A Systematical Comparison of Catalytic Behavior of NM/γ-Al2O3 (NM = Ru, Rh, Pt, Pd, Au, Ir) on 1,2-Dichloroethane Oxidation: Distributions of By-Products and Reaction Mechanism
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of NM (Ru, Rh, Pt, Pd, Au, Ir)/γ-Al2O3
2.2. Reactivity Evaluation
2.3. Catalyst Characterizations
2.4. In Situ DRIFTS Experiments
3. Results and Discussion
3.1. Catalyst Activity Performance
3.2. Crystalline and Morphology
3.3. Catalyst Reducibility, Acid Properties, and Oxygen Species
3.4. Catalyst Surface Status
3.5. Catalyst Intermediate Species and Oxidation Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z.P. Recent Advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef] [PubMed]
- Dumanoglu, Y.; Kara, M.; Altiok, H.; Odabasi, M.; Elbir, T.; Bayram, A. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmos. Environ. 2014, 98, 168–178. [Google Scholar] [CrossRef]
- Aranzabal, A.; Pereda-Ayo, B.; Gonzalez-Marcos, M.P.; Gonzalez-Marcos, J.A.; Lopez-Fonseca, R.; Gonzalez-Velasco, J.R. State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chem. Pap. 2014, 68, 1169–1186. [Google Scholar] [CrossRef]
- Dai, C.H.; Zhou, Y.Y.; Peng, H.; Huang, S.J.; Qin, P.F.; Zhang, J.C.; Yang, Y.; Luo, L.; Zhang, X.S. Current progress in remediation of chlorinated volatile organic compounds: A review. J. Ind. Eng. Chem. 2018, 62, 106–119. [Google Scholar] [CrossRef]
- Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138. [Google Scholar] [CrossRef]
- Justicia-Leon, S.D.; Higgins, S.; Mack, E.E.; Griffiths, D.R.; Tang, S.; Edwards, E.A.; Loffler, F.E. Bioaugmentation with distinct Dehalobacter strains achieves chloroform detoxification in microcosms. Environ. Sci. Technol. 2014, 48, 1851–1858. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Spivey, J.J.; Butt, J.B. Catalyst deactivation during deep oxidation of chlorohydrocarbons. Appl. Catal. A Gen. 1992, 82, 259–275. [Google Scholar] [CrossRef]
- Maness, A.D.; Bowman, K.S.; Yan, J.; Rainey, F.A.; Moe, W.M. Dehalogenimonas spp. can Reductively Dehalogenate High Concentrations of 1,2-Dichloroethane, 1,2-Dichloropropane, and 1,1,2-Trichloroethane. AMB Express 2012, 2, 54. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Lu, S.; Wang, Q.; Buekens, A.G.; Ni, M.; Debecker, D.P. A review on catalytic oxidation of chloroaromatics from flue gas. Chem. Eng. J. 2018, 334, 519–544. [Google Scholar] [CrossRef]
- Beamer, P.I.; Luik, C.; Abrell, L.; Campos, S.; Martínez, M.; Saez, A.E. Concentration of trichloroethylene in breast milk and household water from Nogales, Arizona. Environ. Sci. Technol. 2012, 46, 9055–9061. [Google Scholar] [CrossRef]
- Li, L.; Shi, J.W.; Tian, M.J.; Chen, C.W.; Wang, B.R.; Ma, M.D.; He, C. In situ fabrication of robust three dimensional ordered macroporous γ-MnO2/LaMnO3.15 catalyst for chlorobenzene efficient destruction. Appl. Catal. B Environ. 2021, 282, 119565. [Google Scholar] [CrossRef]
- Pires, J.; Carvalho, A.; Carvalho, M.J.M.; Materials, M. Adsorption of volatile organic compounds in Y zeolites and pillared clays. Micropor. Mesopor. Mater. 2001, 43, 277–287. [Google Scholar] [CrossRef]
