Research Progress and Applications of 2D Antimonene
Abstract
:1. Introduction
2. Theoretical Research and Experimental Methods
2.1. Theoretical Research
2.2. Mechanical Exfoliation
2.3. Liquid Phase Exfoliation
2.4. Epitaxial Growth
2.4.1. Preparation of Multilayer Antimonene
2.4.2. Preparation of Single–Layer Antimonene
2.5. Other Mmethods
3. Practical Applications
3.1. In Composite Materials
3.2. Energy Storage
3.3. Cancer Therapy
3.4. Nonlinear Optics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, Y.; Shao, C.; Zhang, C.; Zhang, Z.; Zhang, X.; Robertson, J.; Guo, Y. Anisotropic transport property of antimonene MOSFETs. ACS Appl. Mater. Interfaces 2020, 12, 22378–22386. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhowalla, M.; Liu, Z.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.; Wang, X.; Wang, X.; Bando, Y.; Golberg, D. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–4012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231. [Google Scholar] [CrossRef]
- Wang, J.; Yao, Q.; Huang, C.W.; Zou, X.; Liao, L.; Chen, S.; Fan, Z.; Zhang, K.; Wu, W.; Xiao, X.; et al. High Mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308. [Google Scholar] [CrossRef]
- Li, L.; Ye, G.J.; Tran, V.; Fei, R.; Chen, C.; Wang, H.; Wang, J.; Watanabe, K.; Taniguchi, T.; Yang, L.; et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin film. Nat. Nanotechnol. 2015, 10, 608–613. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, Z.; Li, Y.; Chen, Z.; Zeng, H. Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. 2015, 127, 3155–3158. [Google Scholar] [CrossRef]
- Ji, J.; Song, X.; Liu, J.; Yan, Z.; Huo, C.; Zhang, S.; Su, M.; Liao, L.; Wang, W.; Ni, Z.; et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.A.; Sun, H.; Wu, C.R.; Wang, Y.X.; Lee, P.H.; Pao, C.W.; Lin, S.Y. Single-crystal antimonene films prepared by molecular beam epitaxy: Selective growth and contact resistance reduction of the 2D material heterostructure. ACS Appl. Mater. Interfaces 2018, 10, 15058–15064. [Google Scholar] [CrossRef]
- Yu, Y.; Meng, Q.; Liu, T. Multifunctional and durable graphene-based composite sponge doped with antimonene nanosheets. J. Mater. Res. Technol. 2022, 17, 2466–2479. [Google Scholar] [CrossRef]
- Fortin-Deschênes, M.; Waller, O.; Mentes, T.O.; Locatelli, A.; Mukherjee, S.; Genuzio, F.; Levesque, P.; Hébert, A.; Martel, R.; Moutanabbir, O. Synthesis of antimonene on germanium. Nano Lett. 2017, 17, 4970–4975. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Li, J.M.; Li, F.S.; Wang, J.O.; Ibrahim, K.; Zhang, K. Anisotropic electronic structure of antimonene. Appl. Phys. Lett. 2019, 115, 221602. [Google Scholar] [CrossRef]
- Lugovskoi, A.V.; Katsnelson, M.I.; Rudenko, A.N. Electron-phonon properties, structural stability, and superconductivity of doped antimonene. Phys. Rev. B 2019, 99, 064513. [Google Scholar] [CrossRef] [Green Version]
- Kripalani, D.R.; Kistanov, A.A.; Cai, Y.; Xue, M.; Zhou, K. Strain engineering of antimonene by a first-principles study: Mechanical and electronic properties. Phys. Rev. B 2018, 98, 085410. [Google Scholar] [CrossRef] [Green Version]
- Niu, T.; Zhou, W.; Zhou, D.; Hu, X.; Zhang, S.; Zhang, K.; Zhou, M.; Fuchs, H.; Zeng, H. Modulating epitaxial atomic structure of antimonene through interface design. Adv. Mater. 2019, 31, 1902606. [Google Scholar] [CrossRef]
- Mao, Y.H.; Zhang, L.F.; Wang, H.L.; Shan, H.; Zhai, X.F.; Hu, Z.P.; Zhao, A.D.; Wang, B. Epitaxial growth of highly strained antimonene on Ag (111). Front. Phys. 2018, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Liang, J.; Meng, Z.; Chen, L.; Chen, Y. Electronic structure and optical properties of two-dimensional antimony: A first principle study. Sci. Sin. Phys. Mech. Astron. 2020, 50, 047301. [Google Scholar] [CrossRef]
