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Featured Application: The proposed method can be applied to investigations involving acceler-
ated testing of wind turbine components to identify realistic test scenarios that can be expected
in the field and optimize the overall time needed for testing.

Abstract: The trend of increasing the power output and nominal load capacities of wind turbines
(WT) over time has been driving the construction of testing facilities with increasing load capacities
for testing WT drivetrain components prior to field deployment. Due to the high investment and
operational costs of such facilities, a need exists to design accelerated tests that cover load situations
corresponding to expected field conditions while maintaining high time-efficiency. This investigation
addresses this need by presenting a methodology to achieve the following goals. Firstly, identifying
ranges and combinations of WT 6-degree of freedom (6-DOF) rotor loads is to be expected in the field.
This is achieved using aeroelastic multibody simulations (MBS) of an MBS WT model being subjected
to simulated wind fields covering the design load cases outlined in the IEC 61400-1 standard and by
analyzing the simulated time-series data to design accelerated tests that efficiently and realistically
cover the design space of the variables, e.g., 6-DOF rotor loads, to be applied during WT drivetrain
testing. The designed tests are to take place on a purpose-built test rig that allows for the application
and control of the 6-DOF drivetrain input loads and rotational speed. Using the proposed method,
accelerated tests were designed that efficiently cover load combinations within the realistic regions
of the design space. A comparison with a full factorial design of experiments shows a significant
(95+ %) reduction in total test time as well as the ability of the proposed method to help to avoid
unsustainable and unrealistic load conditions within the design space that could result in costly,
unintended drivetrain failures during testing.

Keywords: multivariate data analysis; wind turbine testing; drivetrain simulation; wind simulation;
wind energy

1. Introduction

For both legal and technical reasons, testing wind turbine (WT) components prior
to field commissioning has been an essential part of their development process [1,2].
As a result, several purpose-built testing facilities for various wind turbine components
are set up and utilized around the world [1,3–5]. The importance of WT component
testing is also growing due to the advent of machine learning algorithms that rely on
sensor data collected during operation to learn patterns of interest [6,7]. A common
challenge among such tests is the need to identify time efficient test procedures as well
as reach load levels of interest in a controllable or, at least, a predictable manner during
testing [8–10]. This challenge is only exacerbated when performing such tests in the field as
wind conditions are difficult to predict leading to a lack of controllability [1,3]. This results
in high uncertainties related to cost and time planning of these tests as the amount of time
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needed for reaching all targeted load conditions cannot be defined with certainty prior to
testing [1,3]. To overcome this hurdle, purpose-built test rigs that can apply controlled loads
to a WT drivetrain are of high utility during the development of various WT components
and solutions, especially data-based solutions [1,3,11]. In particular, data-based solutions
often lack a reliable, financially feasible source of real-world data covering the full range
of relevant load combinations that a WT can be expected to experience during its design
life [12,13]. WT system test rigs offer the possibility to purposely design and install sensor
setups to capture characteristics of interest of WT drivetrain components in a repeatable
manner [1,13,14]. Therefore, WT system test rigs offer a valuable opportunity to collect the
necessary data for training and testing data-based solutions prior to field deployment. In
addition, the ability of such test rigs to test an entire WT drivetrain assembly allows for the
inclusion of the interactions between the different drivetrain components, which adds to
the validity of the collected data relative to data collected in the field. However, due to the
high investment and operational costs of such test rigs, there is a need to limit testing time
during measurement campaigns. This motivates the design of experiments that test WT
drivetrains in an accelerated manner.

Since its inception in the field of agriculture in the 20th Century by Fisher [15,16],
the field of design of experiments (DOE) formulated the principles and methods for con-
ducting scientific experiments [17]. The scientific method as introduced by Bacon [18]
revolutionized the way science is conducted, however, it did not provide a framework for
conducting experiments [17]. Indeed, Schwarz [19] differentiates the concept of experiment
as intended by Bacon from the concept employed today by explaining that the terms used
by Bacon to refer to experimentation, “experientia” [20] (p. 71) and “experimentum” [20]
(p. 171), were used “both for the unforced observation which we might call experience and
for the contrived experience which we might call an experiment” [21] (p. 57), respectively.
Schwarz qualifies this by referring to an analogy by Bacon showing his awareness of the
limited reliability of “sense-data and sensation” [19] (p. 78) by providing an illuminating
quote from his book: “the human intellect is to the rays of things like an uneven mirror
which mingles its own nature with the nature of things, and distorts and stains it” [18]
(p. 81). However, despite Bacon’s awareness of the “uneven mirror” [18] (p. 81) and its
resulting biases, Schwarz maintains that:

“The Baconian inductive method does not account for planing or glazing the
‘uneven mirror’. Instead it is very useful to be aware of the scratches and blind
spots in it and mainly to appreciate them as they are calling for a permanent
improvement of ourselves and the affairs with our environment.” [19] (p. 80)

It is a logical consequence of this reliance on the awareness of the experimenters
that experiments, from Bacon’s point of view, can to a large extent be individual to the
experimenter. Indeed, Schwarz explains Bacon’s belief “that it is possible to find the
ultimate explanations if we only succeed to weed out those factors that are not necessary
for the production of an effect” [19] (p. 80). This belief in the ability of scientists to identify
and eliminate unimportant factors despite the “uneven mirror” is criticized by Fisher as a
contradiction [17]:

“We are usually ignorant which, out of innumerable possible factors, may prove
ultimately to be the most important, though we may have strong presuppositions
that some few of them are particularly worthy of study. We have usually no
knowledge that any one factor will exert its effects independently of all others
that can be varied, or that its effects are particularly simply related to variations
in these other factors.” [16] (p. 97)

This resulted in some key differences between how scientific experimentation was con-
ducted before and after the contributions of Fisher with the advent of the DOE field [17,22].
Salsburg points to two differences being that experiments were individual to each scientist
and that experiments were not published as the focus of publication was to publish con-
clusions and observation samples demonstrating said conclusions [17,22]. Fisher instead
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focuses on “the process by which the data had come into existence” [23] (p. 565) in order to
design experiments that generate “the most information for a given expenditure in time,
money, and labor” [23] (p. 566). A stark departure from Bacon’s approach to “weed out
those factors that are not necessary for the production of an effect” [19] (p. 80), Fisher
argues that:

“If the investigator, in these circumstances, confines his attention to any single
factor we may infer either that he is the unfortunate victim of a doctrinaire
theory as to how experimentation should proceed, or that the time, material or
equipment at his disposal is too limited to allow him to give attention to more
than one aspect of his problem.” [16] (p. 97)