- Moon, H.S.; Kim, I.S.; Kang, S.J.; Ryu, S.K. Adsorption of volatile organic compounds using activated carbon fiber filter in the automobiles. Carbon Lett. 2014, 15, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Lemus, J.; Martin-Martinez, M.; Palomar, J.; Gomez-Sainero, L.; Gilarranz, M.A.; Rodriguez, J.J. Removal of chlorinated organic volatile compounds by gas phase adsorption with activated carbon. Chem. Eng. J. 2012, 211–212, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Cloirec, P.L. Treatments of polluted emissions from incinerator gases: A succinct review. Rev. Environ. Sci. Bio/Technol. 2012, 11, 381–392. [Google Scholar] [CrossRef]
- Ryding, J.M.; Puhakka, J.A.; Strand, S.E.; Ferguson, J.F. Degradation of chlorinated phenols by a toluene enriched microbial culture. Water Res. 1994, 28, 1897–1906. [Google Scholar] [CrossRef]
- Lu, S.Y.; Wang, Q.L.; Buekens, A.G.; Yan, J.H.; Li, X.D.; Cen, K.F. Photocatalytic decomposition of gaseous 1,2-dichlorobenzene on TiO2 films: Effect of ozone addition. Chem. Eng. J. 2012, 195–196, 233–240. [Google Scholar] [CrossRef]
- Huang, H.; Dai, Q.; Wang, X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl. Catal. B Environ. 2014, 158–159, 96–105. [Google Scholar] [CrossRef]
- Hu, P.; Huang, H.; Chen, J.; Ye, X.; Leung, D.C. Highly dispersed and active supported Pt nanoparticles for gaseous formaldehyde oxidation: Influence of particle size. Chem. Eng. J. 2014, 252, 320–326. [Google Scholar]
- Sekizawa, K.; Widjaja, H.; Maeda, S.; Ozawa, Y.; Eguchi, K. Low temperature oxidation of methane over Pd/SnO2 catalyst. Appl. Catal. A Gen. 2000, 200, 211–217. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, G.; Kim, B.; Bae, J.; Han, J.w.; Lee, H. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558–9565. [Google Scholar] [CrossRef] [PubMed]
- Pitkäaho, S.; Matejova, L.; Ojala, S.; Gaalova, J.; Keiski, R.L. Oxidation of perchloroethylene—Activity and selectivity of Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3-TiO2 and Al2O3-CeO2. Appl. Catal. B Environ. 2012, 113–114, 150–159. [Google Scholar] [CrossRef]
- Maupin, I.; Pinard, L.; Mijoin, J.; Magnoux, P. Bifunctional mechanism of dichloromethane oxidation over Pt/Al2O3: CH2Cl2 disproportionation over alumina and oxidation over platinum. J. Catal. 2012, 291, 104–109. [Google Scholar] [CrossRef]
- Fornasiero, P.; Dimonte, R.; Rao, G.R.; Kaspar, J.; Meriani, S.; Trovarelli, A.; Graziani, M. Rh-loaded CeO2-ZrO2 solid solutions as highly efficient oxygen exchangers: Dependence of the reduction behavior and the oxygen storage capacity on the structural properties. J. Catal. 1995, 151, 168–177. [Google Scholar] [CrossRef]
- Cao, S.; Fei, X.; Wen, Y.; Sun, Z.; Wang, H.; Wu, Z. Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of Dichloromethane (CH2Cl2). Appl. Catal. A Gen. 2018, 550, 20–27. [Google Scholar] [CrossRef]
- Liang, Y.; Li, J.; He, Y.; Jiang, Z.; Shangguan, W. Catalytic oxidation of dimethyl phthalate over titania-supported noble metal catalysts. J. Hazard. Mater. 2020, 401, 123274. [Google Scholar] [CrossRef]
- He, C.; Li, J.; Li, P.; Cheng, J.; Hao, Z.; Xu, Z.P. Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. Appl. Catal. B Environ. 2010, 96, 466–475. [Google Scholar] [CrossRef]
- Sinquin, G.; Petit, C.; Libs, S.; Hindermann, J.P.; Kiennemann, A. Catalytic destruction of chlorinated C1 volatile organic compounds (CVOCs) reactivity, oxidation and hydrolysis mechanisms. Appl. Catal. B Environ. 2000, 27, 105–115. [Google Scholar] [CrossRef]
- Zang, M.; Zhao, C.; Wang, Y.; Chen, S. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts. J. Saudi Chem. Soc. 2019, 23, 645–654. [Google Scholar] [CrossRef]