- Shi, Z.Q.; Li, H.; Xue, C.L.; Yuan, Q.Q.; Lv, Y.Y.; Xu, Y.J.; Jia, Z.Y.; Gao, L.; Chen, Y.; Zhu, W.; et al. Tuning the electronic structure of an α-antimonene monolayer through interface engineering. Nano Lett. 2020, 20, 8408–8414. [Google Scholar] [CrossRef]
- Shu, H.; Li, Y.; Niu, X.; Guo, J. Electronic structures and optical properties of arsenene and antimonene under strain and an electric field. J. Mater. Chem. C 2018, 6, 83–90. [Google Scholar] [CrossRef]
- Cheung, C.H.; Fuh, H.R.; Hsu, M.C.; Lin, Y.C.; Chang, C.R. Spin orbit coupling gap and indirect gap in strain-tuned topological insulator-antimonene. Nanoscale Res. Lett. 2016, 11, 459. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhang, X.; Li, L. Strain-driven band inversion and topological aspects in Antimonene. Sci. Rep. 2015, 5, 16108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.J.; Zhang, Y.; Dong, S. Protective layer enhanced the stability and superconductivity of tailored antimonene bilayer. Phys. Rev. Mater. 2018, 2, 126004. [Google Scholar] [CrossRef] [Green Version]
- Hai, T.; Xie, G.; Ma, J.; Shao, H.; Qiao, Z.; Qin, Z.; Sun, Y.; Wang, F.; Yuan, P.; Ma, J.; et al. Pushing optical switch into deep mid-infrared region: Band theory, characterization, and performance of topological semimetal antimonene. ACS Nano 2021, 15, 7430–7438. [Google Scholar] [CrossRef]
- Wu, J.; Wei, Y.; Shen, W.; Xiong, Y.; Lin, C.; Gao, Y.; AL-Ammari, A.; Liu, K.; Ma, T.; Chen, J.; et al. Antimonene nanosheets fabricated by laser irradiation technique with outstanding nonlinear absorption responses. Appl. Phys. Lett. 2020, 116, 261903. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, F.; Wu, T.; Li, Z.; Zhang, W.; Han, K.; Xing, F.; Man, Z.; Ge, X.; Fu, S. Single-and dual-wavelength passively mode-locked erbium-doped fiber laser based on antimonene saturable absorber. IEEE Photonics J. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, G.; Xin, Y.; Xing, F.; Han, K.; Zhang, W.; Zhang, F.; Fu, S. Passively Q-switched modulation based on antimonene in erbium-doped fiber laser with a long term stability. Opt. Mater. 2021, 118, 111256. [Google Scholar] [CrossRef]
- Huo, C.; Sun, X.; Yan, Z.; Song, X.; Zhang, S.; Xie, Z.; Liu, J.Z.; Ji, J.; Jiang, L.; Zhou, S.; et al. Few-layer antimonene: Large yield synthesis, exact atomical structure and outstanding optical limiting. J. Am. Chem. Soc. 2017, 139, 3548. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Han, W.P.; Wu, J.B.; Qiao, X.F.; Zhang, J.; Tan, P.H. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 2017, 27, 1604468. [Google Scholar] [CrossRef]
- Wang, G.; Pandey, R.; Karna, S.P. Atomically thin group V elemental films: Theoretical investigations of antimonene allotropes. ACS Appl. Mater. Interfaces 2015, 7, 11490–11496. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Zhao, G. Thermal transport properties of antimonene: An ab initio study. Phys. Chem. Chem. Phys. 2016, 18, 31217–31222. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Sonvane, Y.; Wang, G.; Pandey, R. Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes. Chem. Phys. Lett. 2015, 641, 169–172. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, C.; Wang, T.; Wang, M. The electronic and transport properties of zigzag β-antimonene nanoribbons. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 105, 41–46. [Google Scholar] [CrossRef]