A claim that has since been supported and reiterated by several works, such as the
thorough DOE review by Niedz et al., where they demonstrate the ability of multifactor ex-
periments to generate information with enhanced quality using less number of experiments
as compared to one-factor-at-a-time (OFAT) experiments [17,24,25]. Since the early contri-
butions of Fisher, a multifactorial experiment has been largely defined as an experiment
where at least two factors, otherwise commonly referred to as the independent variables in
an experiment, are changed to evaluate their effects on the experimental unit [16,26–31].
Niedz et al. argue that DOE was developed in the field of agriculture due to the high
complexity and resulting variance of agricultural systems that require special consideration
during experiments involving such systems to reach less biased conclusions [17]. Similarly,
WT drivetrains are complex systems relying on the interplay between different components
consisting of metals, fluids, elastomers, and composite materials. As these components un-
dergo varying loading situations over time, their constituting elements experience varying
boundary conditions. As a result, their responses to a set of applied loads vary depending
on boundary conditions, such as temperature as well as the clearances, misalignments, and
deformations within the drivetrain. Therefore, DOE principles can be used to design opti-
mized experiments that mitigate the impact of the aforementioned sources of variance on
the quality of the information obtained from investigating the responses of WT drivetrain
components to different loading conditions.

The goal of this investigation is to design experiments that efficiently cover the design
space of the 6-degrees of freedom (6-DOF) WT rotor loads and rotational speed (herein
after referred to as “factors”) in order to assess the effect of those factors on responses
of WT drivetrain components, such as deformations and misalignments. A system of
sensors is utilized to measure said responses. This system is eventually intended to be
used for an indirect estimation of said factors with the help of algorithms developed for
the same purpose. A design space in the context of DOE is the ‘n’-dimensional object
containing the ranges of the set of ‘n’ independent variables, or factors, to be covered
during experimentation [32]. To further clarify what is meant by the design space in this
context, Figure 1a illustrates a design space of three factors, Torque (Mx); Thrust (Fx); and
rotational speed (n), with the minimum of all three factors being zero in this example.
Since the planned experiments in this investigation involve seven factors, 6-DOF rotor
loads and rotational speed, the design space in the present study is 7-dimensional. In
order to design multifactorial experiments for achieving the stated goal, the ranges of
the factors must be defined to specify the design space. In addition, as Fisher suggested,
the equipment available must also be capable of manipulating the factors to conduct the
envisaged multifactorial experiments. Fortunately, purpose-built WT system test rigs offer
a solution capable of meeting the demands of a multifactorial experiment in the context of
this investigation.
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Figure 1. Illustration of an example of: (a) design space for a 3-factor experiment (b) the same design
space discretized into five factor levels per factor.

WT system test rigs, such as the one shown in Figure 2, allow investigators to subject
a WT drivetrain to different combinations of the loads it is expected to experience during
its lifetime in a controlled environment. By instrumenting the WT drivetrain components
under investigation, experiments can be designed to capture the responses of interest and
the behavior of the system as it experiences the applied loading conditions. Since such
tests are resource-intensive, the different combinations of loads can be applied in quick
succession in so-called accelerated tests [33], taking Fisher’s famous analogy further from a
“questionnaire” [34] (p. 511) for nature to answer to a quick round of Q&A. Accelerated
tests generally fall in three categories, which are differentiated by their respective aim:
overstressing, increasing usage rates, and tightening the failure threshold [35]. The choice
of category depends on the purpose of the experiment. For a more in depth discussion of
accelerated tests, Chang et al. provide a selection of highly relevant resources [36]: Chapter
7 of Yang [35], Chapter 6 of Elsayed [37], and Chapters 18 and 19 of Meeker et al. [38]. In
order to design accelerated tests that efficiently cover the design space, data from targeted
WT simulations are analyzed in this investigation. Using a binning process designed
during this investigation to identify factor levels and combinations thereof, this paper
presents a method for generating the desired test series. The method achieves this goal
by combining multivariate analysis of simulated data with fundamental DOE techniques,
such as randomization and replication. As can be seen in Figure 1a, an infinite number of
factor combinations can be selected within the continuous design space. Therefore, factor
levels are typically chosen to span the range of each respective factor with discrete levels
along its range [39]. The goal is to selectively and objectively sample the design space of
interest in a sparse manner [40]. Figure 1b illustrates a design space of three factors with
five factor levels spanning the range of each factor. As the names imply, randomization
refers to the practice of randomly ordering the planned experiments while replication refers
to the practice of repeating the planned experiments [16,41]. Randomization provides
a line of defense against systemic bias due to unplanned changes in nonexperimental
factors, while replication allows for an assessment of the generalization of the conclusions
made as it shows how consistent the findings are over multiple identically designed
experiments [41,42].
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This investigation aims to design experiments covering the realistic regions of the
design space of the factors that a Vestas V52 WT can be expected to experience during
operation. In this investigation, the experiments are designed in preparation for a measure-
ment campaign to be performed on a purposely instrumented V52 drivetrain using a WT
system test rig, as illustrated in Figure 2, where the factors can be controllably applied to the
drivetrain. As previously introduced, the purpose of the campaign is to collect real world
data for the development of a virtual 6-DOF gearbox (GB) input loads sensing solution.
The responses, or dependent variables, in the planned experiments are the signals from a
sensor set up primarily applied to the GB housing and consisting of stationary, non-rotating
sensors for a more feasible estimation of the 6-DOF GB input loads during WT operation.
As demonstrated by Figure 1, the design space and the resulting experiments highly de-
pend on the chosen ranges for the respective factors. Additionally, the fact that the number
of factors in this investigation is seven means that the number of needed experiments to
perform a full factorial DOE would exponentially grow. In a full factorial DOE without
replication, the number of experiments would be the selected number of factor levels the
power of seven, which could result in an unfeasibly high number of experiments. Figure 1
also demonstrates a different issue that requires limiting the combinations of factor levels to
realistic load combinations. A challenge remains to avoid a premature end to the planned
experiments by applying loading combinations in regions of the design space that are unre-
alistic and therefore unsustainable for the experimental unit. For example, an experiment
with all loads set to their respective maximum values would subject the WT drivetrain to
an unrealistic and unsustainable load situation, which it was not designed to handle and
therefore can cause a costly failure during testing. Hence, a need exists to identify realistic
ranges and combinations of loads that a WT drivetrain can be expected to experience in its
lifetime and to design time-efficient experiments that cover these load combinations during
targeted tests. The methodology presented in this investigation tackles this challenge by
aiming to identify and target realistic regions of the design space on the basis of purposely
developed computer simulations.

