the method of nonlinear programming in the MatLab package 
using the fminsearch function. The problem of finding the minimum of the combined dis-
crepancy between the experimental characteristics and those calculated by the model (21) 
and (22) was solved: 

Φ(𝐱) = Φா′(𝐱)Φா′′(𝐱) → min, (40) 
where Φா′(𝐱) = ∑ ห𝐸′ୣ ୶୮ − 𝐸′௦หேୀଵ /𝑁 , Φா′′(𝐱) = ∑ ห𝐸′′ୣ ୶୮ − 𝐸′′௦หேୀଵ /𝑁 , and 𝑠𝑜𝑙  are 
the experimental and computational values at each point of measurement. Additional lim-
itations were put on the non-negativeness of the coefficients αீ : αீ ≥ 0. 

The data obtained after solving Equation (40) are given in Tables 8–10. 

Table 8. Instantaneous properties of viscoelastic material. 𝑬𝟎, Pа 𝝂𝟎 3.0145420 × 10ଽ 0.42 

Table 9. Values of constants of the Williams–Landel–Ferry shift function. 𝑻𝒓, K 𝑪𝟏 𝑪𝟐 

318 84.01 542.8 

Table 10. Values of viscoelastic constants of the relaxation function for 30 relaxation times. 𝒊 1 2 3 4 5 6 7 8 𝛂𝒊𝑮 9.782 × 10ିଷ 1.111 × 10ିଶ 1.240 × 10ିଶ 7.130 × 10ିଷ 9.511 × 10ିଷ 1.061 × 10ିଶ 1.121 × 10ିଶ 1.193 × 10ିଶ 𝛃𝒊 1.636 × 10ିଵ 2.575 4.053 × 10 6.379 × 10ଶ 1.004 × 10ସ 1.580 × 10ହ 2.488 × 10 3.915 × 10 𝒊 9 10 11 12 13 14 15 16 𝛂𝒊𝑮 1.340 × 10ିଶ 1.556 × 10ିଶ 1.893 × 10ିଶ 7.206 × 10ିଶ 3.082 × 10ିଵ 2.394 × 10ିଵ 9.227 × 10ିଶ 3.198 × 10ିଶ 𝛃𝒊 6.163 × 10଼ 9.701 × 10ଽ 1.527 × 10ଵଵ 2.403 × 10ଵଶ 3.783 × 10ଵଷ 5.954 × 10ଵସ 9.372 × 10ଵହ 1.475 × 10ଵ 𝒊 17 18 19 20 21 22 23 24 𝛂𝒊𝑮 1.551 × 10ିଶ 1.088 × 10ିଶ 9.063 × 10ିଷ 8.216 × 10ିଷ 6.637 × 10ିଷ 5.990 × 10ିଷ 6.824 × 10ିଷ 8.466 × 10ିଷ 𝛃𝒊 2.322 × 10ଵ଼ 3.655 × 10ଵଽ 5.753 × 10ଶ 9.055 × 10ଶଵ 1.425 × 10ଶଷ 2.243 × 10ଶସ 3.531 × 10ଶହ 5.558 × 10ଶ 

Figure 9. Results of DMA tests of PEEK samples cooled in water (dashed lines) and together with the
furnace (solid lines).

Identification of the Prony model constants from graph data. The search for unknown
constants was carried out by the method of nonlinear programming in the MatLab package
using the fminsearch function. The problem of finding the minimum of the combined
discrepancy between the experimental characteristics and those calculated by the model (21)
and (22) was solved:

Φ(x) = ΦE′(x)ΦE′′ (x)→ min, (40)

where ΦE′(x) = ∑
Ng
j=1

∣∣∣E′exp
j − E′sol

j

∣∣∣/Ng, ΦE′′ (x) = ∑
Ng
j=1

∣∣∣E′′ exp
j − E′′ sol

j

∣∣∣/Ng, and sol are
the experimental and computational values at each point of measurement. Additional
limitations were put on the non-negativeness of the coefficients αG

i : αG
i ≥ 0.

The data obtained after solving Equation (40) are given in Tables 8–10.