- Topka, P.; Delaigle, R.; Kaluza, L.; Gaigneaux, E.M. Performance of platinum and gold catalysts supported on ceria-zirconia mixed oxide in the oxidation of chlorobenzene. Catal. Today 2015, 253, 172–177. [Google Scholar] [CrossRef]
- López-Fonseca, R.; Gutiérrez-Ortiz, J.; Gonzalez-Velasco, J. Catalytic combustion of chlorinated hydrocarbons over H-BETA and PdO/H-BETA zeolite catalysts. Appl. Catal. A Gen. 2004, 271, 39–46. [Google Scholar] [CrossRef]
- Giraudon, J.M.; Nguyen, T.B.; Leclercq, G.; Siffert, S.; Lamonier, J.F.; AboukaiS, A.; Vantomme, A.; Su, B.L. Chlorobenzene total oxidation over palladium supported on ZrO2, TiO2 nanostructured supports. J. Catal. 2008, 137, 379–384. [Google Scholar] [CrossRef]
- Giraudon, J.M.; Elhachimi, A.; Leclercq, G. Catalytic oxidation of chlorobenzene over Pd/perovskites. Appl. Catal. B Environ. 2008, 84, 251–261. [Google Scholar] [CrossRef]
- Dai, Q.; Bai, S.; Wang, Z.; Wang, X.; Lu, G. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts. Appl. Catal. B Environ. 2012, 126, 64–75. [Google Scholar] [CrossRef]
- Dai, Q.; Bai, S.; Wang, J.; Li, M.; Wang, X.; Lu, G. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene. Appl. Catal. B Environ. 2013, 142–143, 222–233. [Google Scholar] [CrossRef]
- Menéndez, B.M.; Fernández, E.D.; García, S.O.; Granda, A.V.; Sanz, F.D. Performance of different alumina-supported noble metal catalysts for the combustion of trichloroethylene at dry and wet conditions. Appl. Catal. B Environ. 2006, 64, 264–271. [Google Scholar]
- Liu, X.; Chen, L.; Zhu, T.; Ning, R. Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products. J. Hazard. Mater. 2019, 363, 90–98. [Google Scholar] [CrossRef]
- Tian, M.; Guo, X.; Dong, R.; Guo, Z.; Shi, J.; Yu, Y.; Cheng, M.; Albilali, R.; He, C. Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1,2-dichloroethane destruction. Appl. Catal. B Environ. 2019, 259, 118018. [Google Scholar] [CrossRef]
- Tian, M.; Jian, Y.; Ma, M.; He, C.; Chen, C.; Liu, C.; Shi, J.-W. Rational design of CrOx/LaSrMnCoO6 composite catalysts with superior chlorine tolerance and stability for 1,2-dichloroethane deep destruction. Appl. Catal. A Gen. 2019, 570, 62–72. [Google Scholar] [CrossRef]
- Tian, M.; He, C.; Yu, Y.; Pan, H.; Smith, L.; Jiang, Z.; Gao, N.; Jian, Y.; Hao, Z.; Zhu, Q. Catalytic oxidation of 1,2-dichloroethane over three-dimensional ordered meso-macroporous Co3O4/La0.7Sr0.3Fe0.5Co0.5O3: Destruction route and mechanism. Appl. Catal. A Gen. 2018, 553, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pasupulety, N.; Al-Zahrani, A.A.; Daous, M.A.; Driss, H.; Petrov, L.A. Methane aromatization study on M-Mo2C/HZSM-5 (M = Ce or Pd or Nb) nano materials. J. Mater. Res. Technol. 2021, 14, 363–373. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, L.; Liu, Y.; Deng, J.; Jing, L.; Zhang, K.; Hou, Z.; Zhang, X.; Wang, J.; Feng, Y.; et al. Insights into the active sites of chlorine-resistant Pt-based bimetallic catalysts for benzene oxidation. Appl. Catal. B Environ. 2020, 279, 119372. [Google Scholar] [CrossRef]
- Mohajeri, N.; Ali, T.; Bokerman, G.; Captain, J.E.; Peterson, B.V.; Whitten, M.; Trigwell, S.; Berger, C.; Brenner, J. TEM–XRD analysis of PdO particles on TiO2 support for chemochromic detection of hydrogen. Sensors Actuat. B Chem. 2010, 144, 208–214. [Google Scholar] [CrossRef]