In this investigation, this need is addressed by analyzing simulated time-series data
generated from targeted aeroelastic multibody simulations (MBS) of a WT undergoing
wind conditions that cover design load cases (DLC) based on the IEC 61400-1 standard [43].
The standard provides guidelines to certify each installed wind turbine according to its pre-
dicted response to a variety of operational conditions, which are categorized into DLCs [44].
The simulated time-series data is analyzed to identify the ranges and combinations of the
factors that are expected to take place during the lifetime of the WT under investigation.
In this work, the Vestas V52 is the WT under investigation due to the availability of a V52
drivetrain for subsequent testing. In a previous investigation, Azzam et al. assembled
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an MBS WT model of the Vestas V52 and subjected it to simulated wind fields based on
DLCs for the purpose of generating simulated data to develop a prototype of a virtual
6-DOF GB input loads sensor [12]. The investigation presented a methodology for generat-
ing a simulated time-series of the target variables, 6-DOF GB input loads, as well as the
predictor variables, the simulated deformations, misalignments, and rotational speeds of
various drivetrain components [12]. Since Azzam et al. aimed to develop the envisaged
virtual sensor in the absence of real world data, it was necessary to model and simulate
the predictor variables, or the ideal responses of the sensor signals to be expected in the
real world. The current investigation, on the other hand, aims to design experiments for a
purpose built test rig where it is only necessary to control the applied loads to a purposely
instrumented V52 drivetrain in order to collect the true sensor signals. In addition, due
to the need for identifying the range of loads that are expected to be experienced by the
V52 drivetrain during its lifetime, it is necessary to perform simulations covering a large
number of DLCs. Therefore, the current investigation utilizes a simplified variant of the
modeling approach demonstrated by Azzam et al., which is more targeted to generate the
independent variables, or factors, of the planned experiments, which are the 6-DOF rotor
loads and rotational speed. This paper presents a methodology for further processing the
resulting time-series data of the target factors from the various DLC simulations to generate
a series of designed experiments designed to subject the V52 drivetrain to realistic factor
combinations during the planned campaign.

In brief, this investigation aims to provide a methodology to enable investigators
to avoid the unmanageable, e.g., unrealistic load combinations or number of planned
experiments, and manage the unavoidable, e.g., systemic bias and the need to identify and
cover the realistic regions of the design space, when designing tests for a WT drivetrain
that require covering realistic combinations of the 6-DOF rotor loads and rotational speed.
This is achieved by first outlining a process for generating simulated time-series data of a
WT experiencing wind fields covering the design load cases (DLC) according to the IEC
61400-1 [43] in a simulated environment and then presenting an approach for analyzing
this data to generate designed experiments that cover the relevant regions of the design
space at hand.

The paper is organized as follows. Section 1 introduces and motivates the methods
used in this investigation. Section 2 details the proposed methodology with Section 2.1
presenting the modeling and simulation approach and Section 2.2 providing a description
of the resulting simulated data. Section 2.3 presents the data analysis. Section 2.4 elaborates
on considerations and challenges in practical implementation of the proposed method.
Section 3 presents the results of the investigation followed by a discussion of the results in
Section 4. The conclusions are then outlined in Section 5.

2. Methods

The proposed methodology relies on the efficient implementation of aeroelastic WT
MBS simulations and the purposeful analysis of the resulting simulated data to reach
realistic accelerated test series covering the experimental design space, while profiting from
DOE principles. Figure 3 provides an overview of the simulation and data analysis steps
leading to the targeted factor combinations that can be applied to the V52 drivetrain during
testing. Figure 3 also indicates the orientations of the x, y, and z axes with respect to the
WT drivetrain, which will be followed throughout this paper. Further, Table 1 details the
factors as well as clarifies the factor IDs that are used in Figure 3 and will be used herein
after to refer the respective factor.



Appl. Sci. 2023, 13, 356 7 of 22Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 22 
 

 

Figure 3. Overview of proposed methodology for generation of factor combinations for V52 
drivetrain testing.     

Table 1. Explanation of experimental factors under investigation. 

ID Subject(s) Measurement Axis of measurement 
Mx 

Rotor input load Moment 
x 

My y 
Mz z 
Fx 

Rotor input load Force 
x 

Fy y 
Fz z 
n Rotor Rotational speed x 

 
As shown in Figure 3, the proposed method to identify realistic factor combinations, 

in this case 6-DOF rotor loads and rotational speed combinations, begins with the imple-
mentations of simulated wind fields covering a variety of DLCs according to the IEC 
61400-1 standard [43]. This step is followed by the application of the simulated wind fields 
to an MBS model of the WT under investigation, Vestas V52 in this case, in the virtual 
environment. To clarify the WT models illustrated in Figure 3, Table 2 lists the main spec-
ifications of the Vestas V52 WT on which the MBS WT models are based. The drivetrain 
of the WT model is simplified since the inertia and stiffness of the drivetrain represents 
its main impact on the rotor loads. This simplification allows for a significant decrease in 
computational cost and therefore speed, which is needed to cover a large variety of DLCs 
and provide a more complete picture of the factor combinations that are to be expected 
during the lifetime of the WT. Section 2.1 details the simulation approach followed in this 
investigation. The resulting simulated time-series of the factors are then processed to bin 
each factor into five levels as indicted in Figure 3 for Mz as an example. Section 2.2 pro-
vides a description of the simulated data. The five levels are selected based on the range 
of values of each respective factor while taking into account the control behavior of the 
specific combination of the test rig and WT drivetrain at hand. The resulting factor level 
combinations are then tallied and are used for generating the test series for the planned 
tests. At this stage, highly frequent load combinations can also be covered in higher level 
resolution by a process outlined in Section 2.3, which describes the data analysis per-
formed in this investigation. Lastly, Section 2.4 provides an overview of the considerations 
and challenges to be considered for an effective practical implementation of the proposed 
method.  
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Table 1. Explanation of experimental factors under investigation.