- Xie, F.; Duan, T.T.; Wang, W.L.; Chu, Y.F.; Liu, J.P.; Wang, H.Y.; Fan, Z.Q.; Long, M.Q. Tuning electronic transport properties of wide antimonene nanoribbon via edge hydrogenation and oxidation. Chem. Phys. 2020, 538, 110909. [Google Scholar] [CrossRef]
- Feenstra, R.M.; Mårtensson, P. Fermi-level pinning at the Sb/GaAs (110) surface studied by scanning tunneling spectroscopy. Phys. Rev. Lett. 1988, 61, 447. [Google Scholar] [CrossRef]
- Richter, W.; Esser, N.; Kelnberger, A.; Köpp, M. Electronic surface state resonant Raman scattering from vibrational modes of adsorbed monolayers: Sb on III–V semiconductors. Solid State Commun. 1992, 84, 165–169. [Google Scholar] [CrossRef]
- Shih, C.K.; Feenstra, R.M.; Mårtensson, P. Scanning tunneling microscopy and spectroscopy of thin metal films on the GaAs (110) surface. J. Vac. Sci. Technol. A Vac. Surf. Film. 1990, 8, 3379–3385. [Google Scholar] [CrossRef]
- Gao, E.; Lin, S.Z.; Qin, Z.; Buehler, M.J.; Feng, X.Q.; Xu, Z. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids 2018, 115, 248–262. [Google Scholar] [CrossRef]
- Ares, P.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Aldave, D.A.; Díaz-Tendero, S.; Alcamí, M.; Martín, F.; Gómez-Herrero, J.; Zamora, F. Mechanical isolation of highly stable antimonene under ambient conditions. Adv. Mater. 2016, 28, 6332–6336. [Google Scholar] [CrossRef] [Green Version]
- Ares, P.; Zamora, F.; Gomez-Herrero, J. Optical identification of few-layer antimonene crystals. ACS Photonics 2017, 4, 600–605. [Google Scholar] [CrossRef]
- Fickert, M.; Assebban, M.; Canet-Ferrer, J.; Abellán, G. Phonon properties and photo-thermal oxidation of micromechanically exfoliated antimonene nanosheets. 2D Mater. 2020, 8, 015018. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.; Holland, B.; Byrne, M.; Gun’ko, Y. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Gibaja, C.; Rodriguez-San-Miguel, D.; Ares, P.; Gómez-Herrero, J.; Varela, M.; Gillen, R.; Maultzsch, J.; Hauke, F.; Hirsch, A.; Abellán, G.; et al. Few-layer antimonene by liquid-phase exfoliation. Angew. Chem. 2016, 128, 14557–14561. [Google Scholar] [CrossRef] [Green Version]
- Gibaja, C.; Assebban, M.; Torres, I.; Fickert, M.; Sanchis-Gual, R.; Brotons, I.; Paz, W.S.; Palacios, J.J.; Michel, E.G.; Abellán, G.; et al. Liquid phase exfoliation of antimonene: Systematic optimization, characterization and electrocatalytic properties. J. Mater. Chem. A 2019, 7, 22475–22486. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Down, M.P.; Gibaja, C.; Lorenzo, E.; Zamora, F.; Banks, C.E. Antimonene: A novel 2D nanomaterial for supercapacitor applications. Adv. Energy Mater. 2018, 8, 1702606. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, C.; Zhang, K.; Zhou, W.; Guo, S.; Liu, W.; Jiang, L.; Zhang, S.; Zeng, H. Pressurized Alloying Assisted Synthesis of High Quality Antimonene for Capacitive Deionization. Adv. Funct. Mater. 2021, 31, 2102766. [Google Scholar] [CrossRef]
- Wang, X.; He, J.; Zhou, B.; Zhang, Y.; Wu, J.; Hu, R.; Liu, L.; Song, J.; Qu, J. Bandgap-tunable preparation of smooth and large two-dimensional antimonene. Angew. Chem. 2018, 130, 8804–8809. [Google Scholar] [CrossRef]
- Zhang, F.; He, J.; Xiang, Y.; Zheng, K.; Xue, B.; Ye, S.; Peng, X.; Hao, Y.; Lian, J.; Zeng, P.; et al. Semimetal–semiconductor transitions for monolayer antimonene nanosheets and their application in perovskite solar cells. Adv. Mater. 2018, 30, 1803244. [Google Scholar] [CrossRef]
- Lin, W.; Lian, Y.; Zeng, G.; Chen, Y.; Wen, Z.; Yang, H. A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Res. 2018, 11, 5968–5977. [Google Scholar] [CrossRef]