- Mehdipour, M.; Tabaian, S.H.; Firoozi, S. Effect of IrO2 crystallinity on electrocatalytic behavior of IrO2–Ta2O5/MWCNT composite as anodes in chlor-alkali membrane cell. Ceram. Int. 2019, 45, 19971–19980. [Google Scholar] [CrossRef]
- Ruan, M.; Song, P.; Liu, J.; Li, E.; Xu, W. Highly efficient regeneration of deactivated Au/C catalyst for 4-nitrophenol reduction. J. Phys. Chem. C. 2017, 121, 25882–25887. [Google Scholar] [CrossRef]
- Lapham, D.P.; Lapham, J.L. BET surface area measurement of commercial magnesium stearate by krypton adsorption in preference to nitrogen adsorption. Int. J. Pharmaceut. 2019, 568, 118522. [Google Scholar] [CrossRef]
- Wu, Q.; Yan, J.; Jiang, M.; Dai, Q.; Wu, J.; Ha, M.N.; Ke, Q.; Wang, X.; Zhan, W. Phosphate-assisted synthesis of ultrathin and thermally stable alumina nanosheets as robust Pd support for catalytic combustion of propane. Appl. Catal. B Environ. 2021, 286, 119949. [Google Scholar] [CrossRef]
- Shi, Z.; Peng, Y.; Fei, T.; Zhou, R. New insight into the structure of CeO2–TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation. Chem. Eng. J. 2016, 295, 99–108. [Google Scholar] [CrossRef]
- Dai, Q.; Yin, L.-L.; Bai, S.; Wang, W.; Wang, X.; Gong, X.-Q.; Lu, G. Catalytic total oxidation of 1,2-dichloroethane over VOx/CeO2 catalysts: Further insights via isotopic tracer techniques. Appl. Catal. B Environ. 2016, 182, 598–610. [Google Scholar] [CrossRef]
- Dai, Q.; Wang, W.; Wang, X.; Lu, G. Sandwich-structured CeO2@ZSM-5 hybrid composites for catalytic oxidation of 1, 2-dichloroethane: An integrated solution to coking and chlorine poisoning deactivation. Appl. Catal. B Environ. 2017, 203, 31–42. [Google Scholar] [CrossRef]
- Feng, X.; Tian, M.; He, C.; Li, L.; Shi, J.-W.; Yu, Y.; Cheng, J. Yolk-shell-like mesoporous CoCrOx with superior activity and chlorine resistance in dichloromethane destruction. Appl. Catal. B Environ. 2020, 264, 118493. [Google Scholar] [CrossRef]
- Dai, Q.; Zhang, Z.; Yan, J.; Wu, J.; Johnson, G.; Sun, W.; Wang, X.; Zhang, S.; Zhan, W. Phosphate-functionalized CeO2 nanosheets for efficient catalytic oxidation of dichloromethane. Environ. Sci. Technol. 2018, 52, 13430–13437. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, X.; Yu, E.; Cai, S.; Jia, H.; Chen, J.; Liang, P. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem. Eng. J. 2018, 344, 469–479. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality. Chem. Rev. 2015, 45, 10292–10368. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Gu, Y.; Zhao, J.; Wang, X. Catalytic combustion of chlorobenzene over VOx/CeO2 catalysts. J. Catal. 2015, 326, 54–68. [Google Scholar] [CrossRef]
- Ji, K.; Dai, H.; Deng, J.; Song, L.; Gao, B.; Wang, Y.; Li, X. Three-dimensionally ordered macroporous Eu0.6Sr0.4FeO3 supported cobalt oxides: Highly active nanocatalysts for the combustion of toluene. Appl. Catal. B Environ. 2013, 129, 539–548. [Google Scholar] [CrossRef]
- Fang, L.; Yan, Z.; Wu, J.; Bugaev, A.; Lamberti, C.; Pera-Titus, M. Highly selective Ru/HBEA catalyst for the direct amination of fatty alcohols with ammonia. Appl. Catal. B Environ. 2021, 286, 119942. [Google Scholar] [CrossRef]
- Larichev, Y.V.; Netskina, O.V.; Komova, O.V.; Simagina, V.I. Comparative XPS study of Rh/Al2O3 and Rh/TiO2 as catalysts for NaBH4 hydrolysis. Int. J. Hydrogen Energ. 2010, 35, 6501–6507. [Google Scholar] [CrossRef]