ID Subject(s) Measurement Axis of Measurement

Mx
Rotor input load Moment

x
My y
Mz z

Fx
Rotor input load Force

x
Fy y
Fz z

n Rotor Rotational speed x

As shown in Figure 3, the proposed method to identify realistic factor combinations, in
this case 6-DOF rotor loads and rotational speed combinations, begins with the implemen-
tations of simulated wind fields covering a variety of DLCs according to the IEC 61400-1
standard [43]. This step is followed by the application of the simulated wind fields to an
MBS model of the WT under investigation, Vestas V52 in this case, in the virtual environ-
ment. To clarify the WT models illustrated in Figure 3, Table 2 lists the main specifications
of the Vestas V52 WT on which the MBS WT models are based. The drivetrain of the WT
model is simplified since the inertia and stiffness of the drivetrain represents its main impact
on the rotor loads. This simplification allows for a significant decrease in computational
cost and therefore speed, which is needed to cover a large variety of DLCs and provide a
more complete picture of the factor combinations that are to be expected during the lifetime
of the WT. Section 2.1 details the simulation approach followed in this investigation. The
resulting simulated time-series of the factors are then processed to bin each factor into five
levels as indicted in Figure 3 for Mz as an example. Section 2.2 provides a description of the
simulated data. The five levels are selected based on the range of values of each respective
factor while taking into account the control behavior of the specific combination of the test
rig and WT drivetrain at hand. The resulting factor level combinations are then tallied and
are used for generating the test series for the planned tests. At this stage, highly frequent
load combinations can also be covered in higher level resolution by a process outlined
in Section 2.3, which describes the data analysis performed in this investigation. Lastly,
Section 2.4 provides an overview of the considerations and challenges to be considered for
an effective practical implementation of the proposed method.
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Table 2. Main Specifications of Vestas V52 WT [45,46].

Parameter Values

Rated power 850 kW

Wind class Ia

Rotor diameter 52 m

Rotor maximum speed 31.4 rpm

Hub height 55 m

Gearbox, type Planetary and spur

Gearbox, number of stages 3

Gearbox ratio i = 61.92

2.1. Simulation Approach

In order to generate the simulated factors while lowering the computational cost of the
planned simulations, simplifications were implemented to the drivetrain of the WT MBS
model used in this investigation. Similar to the approach followed by Azzam et al. [12],
a modal decomposition of the rotor blades and the tower was performed after an initial
modelling in finite elements [47,48]. Micro-level material flaws were not considered in
the simulation [12]. The drivetrain components were modeled as a 2 mass oscillator in
order to lower the computational cost of the simulations. This substitute drivetrain model
takes the torsional stiffness, mass and inertia of the original WT into account. This ensures
correct feedback from the drivetrain to the rotor system and thus the rotor loads. In order to
simulate and apply wind fields to the WT model and the controller signals for power control
in the MBS virtual environment, the AERODYN force element and a MATLAB SIMULINK
PI controller were used as part of a co-simulation [49,50]. Within the controller, modules are
implemented to control the pitch angle under different operating conditions, such as during
WT normal production, startup, shutdown, and emergency shutdown procedures. The
controller automatically triggers such procedures based on the rotational speed and pitch
angle of the WT model during the aeroelastic MBS. Since the torque is generally constant
in the full load state, a torque controller module follows a set speed-load characteristic in
partial loading conditions. Actuator models are also implemented in the control strategy
to apply delays in order to accommodate the inertias of the components within the WT
mechatronic system. The wind fields were created with TurbSim and IECWind [49,51].
Aside from the aforementioned drivetrain model, this work follows the same simulation
approach outlined by Azzam et al. to subject an MBS model of the Vestas V52 WT to
simulated wind fields based on DLCs from the IEC 61400-1 standard [43]. For a more in
depth explanation of this simulation approach, see [12].

The IEC 61400-1 standard [43] provides requirements for the DLCs that must be con-
sidered for the certification of new WTs. The DLCs are typically considered by performing
calculations or simulations were the respective conditions are applied to the model of the
WT under investigation. The standard also provides minimum criteria for the aeroelastic
and mechanical WT model to be used in such calculations or simulations, which are gen-
erally met by the model used in this investigation. In this investigation, simulated wind
fields covering five out of the eight design conditions from the standard were generated
and applied to the model of the Vestas V52 WT during aeroelastic MBS simulations. Design
conditions 2, 7, and 8 are not covered as they involve condition monitoring system and grid
faults as well as blackout, loss of voltage, and loading conditions arising from transport,
assembly, and repairs which are beyond the scope of this investigation [43]. The standard
defines a number of DLCs for each design condition as outlined in Table 3, which provides
an overview of the requirements set by the standard to cover the design conditions included
in this investigation. To complete a given DLC, it is typically needed to generate a number
of simulated wind fields with each field covering a target wind speed depending on the WT
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under investigation. The standard also specifies the point at which wind speed is measured
to be at the hub of the WT. Six other wind speeds are of relevance at this stage and they are
explained in Table 4. The abbreviations in Tables 3 and 4 will be used herein after to refer to
the respective table item. The wind shear is described according to the appropriate formula
in the standard with a height exponent of 0.2 for all DLCs. In addition, no dynamic yawing
has been included in the simulations as it is not required by the standard. The values in
Table 4 are specific to the WT at hand, which is a Vestas V52 in this case belonging to the
wind class Ia. The reference wind speed, or Vref, is defined by the IEC 61400-1 standard
depending on the wind class of the WT under investigation. The standard also provides
formulas to calculate the 50-year and 1-year return period wind speeds, respectively, based
on Vref and the WT hub height. For a more in depth explanation of the design conditions,
design load cases, and the wind conditions outlined in Table 3, see [43].

Table 3. Design conditions, design load cases, and implied wind conditions [43].

Design Condition DLC Ambient Wind Condition Wind Speed(s) 1

1. Production

1.1
Normal Turbulence Model

Vin < Vhub < Vout1.2

1.3 Extreme Turbulence Model

1.4 Extreme Coherent gust with change of
Direction Vhub = Vr and Vr ± 2 m/s

1.5 Extreme Wind Shear Vin < Vhub < Vout

3. Startup

3.1 Normal Wind Profile Vin < Vhub < Vout

3.2 Extreme Operating Gust
Vhub = Vin, Vr ± 2 m/s, and Vout

3.3 Extreme wind Direction Change

4. Normal shutdown
4.1 Normal Wind Profile Vin < Vhub < Vout

4.2 Extreme Operating Gust Vhub = Vout and Vr ± 2 m/s

5. Emergency stop 5.1 Normal Turbulence Model Vhub = Vout and Vr ± 2 m/s

6. Parked (idling)

6.1
Extreme Wind speed Model 50-year return period

6.2

6.3 1-year return period

6.4 Normal Turbulence Model Vhub > 0.7*Vref

1 Explanations are provided in Table 4.

Table 4. Relevant wind speeds specified using the IEC 61400-1 [38] and Vestas V52 datasheet [46].