- Kim, S.H.; Jin, K.H.; Park, J.; Kim, J.S.; Jhi, S.H.; Yeom, H.W. Topological phase transition and quantum spin Hall edge states of antimony few layers. Sci. Rep. 2016, 6, 33193. [Google Scholar] [CrossRef]
- Fortin-Deschênes, M.; Jacobberger, R.M.; Deslauriers, C.A.; Waller, O.; Bouthillier, É.; Arnold, M.S.; Moutanabbir, O. Dynamics of antimonene–graphene van der Waals growth. Adv. Mater. 2019, 31, 1900569. [Google Scholar] [CrossRef] [PubMed]
- Märkl, T.; Kowalczyk, P.J.; LeSter, M.; Mahajan, I.V.; Pirie, H.; Ahmed, Z.; Bian, G.; Wang, X.; Chiang, T.C.; Brown, S.A. Engineering multiple topological phases in nanoscale Van der Waals heterostructures: Realisation of α-antimonene. 2D Mater. 2017, 5, 011002. [Google Scholar] [CrossRef]
- Lei, T.; Liu, C.; Zhao, J.L.; Li, M.J.; Li, Y.P.; Wang, J.O.; Wu, R.; Qian, H.J.; Wang, H.Q.; Ibrahim, K. Electronic structure of antimonene grown on Sb2Te3 (111) and Bi2Te3 substrates. J. Appl. Phys. 2016, 119, 015302. [Google Scholar] [CrossRef]
- Flammini, R.; Colonna, S.; Hogan, C.; Mahatha, S.K.; Papagno, M.; Barla, A.; Sheverdyaeva, P.M.; Moras, P.; Aliev, Z.S.; Babanly, M.B.; et al. Evidence of β-antimonene at the Sb/Bi2Se3 interface. Nanotechnology 2018, 29, 065704. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shao, Y.; Liu, H.; Feng, Z.; Wang, Y.L.; Sun, J.T.; Liu, C.; Wang, J.O.; Liu, Z.L.; Zhu, S.Y.; et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407. [Google Scholar] [CrossRef]
- Niu, T.; Meng, Q.; Zhou, D.; Si, N.; Zhai, S.; Hao, X.; Zhou, M.; Fuchs, H. Large-scale synthesis of strain-tunable semiconducting antimonene on copper oxide. Adv. Mater. 2020, 32, 1906873. [Google Scholar] [CrossRef]
- Sun, S.; Yang, T.; Luo, Y.Z.; Gou, J.; Huang, Y.; Gu, C.; Ma, Z.; Lian, X.; Duan, S.; Wee, A.T.S.; et al. Realization of a buckled antimonene monolayer on Ag (111) via surface engineering. J. Phys. Chem. Lett. 2020, 11, 8976–8982. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, K.Y.; Snyder, M.; Cook, J.; Nguyen, D.T.; Reddy, S.P.V.; Chang, T.R.; Yang, S.A.; Bian, G. Observation of symmetry-protected Dirac states in nonsymmorphic α-antimonene. Phys. Rev. B 2021, 104, L201105. [Google Scholar] [CrossRef]
- Lu, L.; Tang, X.; Cao, R.; Wu, L.; Li, Z.; Jing, G.; Dong, B.; Lu, S.; Li, Y.; Xiang, Y.; et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: A promising optical kerr media with enhanced stability. Adv. Opt. Mater. 2017, 5, 1700301. [Google Scholar] [CrossRef]
- Marzo, A.M.L.; Gusmão, R.; Sofer, Z.; Pumera, M. Towards antimonene and 2D antimony telluride through electrochemical exfoliation. Chem. A Eur. J. 2020, 26, 6583–6590. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, M.; Huang, Y.; Zou, Y.; Liu, Z.; Tao, L.; Li, Y.; Dong, C.L.; Wang, S. In situ exfoliation and Pt deposition of antimonene for formic acid oxidation via a predominant dehydrogenation pathway. Research 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Früchtl, D.; Sun, Z.; Coleman, J.N.; Blau, W.J. Control of optical limiting of carbon nanotube dispersions by changing solvent parameters. J. Phys. Chem. C 2010, 114, 6148–6156. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Q.; Meng, R.; Jiang, J.; Liang, Q.; Tan, C.; Sun, X. The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C 2016, 4, 5434–5441. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, S.; Huo, C.; Zhu, D.; Li, Q.; Wang, L.; Ren, X.; Xie, L.; Guo, S.; Chu, P.K.; et al. Few-layer antimonene: Anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batterie. ACS Nano 2018, 12, 1887–1893. [Google Scholar] [CrossRef]