- Feijen-Jeurissen, M.M.R.; Jorna, J.J.; Nieuwenhuys, B.E.; Sinquin, G.; Petit, C.; Hindermann, J.-P. Mechanism of catalytic destruction of 1,2-dichloroethane and trichloroethylene over γ-Al2O3 and γ-Al2O3 supported chromium and palladium catalysts. Catal. Today 1999, 54, 65–79. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Y.; Hu, W.; Qu, P.; Zhang, G.; Granger, P.; Zhong, L.; Chen, Y. New insights into the role of Pd-Ce interface for methane activation on monolithic supported Pd catalysts: A step forward the development of novel PGM Three-Way Catalysts for natural gas fueled engines. Appl. Catal. B Environ. 2020, 264, 118475. [Google Scholar] [CrossRef]
- Yoon, D.; Kim, Y.; Lim, J.; Cho, B.; Hong, S.; Nam, I.-S.; Choung, J. Thermal stability of Pd-containing LaAlO3 perovskite as a modern TWC. J. Catal. 2015, 330, 71–83. [Google Scholar] [CrossRef]
- He, C.; Jiang, Z.; Ma, M.; Zhang, X.; Douthwaite, M.; Shi, J.-W.; Hao, Z. Understanding the Promotional Effect of Mn2O3 on Micro-/Mesoporous Hybrid Silica Nanocubic-Supported Pt Catalysts for the Low-Temperature Destruction of Methyl Ethyl Ketone: An Experimental and Theoretical Study. ACS Catal. 2018, 8, 4213–4229. [Google Scholar] [CrossRef]
Samples | Conversion | Ea a | TOF b | |
---|---|---|---|---|
T50 (°C) | T90 (°C) | kJ mol−1 | 10−3 s−1 | |
Ru/γ-Al2O3 | 289 | 337 | 30.90 | 3.19 |
Rh/γ-Al2O3 | 220 | 349 | 36.11 | 2.89 |
Pt/γ-Al2O3 | 228 | 361 | 35.89 | 0.84 |
Pd/γ-Al2O3 | 227 | 361 | 27.45 | 4.75 |
Au/γ-Al2O3 | 267 | 373 | 40.89 | 2.12 |
Ir/γ-Al2O3 | 230 | 380 | 31.29 | 7.16 |
Samples | SBET a m2·g−1 | V b cm3·g−1 | Dp c nm | Loading d % | D (NM Dispersion) e % |
---|---|---|---|---|---|
γ-Al2O3 | 207.87 | 0.436 | 4.20 | / | / |
Ru/γ-Al2O3 | 229.29 | 0.468 | 4.09 | 0.97 | 31.1 |
Rh/γ-Al2O3 | 219.97 | 0.595 | 5.41 | 0.98 | 27.4 |
Pt/γ-Al2O3 | 227.60 | 0.813 | 7.14 | 1.01 | 25.6 |
Pd/γ-Al2O3 | 226.79 | 0.502 | 4.43 | 1.02 | 29.7 |
Au/γ-Al2O3 | 266.62 | 0.589 | 4.42 | 0.96 | 40.2 |
Ir/γ-Al2O3 | 230.35 | 0.510 | 4.43 | 0.96 | 33.5 |
Samples | O 1s | ||
---|---|---|---|
Oα a | Oβ b | Oα/(Oα + Oβ) | |
Ru/γ-Al2O3 | 53,918.9 | 7038.0 | 0.88 |
Rh/γ-Al2O3 | 48,460.7 | 11,390.2 | 0.81 |
Pt/γ-Al2O3 | 38,974.4 | 8706.5 | 0.82 |
Pd/γ-Al2O3 | 25,771.9 | 11,941.7 | 0.68 |
Ir/γ-Al2O3 | 41,634.6 | 7145.6 | 0.85 |
Au/γ-Al2O3 | 46,326.8 | 7463.6 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, J.; Xu, H.; Tian, M.; He, C. A Systematical Comparison of Catalytic Behavior of NM/γ-Al2O3 (NM = Ru, Rh, Pt, Pd, Au, Ir) on 1,2-Dichloroethane Oxidation: Distributions of By-Products and Reaction Mechanism. Appl. Sci. 2023, 13, 36. https://doi.org/10.3390/app13010036
Li L, Zhang J, Xu H, Tian M, He C. A Systematical Comparison of Catalytic Behavior of NM/γ-Al2O3 (NM = Ru, Rh, Pt, Pd, Au, Ir) on 1,2-Dichloroethane Oxidation: Distributions of By-Products and Reaction Mechanism. Applied Sciences. 2023; 13(1):36. https://doi.org/10.3390/app13010036
Chicago/Turabian StyleLi, Lu, Jingjie Zhang, Han Xu, Mingjiao Tian, and Chi He. 2023. "A Systematical Comparison of Catalytic Behavior of NM/γ-Al2O3 (NM = Ru, Rh, Pt, Pd, Au, Ir) on 1,2-Dichloroethane Oxidation: Distributions of By-Products and Reaction Mechanism" Applied Sciences 13, no. 1: 36. https://doi.org/10.3390/app13010036
APA StyleLi, L., Zhang, J., Xu, H., Tian, M., & He, C. (2023). A Systematical Comparison of Catalytic Behavior of NM/γ-Al2O3 (NM = Ru, Rh, Pt, Pd, Au, Ir) on 1,2-Dichloroethane Oxidation: Distributions of By-Products and Reaction Mechanism. Applied Sciences, 13(1), 36. https://doi.org/10.3390/app13010036