ID Explanation Value/Source

Vhub Speed at hub of WT Depends on DLC

Vin Cut-in wind speed 4 m/s

Vout Cut-out wind speed 25 m/s

Vr Rated wind speed 14 m/s

Vref Reference wind speed 50 m/s

- 50-year return period For formula, see [43]

- 1-year return period For formula, see [43]

Generally, DLCs can be grouped into two categories, those requiring a turbulent wind
field model and those requiring a laminar wind field model. To realize a turbulent wind
field model, the standard specifies that six wind fields should be generated per wind speed
with the turbulence model in each field simulated using a different random seed. The
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standard also defines the turbulence model according to the wind class of the WT under
investigation. Wind speed ranges, such as the one required for DLC 1.1 from Table 3, are
covered in this investigation with increments of 1 m/s. Therefore, as an example, 132 wind
fields (22 wind speeds multiplied by six random seeds per wind speed) were generated to
cover DLC 1.1 as it requires a turbulent wind field model, normal turbulence model. In this
investigation, a total of 552 simulated wind fields were generated and applied the V52 MBS
model as part of the aeroelastic simulations performed in this investigation to collect the
desired time-series data of the simulated factors, 6-DOF rotor loads and rotational speed.

2.2. Data Description

The seven factors were collected from the time-series aeroelastic simulations covering
the aforementioned variety of design conditions and respective DLCs. The collected
factors were sampled with a frequency of 200 Hz. The duration of each simulation varied
depending on its corresponding DLC. In total, the aeroelastic MBS simulations generated
roughly 45 million data points for the seven variables.

2.3. Data Analysis

The primary aim of the data analysis methodology detailed in this section is to process
the simulated time-series data of the factors to define their design space and reach realistic
factor combinations within the same design space. Additionally, a method for covering
frequently occurring factor combinations with a higher resolution is proposed to investigate
areas of relatively high interest within the design space in greater detail. Though the
method is presented in the context of the current investigation with the aforementioned
set of seven factors, it is applicable to other investigations where the number of factors
or factor levels is different. Sections 2.3.1 and 2.3.2 present the process for definition and
discretization of the design into factor levels, respectively. Section 2.3.3 introduce a variant
of the discretization procedure with the aim to cover factor level combinations of high
interest in higher resolution, while Section 2.3.4 explains the repetition and randomization
of the generated combinations.

2.3.1. Definition of Design Space

The first step is to define the design space of the factors at hand. Ideally, the design
space can be defined by surveying the simulated data to identify the respective minimum
and maximum values of each factor. However, special consideration for the control behavior
of the specific test rig and WT drivetrain under investigation is needed in the likely case
when investigators need to set hard limits to the design space that may not be exceeded
during testing. Since the DLCs covered during the simulation phase of the proposed
method include extreme wind conditions, the minimum and maximum values of the
simulated factors are in turn extreme values. To avoid a high risk of unexpected failure
of the experimental unit during testing, it is recommended to not exceed these values. In
addition, test bench limitations may also require that the range of one or more factors, and in
turn the design space, is reduced to the performance limits of the test bench. As an example,
In the case of overshoot when attempting to reach a specific target factor combinations,
the desired target loading state may be exceeded as the control system attempts to reach
the desired state. Therefore, the authors recommend the definition and utilization of a
buffer between the experimental design space, bound by testing boundaries, and the design
space defined based on the full ranges of the factors obtained from the simulations. An
example of such a buffer is illustrated in Figure 4, where the testing boundaries for Mz are
visibly separated, in an exaggerated manner for illustration purposes, from the minimum
and maximum values of Mz as obtained from the simulated data, respectively. Once the
bounds of the experimental design space have been defined, the definition of factor levels
can begin.
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2.3.2. Discretization of Design Space and Factor Levels Definition

As discussed in Section 1, the discretization of the design space using factor levels is
a common practice in the field of DOE to reach a feasible number of factor combinations
while covering the design space. The number of factor levels is also a parameter that
investigators can select to better fit the requirements of the investigation at hand. In this
investigation, five levels per factor were chosen for several reasons. The ranges of several
factors, such as My, Mz, and Fy, reached comparably high magnitudes in both negative
and positive values. Due to the presence of asymmetries in the design of a typical WT
drivetrain, including that of the Vestas V52, the testing of several points was favorable to
not only cover the zero level and the extremities of the range, but also to test at moderate
positive and negative values of such factors. Similarly, it was decided to opt for five factor
levels for all factors in order to gain an understanding of the drivetrain responses to several
moderate load levels in addition to the extreme levels. Figure 4 illustrates the five factor
levels of Mz as an example. As discussed earlier, the test boundaries define the extent of
each factor in the design space, which is also illustrated in Figure 4. The resulting range
of testing for each factor is then evenly split into the desired number of levels, in this case
five levels. Factor values that exceed or go below the testing boundaries are assigned to
the highest or lowest factor levels, respectively. In other words, the highest and lowest
factor levels are bound only one-sidedly by the boundary with the respective adjacent
inner level. The factor values within each simulated data point are assigned to a respective
factor level via a binning process based on the defined level boundaries. Each value in the
available data is binned to the respective factor level containing said value. The following
pseudocode, outlined in Algorithm 1, clarifies the algorithm for defining level boundaries
for each factor as well as the application of the aforementioned binning process to all
simulated data points:

Algorithm 1. Algorithm for binning a given factor into desired number of factor levels in
available data set according to desired testing boundaries.

min_test = INPUT(“Define minimum testing boundary”)
max_test = INPUT(“Define maximum testing boundary”)
no_lvl = INPUT(“Define required number of levels”)
lvl_width = (max_test − min_test) / no_lvl

FOR each simulated data point DO
IF factor < min_test + lvl_width THEN

factor = 1
ELSE IF min_test + lvl_width < = factor < min_test + 2 * lvl_width THEN

factor = 2
ELSE IF min_test + 2 * lvl_width < = factor < min_test + 3 * lvl_width THEN

factor = 3
...