Table 8. Instantaneous properties of viscoelastic material.

E0, Pa ν0

3.0145420× 109 0.42
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Table 9. Values of constants of the Williams–Landel–Ferry shift function.

Tr, K C1 C2

318 84.01 542.8

Table 10. Values of viscoelastic constants of the relaxation function for 30 relaxation times.

i 1 2 3 4 5 6 7 8

αG
i 9.782× 10−3 1.111× 10−2 1.240× 10−2 7.130× 10−3 9.511× 10−3 1.061× 10−2 1.121× 10−2 1.193× 10−2

βi 1.636× 10−1 2.575 4.053× 10 6.379× 102 1.004× 104 1.458× 105 2.488× 106 3.915× 107

i 9 10 11 12 13 14 15 16

αG
i 1.340× 10−2 1.556× 10−2 1.893× 10−2 7.206× 10−2 3.082× 10−1 2.394× 10−1 9.227× 10−2 3.198× 10−2

βi 6.163× 108 9.701× 109 1.527× 1011 2.403× 1012 3.783× 1013 5.954× 1014 9.372× 1015 1.475× 1017

i 17 18 19 20 21 22 23 24

αG
i 1.551× 10−2 1.088× 10−2 9.063× 10−3 8.216× 10−3 6.637× 10−3 5.990× 10−3 6.824× 10−3 8.466× 10−3

βi 2.322× 1018 3.655× 1019 5.753× 1020 9.055× 1021 1.425× 1023 2.243× 1024 3.531× 1025 5.558× 1026

i 25 26 27 28 29 30

αG
i 8.661× 10−3 5.874× 10−3 4.392× 10−3 5.120× 10−3 7.408× 10−3 8.428× 10−3

βi 8.749× 1027 1.377× 1029 2.167× 1030 3.412× 1031 5.370× 1032 8.452× 1033

Distribution of weight coefficients ci according to corresponding relaxation times βi is presented in Figure 10.
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Figure 11a,b shows a comparison of the obtained solution of the minimization prob-
lem (40) with the experiment. It should be noted that the obtained model is suitable for
describing the thermomechanical behavior.
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2.3. Numerical Algorithm
2.3.1. Solution of Thermal Conductivity Problem

The algorithm used to calculate temperature fields in the ANSYS finite element pack-
age in the numerical simulation of the layer-by-layer deposition involves the following
calculation steps:

1. The creation of a finite element model, including the volume of the future product and
the platform with the corresponding thermophysical properties (Figure 12a). The thermophys-
ical properties of the material are taken from paper [7]. At the same time, in accordance with
the data presented in the paper, thermal conductivity λ = 0.251 W/(m K) and heat capacity
Cp = 1399 J/(kg K) were assumed to be constant. For the platform, it is Steel;
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element model; (b) calculated scheme after “killing” the elements; (c) initial conditions applied to 
the platform before the deposition of the plate material; (d) “aliving” of new zone of plate elements 
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source and is calculated by Formula (41): 

Figure 12. Modeling in ANSYS by stages of thermal conductivity problem solution: (a) the finite
element model; (b) calculated scheme after “killing” the elements; (c) initial conditions applied to
the platform before the deposition of the plate material; (d) “aliving” of new zone of plate elements
at the k-th stage of deposition (gray zone); (e) setting the conditions of convective heat transfer to
system at the k-th stage of deposition; (f) instantaneous heating of the k-th deposition zone of plate
elements; (g) removing the heat source and waiting for the partial cooling of the system.
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2. “Killing” (EKILL command) the elements of the product that is absent in the actual
deposition process before it starts (Figure 12b);

3. The heating of the platform up to 140 ◦C (413.15 K) according to Formula (3)
and waiting for 300 s for the thermal state of the platform to reach the stationary mode
(Figure 12c);

4. In the cycle by the sub-stages of the passage of the deposition zones of the next
calculated section of the plate material:

4.1. “Aliving” (EALIVE command) of all elements of the k-th deposition zone (Figure 12d);
4.2. Setting the conditions of convective heat transfer at the free surfaces of the platform

and “aliving” the plate material according to Formula (2) (SF command) (Figure 12e);
4.3. The instantaneous heating up to 430 ◦C (703.15 K) of the k-th deposition zone

elements by a source of thermal energy distributed over the volume (see Formula (1))
(Figure 12f). The appropriate amount of energy that the extruder heater takes for heating
PEEK up to 430 ◦C is supplied to the model by instantaneously applying the appropriate
temperature throughout the volume of the k-th deposition zone of the PEEK plate material
using the D command;

4.4. Removing the heat source and waiting for the partial cooling of the system for a
time interval (waiting stage) equal to the waiting time tw (Figure 12g).

The waiting time tw depends on the degree of detail of the trajectory of the heat source
and is calculated by Formula (41):

tw =
l

v · nregX · nregZ
, (41)

where l is the plate length, nregX and nregZ are the number of sections of the plate material
into which the trajectory of the heat source is divided along the long and short sides of the
sample, respectively, and v is the printing speed.

2.3.2. Solving the Problem of Determining the Stress–Strain State of a Structure

The algorithm is similar to that in Section 2.3.1.
1. The creation of a finite element model, including the volume of the future product

and the platform with the corresponding thermomechanical properties (Figure 13a). The
following values of PEEK parameters were used in ANSYS. The values of the constants
from Tables 8–10 were used for its viscoelastic model, and the data from Figure 4 were used
for the simulation of its temperature deformations:

1. “Killing” (EKILL command) of the elements of the product that are absent in
the deposition process before it starts. Setting boundary conditions in displacements (D
command) (Figure 13b);

2. In the cycle by sub-stages of the passage of the deposition zones of the next
calculated section of the plate material:

2.1. “Alive” (EALIVE command) all elements of the k-th deposition zone (Figure 13c);
2.2. The application of previously calculated temperatures for a given point in time to

the H nodes of the model during the time of exposure to a heated filament (instantaneously)
(LDREAD command) (Figure 13d);

2.3. The sequential application of previously calculated temperatures for the waiting
stage during tw seconds (LDREAD command) (Figure 13e);

3. Ambient temperature application to the nodes of the model, VAT calculation
(Figure 13f).

4. The separation of the plate from the platform and the calculation of the VAT
(Figure 13g). After separation, the value of the residual bending was taken from the middle
line. The data were obtained through the PATH command.
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in the GetData Graph Digitizer program by specifying points on the image (Figure 15a); 

(3) according to the obtained data, bending graphs were plotted in Matlab (Figure 15b), 

Figure 13. Modeling in ANSYS by stages of thermomechanical problem solution: (a) the finite element
model; (b) boundary conditions applied to the platform and “dead” elements of the plate, which are
removed as soon as the k-th zone of the plate elements is “alive”; (c) “aliving” of the new zone of the
plate elements at the k-th stage of deposition; (d) application of previously calculated temperatures
after the heating of the zone of plate elements at the k-th stage of deposition; (e) application of
previously calculated temperatures after the cooling of the zone of the plate elements at the k-th
stage of deposition; (f) application of ambient temperature to system; (g) separation of the plate from
the platform.

3. Results and Discussion
3.1. The Results of the Experimental Study of the Residual Bending of PEEK Samples Created
Using Different Deposition Trajectories

The deposition of the samples was carried out using a standard FDM 3D printer
equipped with a sealed thermal chamber and a high-temperature extruder (up to 500 ◦C)
of our own production, the design and principle of operation of which are described in [32].
The material used was a wire/filament composed of PEEK with a diameter of 1.75 mm, the
parameters of which are presented in [33], manufactured by the company CreatBot.

The sample was a rectangular parallelepiped with overall dimensions:
4.7 × 1.76 × 79 mm. The samples were obtained by the method of additively manu-
factured (FDM) with a longitudinal and transverse spiral layout of beads 0.71 mm wide
and 0.29 mm high (Figure 14). In total, 5 samples were created with a longitudinal layout
of the material and 5 with a transverse one. The printing speed was 15 mm/s, the ambi-
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ent temperature was 100 ◦C, and the platform heating temperature was 140 ◦C. The test
samples were printed with a software-specified 100% filling of the internal volume.
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the long side.