- Kistanov, A.A.; Kripalani, D.R.; Cai, Y.; Dmitriev, S.V.; Zhou, K.; Zhang, Y.W. Ultrafast diffusive cross-sheet motion of lithium through antimonene with 2+ 1 dimensional kinetics. J. Mater. Chem. A 2019, 7, 2901–2907. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, Y.; Zhang, P.; Qiu, M.; Jiang, X.; Zhang, H. Antimonene quantum dot-based solid-state solar cells with enhanced performance and high stability. Sol. Energy Mater. Sol. Cells 2019, 189, 11–20. [Google Scholar] [CrossRef]
- Duo, Y.; Huang, Y.; Liang, W.; Yuan, R.; Li, Y.; Chen, T.; Zhang, H. Ultraeffective cancer therapy with an antimonene-based X-ray radiosensitizer. Adv. Funct. Mater. 2020, 30, 1906010. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.H.; Feng, J.; Meng, X.; Bu, X.; Li, Y.; Zhang, N.; Wang, P. Antimonene nanoflakes: Extraordinary photoacoustic performance for high-contrast imaging of small volume tumors. Adv. Healthc. Mater. 2019, 8, 1900378. [Google Scholar] [CrossRef]
- Luo, H.; Tian, X.; Gao, Y.; Wei, R.; Li, J.; Qiu, J.; Liu, Y. Antimonene: A long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region. Photonics Res. 2018, 6, 900–907. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, W.; Wang, C.; Guo, J.; Zhang, F.; Song, Y.; Ge, Y.; Wu, L.; Liu, J.; Li, J.; et al. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev. 2019, 13, 1800313. [Google Scholar] [CrossRef]
Thickness | Mean Transverse Dimension | Substrates | Antimony Source Temperature (Molecule) | Growth Temperature | Deposition Rate | References |
---|---|---|---|---|---|---|
1–50 nm | 5–10 µm | mica | 660 °C | 380 °C | —— | [4] |
1–5 BL | 10–20 nm | Bi2Te2Se | —— | room temperature | —— | [39] |
17 nm | 16.2 nm | MoS2/Sapphire | 500 °C | 200 °C | —— | [5] |
4–9 nm | 1–3 µm | Graphene/Ge | Sb4 | —— | 16 nm/min | [40] |
single–layer | —— | Bi2Te3, Sb2Te3 | —— | room temperature | —— | [41] |
single–layer | —— | Bi2Se3 | —— | room temperature | 0.53 Å/min | [42] |
single–layer | 20 nm | PdTe2 | —— | 127 °C | —— | [43] |
single–layer | —— | Ge | Sb4 | room temperature–330 °C | 2–700 Å/min | [7] |
single–layer | —— | Cu(111), Cu(110) | 450 °C | room temperature | —— | [11] |
single–layer | —— | Ag(111) | —— | 102 °C | —— | [12] |
single–layer | —— | Ag(111) | 320 °C | 80 °C | 0.01 ML/min | [45] |
1–3 ML | —— | SnSe | —— | —— | 0.3 ML/min | [14] |
Materials | Wavelength (nm) | Output Power (mW) | Pulse Duration (μs) | Pulse Energy (nJ) |
---|---|---|---|---|
Graphene | 1539.6 | 3.38 | 3.89 | 28.7 |
BP | 1562.87 | 1.5 | 13.2 | 94.3 |
Silicene | 1567.1 | 0.89 | 2.32 | – |
TiO2 | 1558 | ~0.26 | 1.84 | ~2.3 |
ZnO | 1550 | 1.2 | 1.68 | 46 |
WSe2 | 1560 | 1.23 | 3.976 | 17 |
MoS2 | 1068.2 | 0.46 | 2.2 | 6.9 |
Antimonene | 1559.63 | 2.85 | 1.58 | 37.9 |
Antimonene | 1558 | 4.73 | 1.42 | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, T.; Zeng, L.; Li, Z.; Sun, L.; Qiao, Z.; Qu, Y.; Liu, G.; Li, L. Research Progress and Applications of 2D Antimonene. Appl. Sci. 2023, 13, 35. https://doi.org/10.3390/app13010035
Zhong T, Zeng L, Li Z, Sun L, Qiao Z, Qu Y, Liu G, Li L. Research Progress and Applications of 2D Antimonene. Applied Sciences. 2023; 13(1):35. https://doi.org/10.3390/app13010035
Chicago/Turabian StyleZhong, Tingting, Lina Zeng, Zaijin Li, Li Sun, Zhongliang Qiao, Yi Qu, Guojun Liu, and Lin Li. 2023. "Research Progress and Applications of 2D Antimonene" Applied Sciences 13, no. 1: 35. https://doi.org/10.3390/app13010035
APA StyleZhong, T., Zeng, L., Li, Z., Sun, L., Qiao, Z., Qu, Y., Liu, G., & Li, L. (2023). Research Progress and Applications of 2D Antimonene. Applied Sciences, 13(1), 35. https://doi.org/10.3390/app13010035