ELSE IF min_test + (no_lvl − 1) * lvl_width < = factor THEN
factor = no_lvl

END IF
END FOR

In the case of high separation between the testing boundaries and the minimum and
maximum simulated values of a given factor, it may be favorable to increase the ranges of
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the inner levels. This is due to the fact that by increasing the aforementioned separation,
the number of data points assigned to the outer levels will likely also increase potentially
resulting in an imbalance between factor levels where some factors are overly represented.
This may or may not be favorable depending on the investigation. In this investigation, it
was desired to limit such an imbalance. Therefore, a variation of the binning algorithm,
presented in Algorithm 1, is proposed for this case in Algorithm 2.

Algorithm 2. Alternative algorithm for binning a given factor into desired number of factor levels
in available data set according to desired testing boundaries.

min_test = INPUT(“Define minimum testing boundary”)
max_test = INPUT(“Define maximum testing boundary”)
no_lvl = INPUT(“Define required number of levels”)
no_increment = 2 * no_lvl − 2
lvl_increment = (max_test − min_test) / no_increment

FOR each simulated data point DO
IF factor < min_test + 1 * lvl_increment THEN

factor = 1
ELSE IF min_test + 1 * lvl_increment < = factor < min_test + 3 * lvl_increment THEN

factor = 2
ELSE IF min_test + 3 * lvl_increment < = factor < min_test + 5 * lvl_increment THEN

factor = 3
...

ELSE IF min_test + (no_increment − 1) * lvl_increment < = factor THEN
factor = no_lvl

END IF
END FOR

At the end of the process outlined in Algorithm 1, the simulated factors are entirely
converted from their original numerical values to the corresponding factor levels. In other
words, each data point will now contain a combination of factor levels. The next steps
involve identifying the unique factor level combinations resulting from the application
of the algorithm in Algorithm 1 or Algorithm 2 to the available dataset and choosing a
parameter value to test per factor level. The choice of the parameter value to be tested per
factor level can depend on the goals of the investigation utilizing the proposed method.
In this investigation, testing the extremities of the range of each factor, and in turn, the
extremities of the design space is a goal. Therefore, as shown in Figure 4 for Mz as an
example, the testing boundaries for a given factor were selected for the highest and lowest
of the five factor levels, respectively. As for the inner factor levels, the midpoint of each
factor level along the range of a given factor was selected for testing as also illustrated for
the example of Mz in Figure 4. More formally, the pseudocode, outlined in Algorithm 3,
clarifies the algorithm used in this investigation to define the parameter value used for
testing for each factor level. The resulting factor level combinations are then added to the
planned test series.

2.3.3. Procedure for Factor Level Combinations of High Interest

The need may also exist, as is the case in this investigation, to dedicate more tests to
cover certain factor level combinations of high interest with higher resolution, i.e., smaller
bins, than what is offered by the aforementioned procedure. Therefore, an additional
procedure is proposed to cover those factor level combinations.

In this investigation, high interest combinations are defined as those with the highest
frequency of occurrence in the available data. More specifically, a threshold has been defined
to collect the most frequent factor level combinations collectively accounting for at least 80%
of the available data. Thus, the frequency of all unique factor level combinations in the data
are first tallied and then the unique combinations are ordered according to their respective
frequencies of occurrence. The frequency of each combination is then compared to the total
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number of data points available to reach the percentage of data points represented by each
unique combination. The most frequent unique combinations, collectively representing at
least 80% of the available data points, are selected for further analysis as they are considered
combinations of high interest in this investigation. Other investigations implementing the
proposed method may have varying criteria for selecting the combinations of high interest.
The wind profile at a specific WT location may also be analyzed to prioritize and give a
relatively higher weighing to DLCs that are most frequently occurring at that location.
As an example, Cardaun et al. [52] utilized a reference location provided by the German
renewable energies act [53] to reach cumulative frequencies of wind speeds for a similar
purpose. In turn, the factor level combinations resulting from the simulations associated
with those higher weighted DLCs could be considered of relatively high interest.

Algorithm 3. Algorithm for defining the parameter value used for testing for each factor level.

min_test = INPUT(“Define minimum testing boundary”)
max_test = INPUT(“Define maximum testing boundary”)
no_lvl = INPUT(“Define required number of levels”)
no_increment = 2 * no_lvl − 2
lvl_increment = (max_test − min_test) / no_increment

FOR each unique factor level combination DO
IF factor == 1 THEN

factor = min_test + 0 * lvl_increment
ELSE IF factor == 2 THEN

factor = min_test + 2 * lvl_increment
ELSE IF factor == 3 THEN

factor = min_test + 4 * lvl_increment
...

ELSE IF factor == no_lvl THEN
factor = min_test + no_increment * lvl_increment

END IF
END FOR

Once such unique factor level combinations of relatively high interest have been
collected, the following procedure can be followed to cover their corresponding regions in
the design space with a higher resolution. Each factor level in a given combination is further
split into five sub-levels by following the same algorithm outlined in Algorithm 2 with
the testing boundaries defined as the boundaries of the factor level at hand, respectively.
The unique factor sub-level combinations are similarly also compiled from the resulting
factor sub-level level combinations. Then, the algorithm, outlined in Algorithm 3, is also
used with the same definition of testing boundaries in order to reach the parameter value
for testing based on the assigned factor sub-level, as it is referred to herein after. The
resulting factor sub-level combinations are added to the planned test series, and the process
is repeated for all high interest combinations in order to cover their respective factor levels
at a higher resolution.

2.3.4. Repetition and Randomization

Lastly, each compiled factor level and sub-level combinations is repeated. The order at
which the resulting combinations are tested should also be randomized. In this investiga-
tion, each combination was repeated once. Investigations utilizing the proposed method
are encouraged to implement at least one repetition if resources allow.

2.4. Considerations and Challenges in Practical Implementation

In this investigation, aeroelastic simulations covering a variety of DLCs in accordance
with the IEC 61400-1 standard are implemented and the resulting data analyzed to reach
realistic rotor loads and rotational speed combinations. The factor combinations are in-
tended to be applied to a purposely instrumented Vestas V52 WT drivetrain using the 4MW
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WT system test bench, illustrated in Figure 2, with the goal of generating measurement
data for the development of a virtual WT 6-DOF transmission loads sensor. The primary
motivation for the planned measurement campaign being the absence of field data due to
the fact that a practical and cost-effective sensing system has not yet been field deployed.
The challenge of validating a WT model in the absence of field data is a common challenge
in the wind energy industry. Therefore, the IEC 61400-1 standard [43] provides guidelines
for the calculations or simulations of a given WT model subject to the variety of wind con-
ditions that are to be expected during operation, i.e., DLCs. Such guidelines are generally
followed by the simulation approach in this investigation. While most experts contest
unconditional validity of a simulation model [54–57], the definition of simulation model
validity is possible within the bounds of the project and its intended application [12,58].
Therefore, investigators are encouraged to critically assess the validation requirements
of their intended applications of the proposed method, and tailor the fidelity and the
comprehensiveness of the model validation approach accordingly. For more considerations
and suggestions on the topic of simulation model validity for future applications of the
proposed method, see [12] where Azzam et al. introduce and discuss the validity of the
initial, higher-fidelity Vestas V52 WT model used in this investigation.