The results were processed as follows: (1) the samples were placed in a plane perpen-
dicular to the optical axis of the system and photographed; (2) the bending was digitized
in the GetData Graph Digitizer program by specifying points on the image (Figure 15a);
(3) according to the obtained data, bending graphs were plotted in Matlab (Figure 15b),
which were then aligned relative to the extreme points (Figure 15c), and the converted
curves to symmetrical (Figure 15d); (4) values at coinciding points were averaged and
approximated (Figure 15e).

3.2. Solving the Problem of Finding Stress–Strain State of PEEK Products

The values of the material constants obtained from works [7,16–18] when they were
used in the numerical simulation did not allow obtaining results close to the experiment.
The numerical deflection was very different from the results of a full-scale experiment,
regardless of the degree of detail of the trajectory of the heat source and the improvement
of the numerical algorithm (Section 3.3).

As it was mentioned before, we assumed that this problem is due to the fact that
the data presented in these papers were obtained at room temperature under loading
conditions that are not typical for the printing process. As a result, it was decided to
conduct our own experiment on DMA in a wide temperature range (Section 2.2.3). The use
of the material constants of the relaxation function obtained in our own experiment helped
to obtain acceptable results. A numerical simulation with new constants obtained from our
own experiment was carried out on the same model.

Figure 16a,b shows the bendings obtained in three numerical solutions (which differ in
the degree of discretization of the trajectory of the heat source (Section 3.3)) and a full-scale
experiment. The results show a good agreement between the experimental data and the
data obtained from the simulation.
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Figure 15. Processing the experimental results: (a) digitizing the bending; (b) plotting graphs based
on the data obtained; (c) aligning the curves with respect to the extreme points; (d) converting curves
to symmetrical; (e) averaging the values at coinciding points with subsequent approximation. The
graphs show the value of the deflection (w) along the length (l) of the sample.

A significant error is observed only in the roughest version of the calculation (when
the layers with an area equal to the longitudinal cross-section of the sample were deposited).
When solving the problem of thermomechanics, only those temperature fields are read
that correspond to the moments of deposition of a new section of the plate material and its
cooling by the time of the deposition of the next one; the values between them are linearly
interpolated. There are only 12 such solution sub-steps in a rough calculation, which, as
we assumed, may not be enough for the correct application of temperatures. However,
an increase in the number of sub-steps only led to a slight increase in the accuracy of the
solution, from which it can be concluded that the roughest version has a great error due to
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the fact that this method of applying the material is not suitable for modeling an additive
process. Further, the roughest variant is not considered.
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(w) along the length (l) of the sample.

3.3. Numerical Solution Features

Adhesion of the sample to the platform during the deposition and its separation
upon completion of the structure formation was modeled in two ways: (1) by linking joint
knots in the contact zone (CPINTF command); (2) by applying surface-to-surface contact
elements, TARGE170 and CONTA173. The second approach showed the best accuracy of
the solution, in particular, adequate heat distribution during the instantaneous application
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of the first layer of the product (Figure 17), which made it possible to take into account the
adhesion force, the excess of which leads to the premature detachment of the sample from
the platform.
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Additionally, the influence of the degree of discretization of the trajectory of the heat
source generated by the slicer program on the quality of the solution was studied. The
tasks were solved three times: in the first case, the samples were formed in layers with
the area of the longitudinal cross-section of the sample; in the second case, these layers
were applied with longitudinal beads; in the third case, each roller was assembled from
even smaller sections of the plate material (Figure 18). To assess the proportionality and
correctness of setting the calculated time and boundary conditions in three solutions, the
energy balance was analyzed. The amount of heat of the system was calculated for the
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moment of exposure to the heating of the next calculated section of the plate material and
the moment of the end of the waiting time according to the formula:

Q =
ne

∑
i=1

ciρiViTi, (42)

where ne is the number of “alive” elements of the system at the k-th sub-stage of the solution,
and Vi, ci, ρi, and Ti are the volume, heat capacity, density, and average temperature of
the i-th element. The energy balance was assessed sequentially. At first, the process was
modeled without taking into account the heat exchange of the sample with the platform
and the surrounding medium, which made it possible to correct the deposition time for
sections of the plate material (Figure 19). When the heat exchange between the sample and
the platform is included in the calculation (there is no heat exchange with the surrounding
medium at this stage), excess energy began to accumulate in the system (Figure 20a). This
was due to the fact that during the instantaneous heating of the k-th “alived” zone of the
elements, heat was also transferred to the adjacent elements, which had common nodes
with the “alive” zone. When using the 20-node elements for heating, only the middle nodes
did not give the desired result: the “alived” section was heated unevenly, which was not
true. The problem was solved by creating intermediate nodes near the common ones. Thus,
when heating only the auxiliary nodes, the heat was evenly distributed over the volume of
the “alived” section, did not spread to the adjacent elements (Figure 21), and was supplied
in the required amount. When the remaining boundary conditions are taken into account,
the energy balance was kept.
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(b) beads (1 step—1/5 of the layer); (c) sections (1 step—1/40 of the layer).
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Figure 19. Energy balance for solutions with varying degrees of discretization of the problem without
taking into account the heat transfer of the sample with the platform and the surrounding medium:
(a) throughout the entire deposition process; (b) during the formation of the first layer. Three hundred
seconds is the waiting time for the thermal state of the platform to reach the stationary mode.
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Figure 20. Supply of energy to the system without heat exchange between the sample and the
medium: (a) before correction; (b) after it. Three hundred seconds is the waiting time for the thermal
state of the platform to reach the stationary mode.
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Figure 21. Demonstration of the refiring of the mechanism of energy supply to the system: (a,b)—the
time of the end of the cooling of the first layer and the instantaneous heating of the second layer of
plate material, respectively, before correction; (c,d)—the same, after correction.

4. Conclusions

During the work, we established the fact that the data on the thermal and viscoelastic
properties of PEEK presented in the literature are not quite adequate for additive man-
ufacturing due to results presented being obtained at room temperature under loading
conditions that are not typical for the deposition process. For this reason, our own DMA
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experiment was carried out to determine the numerical values of the temperature depen-
dence function of the complex relaxation modulus in a wide temperature range. Using the
ANSYS APDL language, our own parameterized algorithm was developed for calculating
non-stationary temperature fields and the stress–strain state of PEEK products during
their manufacturing using a wire-based deposition method (FDM). The influence of the
degree of detailing of the heat source trajectory and the method of connecting the sample
to the platform on the quality of the solution is analyzed. The heat supply mechanism was
debugged, and the estimated time was coordinated with an increase in the detailing of the
heat source trajectory by taking into account the heat balance. As part of the analysis of the
results of the numerical simulation, a good agreement between the calculated data and the
experiment was shown.

As a result of the study of the thermomechanics of the additive manufacturing of
PEEK products, the following has been found:

1. The Prony viscoelastic model is suitable as a model for describing PEEK dur-
ing hardening;

2. The literature data do not make it possible to numerically obtain results close to
the full-scale experimental ones. The constants obtained from our own DMA experiment
give a qualitative solution. In addition, the results of the DMA experiment demonstrate a
smoother transition of the material from the highly elastic to the glassy state and indicate
that the sample cooling rate does not affect its thermomechanical behavior;

3. Contact elements in the sample-platform zone minimize the calculated errors
and allow taking into account the adhesion force in the contact zone; therefore, they are
better suited for modeling sticking with the subsequent detachment of the sample from
the platform;

4. The application of temperature to the common nodes of the adjacent sections of
the plate material leads to the supply of excess heat to the system with the instantaneous
heating of the “alived” section. You can fix this by creating additional nodes near the
common ones.

5. Significant reduction in the detailing of the heat source trajectory leads to a great
error in the solution.

At present, it is planned to carry out identification tests for shear and verification ex-
periments on shell growth, which will allow us to assess the acceptability of the hypothesis
of a constant bulk modulus.
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