An assessment by the investigators on the validity of the model based on the resulting
simulated loads in multiple known simulated wind conditions was deemed sufficient for
the purposes of this investigation. Additionally, measures were implemented to mitigate
the effects of potential outliers in the simulated data when identifying the bounds of the
experimental design space. Domain knowledge was employed to assess the plausibility of
the extremes of each factor as well as the ability of the test bench to reach such extremes
without exceeding them. As a result, it was decided to separate the testing boundaries from
the simulated extremes with a buffer per factor as previously discussed in Section 2.3.1.
The magnitude of the buffer is test bench and drivetrain dependent as well as investigation
dependent. For example, the rate of change of a given load in order to reach a desired
load state typically impacts the degree of overshoot of the system on the way to that state.
Therefore, it is recommended to perform initial tests in order to identify the optimal buffer
for the investigation at hand. Figure 5 illustrates a simplified example of such set of tests
aiming to incrementally reach a definition of a buffer to avoid exceeding the simulated
maximum of a single factor due to system overshoot. Figure 5 is also illustrating the often
iterative nature of identifying problematic features of the designed experiments and coming
up with solutions to mitigate such issues when they arise. For instance, it is often possible
to reduce overshoot by reducing the rate of change that would influence the magnitude of
the required buffer. However, this will also have an impact on the duration of time needed
to cover all designed experiments. Therefore, a tradeoff between the buffer size and the
rate of change may exist in this example. Since such a tradeoff would also depend on the
available resources to the investigation at hand, identifying the right compromise between
these competing testing scenarios may be critical for the realization of the project goals
given the available means. These needs and other revelations typically arise during testing
and may be difficult if not impossible to fully predict beforehand. Consequently, it is highly
recommended to continuously update the computer scripts that generate the desired factor
combinations during the testing phase to iteratively fulfill such dynamic needs. Thus,
it is also recommended to have flexibility as a design objective when developing those
computer scripts in the first place.

The buffer for a given factor in this investigation is chosen depending on the nature of
each factor. Hard limits on the bounds of one or more factors are set due to test bench limits.
For example, the experiments designed in this investigation are intended for application on
the 4 MW WT system test bench illustrated in Figure 2, which is not capable of exceeding
an emulated rotor speed of 24 revolutions per minute (rpm). As a result, the testing upper
boundary for this factor must be set to 24 rpm in this case. The minimum testing boundary
for torque was set to 0 kNm. Some limits are set to avoid permanent damage to the
drivetrain under test as such a failure would prematurely end the planned experiments.
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For example, torque was limited to 440 kNm in order to accommodate a physical safety
coupling installed at the gearbox-generator interface as a safety measure to protect the
gearbox in the case of the unsustainable application of extreme torque during testing.
Similarly, the force Fz was limited to the negative range to avoid drivetrain damage during
testing by limiting the maximum testing boundary to the 99th percentile of the simulated
Fz loads. Lastly, in order to avoid exceeding the simulated extremes of the applied loads
due to overshoot, the testing boundaries of the remaining factors were limited to 90% of
the simulated maximum and the simulated minimum values, respectively.
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The randomization of factor combinations during testing is useful as discussed in
Section 1, however it may also complicate the testing procedures. Depending on the
design of the drivetrain under test and the test bench used for load application, clearances
within the drivetrain may cause overshoot in situations where the loads are consecutively
changed from minimum to maximum values. For example, in the case of the Vestas
V52 on the test setup illustrated in Figure 2, extreme changes of Mz would typically
cause an overshoot of applied loads due to clearances in the drivetrain components. As
such behavior arises during testing, conditionals were put in place to avoid overshoot
for every specific case in order to lower the rate of change in specific load transitions as
needed, while maintaining higher rates of change when possible to save valuable testing
time. For the aforementioned example of Mz when transitioning from extreme positive
to negative values, a maneuver was set in place to slow the rate of change considerably
before transitioning from negative to positive values and then to recover the normal rate of
change for the remainder of the transition. The effort of testing and implementing such
strategies during testing increases with randomization as instead of dealing with known
load transitions, such as the case with ordered ramps of specific loads, the number of
possible transitions is significantly higher. Therefore, it is recommended to consider this
practical aspect of randomization when planning resources for the planned experiments
and weigh in the benefits of randomization with respect to the available resources and the
project goals. Therefore, it is highly recommended to have flexibility as a design objective
when developing the computer scripts that generate the test series to enable these changes
in the limited time frame of the testing phase.

3. Results

Following the proposed methodology as detailed in Section 2, aeroelastic simulations
were conducted on the aforementioned simplified MBS model of the Vestas V52 in order to
cover the DLCs listed in Table 3. The minimum and maximum simulated values (in rpm,
kN and kNm, respectively) per factor across all simulations are listed in Table 5 along with
information on which specific DLC led to each statistic and the time (in seconds) at which
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each statistic was reached measured since the beginning of each aeroelastic simulation. The
times in the table are rounded to the nearest second, while the rotational speeds and 6-DOF
loads are rounded to two decimal places. In the table, wind speed refers to the average
wind speed (in m/s) of the simulated wind field or, in the case of DLC 6.1, the 50-year
return period, which is indicated in the table as 50-year. Yaw in the table refers to yaw
misalignment (in degrees) during the simulation. No single simulation generated both
the maximum and minimum values of a given factor. In the case of My, two simulations,
with different random seeds for the turbulence model, covering the same DLC and wind
conditions resulted in both statistics, respectively.

Table 5. Factor Statistics from Aeroelastic Multibody Simulations of Vestas V52 WT.

Factors Time (s) Minimum/
Maximum

Simulated Wind Conditions [43]

DLC Wind Speed (m/s) Yaw (deg)

n 225 −1.09 1.4 12 0

196 46.73 4.2 25 +4

Fx
200 −78.05 4.2 25 −4

200 217.97 4.2 25 −12

Fy 100 −213.93 6.1 50-year +15

161 201.37 6.1 50-year −15

Fz
692 −111.04 1.3 25 0

297 20.28 6.1 50-year 0

Mx
161 −123.52 1.4 12 0

198 602.72 4.2 25 +4

My 209 −737.18 1.4 16 0

209 628.05 1.4 16 0

Mz
158 −595.65 1.4 12 0

337 445.88 1.3 25 0

The simulated data was then processed to reach five discrete levels covering the range
within the testing boundaries of each respective factor. Table 6 lists the resulting boundaries
of the resulting factor levels, while Table 7 lists the parameter values tested at each factor
level. As discussed in Section 2, Levels 1 and 5 are only one-sidedly bounded as indicated
in Table 6 and they indicate the selected testing boundaries for each of the seven factors in
Table 7, respectively. The algorithm detailed in Algorithm 2 was used to bin the simulated
data into the factor levels and reach the boundaries listed in Table 6, while the parameter
values, listed in Table 7, were defined using the algorithm detailed in Algorithm 3.

Table 6. Factor Level Boundaries.

Factors
Factor Value at Level Boundary (rpm, kN, kNm)

1–2 2–3 3–4 4–5

n 3 9 15 21

Fx −36.94 29.66 96.27 162.87

Fy −145.81 −52.37 41.07 134.51

Fz −105.33 −93.92 −82.50 −71.08

Mx 55 165 275 385

My −509.87 −202.69 104.48 411.66

Mz −418.91 −184.57 49.78 284.12
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Table 7. Parameter values tested at each factor level.

Factors
Parameter Values Tested at each Factor Level (rpm, kN, kNm)

1 2 3 4 5

n 0 6 12 18 24

Fx −70.25 −3.64 62.97 129.57 196.18

Fy −192.53 −99.09 −5.65 87.79 181.23

Fz −111.04 −99.63 −88.21 −76.79 −65.37

Mx 0 110 220 330 440

My −663.46 −356.28 −49.11 258.07 565.25

Mz −536.08 −301.74 −67.39 166.95 401.29

In order to further demonstrate and assess the simulation results as well as factor
levels, the distributions of the respective factor levels for each of the seven factors are
shown in Figure 6.
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Following the methodology outlined in Section 2.3.2, a total of 725 unique factor level
combinations were identified. In addition, as discussed in Section 2.3.3, a threshold has
been defined to collect the most frequent factor level combinations collectively accounting
for at least 80% of the available data resulting in 12 factor level combinations of high interest,
listed in Table 8. These combinations led to 2064 unique factor sub-level combinations. In
total, 2789 unique combinations were generated.

Table 8. Most frequent factor level combinations collectively accounting for 80% of available data.

Combination ID
Factor Levels

n Fx Fy Fz Mx My Mz

1 5 3 3 3 4 3 3

2 3 2 3 3 1 3 3

3 5 3 3 3 4 3 4

4 5 3 3 3 2 3 3
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Table 8. Cont.

Combination ID
Factor Levels

n Fx Fy Fz Mx My Mz

5 5 3 3 3 3 3 3

6 4 3 3 3 2 3 3

7 1 2 3 4 1 3 3

8 5 3 3 4 4 3 3

9 5 3 3 3 2 3 4

10 5 3 3 3 3 3 4

11 3 3 3 3 1 3 3

12 5 4 3 3 3 3 3

4. Discussion

The results of the first implementation of the proposed method indicate its high
potential in identifying a relatively limited number of factor combinations that cover the
realistic regions of the experimental design space. In addition to defining the design space
for the given methods, the proposed method generated factor level combinations that cover
the regions of the design space that are likely to be experienced by the turbine during
operation based on the guidelines of the relevant standard, IEC 61400-1 [43]. In comparison
to a full factorial DOE, which would result in over 78,000 factor level combinations to cover
the design space at hand, the proposed method resulted in just under 3000 combinations.
Table 5 shows the variety of DLCs that are responsible for reaching the extremities of the
respective factor ranges, which in turn define the seven-dimensional design space in this
case. This demonstrates the utility of performing several simulations in compliance with
the IEC 61400-1 standard in order to reach a more complete definition of the design space
for the planned experiments. The proposed method also generated level boundaries that
split the majority of data points into even factor levels as listed in Table 6. In Figure 6,
the proposed algorithms set level boundaries that clearly target the majority of the data
points by generating a higher density of factor levels at the more populated regions of the
distribution, while being robust against extreme, rare values, such as the extreme maximum
value of Fz in Figure 6d. In turn, the proposed algorithms result in the parameter values to
be tested at each factor level as listed in Table 7, which also take place with higher density
at the more heavily populated regions of the respective factor range as shown in Figure 6.
Additionally visible in Figure 6, a common observation among the majority of the factors,
such as n, Fy, Fz, My, and Mz, is that a single peak significantly higher than the other peaks
in a given factor distribution tends to be entirely or mostly within a single factor level. This
is also visible in Table 8, which lists the most frequent combinations collectively accounting
for 80% of the data. In the table, it can be seen that for the majority of factors a single level
mainly dominates each factor across the 12 combinations. By splitting those dominant
factors in the most frequent combinations, the proposed method further demonstrates its
effectiveness in selectively targeting the most realistic regions of the design space that the
WT at hand can be expected to encounter across all covered DLCs. Therefore, the results
demonstrate that the proposed method is successful in achieving the intended goals of
targeting the expected combinations of the WT rotor 6-DOF loads and rotational speed.

5. Conclusions

In this investigation, a method is developed to enable investigators to design efficient
experiments for testing a WT drivetrain using a WT system test rig by applying realistic
combinations of rotor 6-DOF loads and rotational speeds. The main conclusions are
as follow:
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1. Targeted aeroelastic multibody simulations covering different wind conditions based
on the DLCs provided within the IEC 61400-1 standard can be implemented using the
developed method to generate simulated time-series data of the 6-DOF rotor loads
and rotational speeds that a WT is likely to experience during its lifetime;

2. Simulated data can be analyzed using the developed method to define the design
space of the factors under study as well as to reach realistic factor level combinations
within the design space to lower the risk of premature drivetrain failure during testing;

3. The proposed method can significantly limit the number of designed experiments as
compared to a full factorial design, while targeting highly frequent load combinations
at a greater resolution;

4. Due to the promising results achieved using the presented methodology, the authors
aim to utilize it in upcoming tests on the drivetrain a Vestas V52 using a WT system
test bench capable of applying the generated factor combinations.
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