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Abstract: Dexterous object manipulation using anthropomorphic robot hands is of great interest for
natural object manipulations across the areas of healthcare, smart homes, and smart factories. Deep
reinforcement learning (DRL) is a particularly promising approach to solving dexterous manipulation
tasks with five-fingered robot hands. Yet, controlling an anthropomorphic robot hand via DRL in
order to obtain natural, human-like object manipulation with high dexterity remains a challenging
task in the current robotic field. Previous studies have utilized some predefined human hand poses to
control the robot hand’s movements for successful object-grasping. However, the hand poses derived
from these grasping taxonomies are limited to a partial range of adaptability that could be performed
by the robot hand. In this work, we propose a combinatory approach of a deep transformer network
which produces a wider range of natural hand poses to configure the robot hand’s movements, and an
adaptive DRL to control the movements of an anthropomorphic robot hand according to these natural
hand poses. The transformer network learns and infers the natural robot hand poses according to
the object affordance. Then, DRL trains a policy using the transformer output to grasp and relocate
the object to the designated target location. Our proposed transformer-based DRL (T-DRL) has been
tested using various objects, such as an apple, a banana, a light bulb, a camera, a hammer, and a bottle.
Additionally, its performance is compared with a baseline DRL model via natural policy gradient
(NPG). The results demonstrate that our T-DRL achieved an average manipulation success rate of
90.1% for object manipulation and outperformed NPG by 24.8%.

Keywords: anthropomorphic robot hand; dexterous object manipulation; natural hand pose; deep
reinforcement learning; transformer network

1. Introduction

Dexterous object manipulation via anthropomorphic robot hands has recently gained
lots of interest in the field of natural object manipulations across the areas of healthcare,
smart homes, and smart factories [1–6]. However, it is challenging for robots to achieve the
dexterity of grasping and manipulation seen in human movements [1–6]. The complexity
of these movements is difficult to grasp naturally due to the high Degree of Freedom (DoF)
of an anthropomorphic robot hand. In nature, before grasping an object, humans consider
its shape, orientation, and position (i.e., object affordance) in the environment. Humans
naturally grasp objects through an intelligence that estimates suitable hand poses based
on the object affordance. Humans perform natural object-grasping by controlling finger
movements from learned hand poses. Thus, natural hand pose estimation is an important
factor for manipulating intelligence by providing proper guidelines that enable the robot
hand to learn and imitate human finger movements. Therefore, to attain such a level of
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complex, dexterous manipulation over tasks, the robot hand pose estimation should be
incorporated into the robot intelligence.

In recent studies, Deep Reinforcement Learning-based (DRL) techniques have demon-
strated their capability in controlling the robot fingers for dexterous manipulations of
various objects, utilizing the databases of human hand poses and object affordances [1–5].
In [1–5], the authors presented supervised learning techniques with large-scale hand pose
datasets to train the robot hand controller, achieving object manipulation. However, these
approaches require collecting hand pose demonstrations for each object. Extending the
knowledge of these approaches for all possible objects remains a challenging task and
the generalization of these approaches is difficult [7–9]. For dexterous manipulation with
the anthropomorphic robot hand, it is essential to have a natural hand pose estimator
without relying on human demonstrations. The robot hand needs intelligence to estimate
high-dimensional information (i.e., 24-DoF hand poses) from low-dimensional information
(i.e., 6-DoF object affordance for location and orientation).

Natural hand pose estimation for an anthropomorphic robot hand has been generally
derived from a grasping taxonomy with predefined hand poses (e.g., top-down or lateral
grasps) [10]. This hand pose estimation has been shown as a helpful control technique
for finger movement for some objects [8,11–15]. For instance, in [16], the object affordance
information of shape, pose, and orientation from a partial point cloud was used in a
DRL policy to derive the best grasping poses for either the top-down or parallel-side
grasping. To cover the variability of human grasping movements, deep learning techniques
have been recently proposed to estimate the natural hand poses according to the various
object shapes [17–22]. In [17], an autoencoder network was used to estimate the natural
hand poses from the point clouds of the object. In [19,20], a GAN approach was used to
estimate the natural hand pose in which the encoder- and decoder-based neural networks
were adopted to estimate natural hand poses. However, the estimated hand poses were
upside down or unnatural and, therefore, not much associated with the object affordance.
For autonomous grasping and manipulation that simulates human movements, a robust
estimation of natural hand pose is essential.

Recently, deep transformer networks have been actively used in areas of data esti-
mation, including natural language processing, bioinformatics, and hand pose estimation
in which the transformer network was used to estimate hand joints from 3D hand mesh
data [23–31]. The transformer network has typically shown better performance in estimat-
ing high-dimensional information from low-dimensional information, in comparison to
various deep neural networks (i.e., autoencoder, GAN, and LSTM) [25]. The transformer
network estimates the output by modeling the information between the input and output
through learning the inherent dependencies of each. The attention mechanism in the trans-
former demonstrates particularly excellent performance in exploring the dependency of
the input and output data by modeling the correlation between them [25]. In this work,
the transformer network estimates the high-dimensional natural hand poses from the
low-dimensional object affordances.

Recently, reinforcement learning approaches were introduced to train an anthropo-
morphic robot hand with the estimated natural hand poses [18,32]. Furthermore, Demo
Augmented Policy Gradient (DAPG) was introduced [33]. Previous works estimated
hand poses and used them to initialize finger parameters at the beginning of DRL train-
ing through imitation learning. In [18], an object grasping intelligence framework was
proposed and trained for three objects (an apple, a potato, and a mustard bottle) for an
anthropomorphic robot hand. Grasping of both the apple and potato was successful but
grasping of the mustard bottle failed since the thumb and other fingers of the robot hand
could not close properly, due to the estimation of an unnatural hand pose. In previous
studies it is noted that a DRL methodology with a robust transformer network has not yet
been reported.

A transformer network incorporated into a DRL policy should improve dexterous
object manipulation with an anthropomorphic robot hand. Furthermore, in the policy
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training phase of DRL, imitation learning and reward function are used to train the robot’s
grasping intelligence through demonstrations. Imitation learning can help in early-stage
learning, and the reward function carries out the learning process until its completion.
In the design of the reward function, reward shaping was employed by utilizing various
categories of information, such as object location, robot hand location, and hand pose.

In this work, we propose a novel methodology of dexterous object manipulation
with an anthropomorphic robot hand via a transformer-based DRL with a novel reward
shaping-function. The proposed transformer network estimates natural hand poses from
object affordance to guide the learning process of DRL. The transformer network estimates
high-dimensional information (i.e., 24-DoF hand poses) from low-dimensional informa-
tion (i.e., 6-DoF object affordance for location and orientation). This reduction provides
natural hand poses for the movement of an anthropomorphic robot hand. Then, the DRL
algorithm utilizes the estimated natural hand poses in the reward-shaping function and
learns dexterous object manipulation.

2. Methods

The proposed T-DRL intelligent framework for object grasping is composed of two
main components illustrated in Figure 1. First, the transformer network estimates an
optimal natural hand pose for the given object’s 3D point cloud. Second, the DRL policy
learns to control the movements of an anthropomorphic robot hand for object manipulation.
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Figure 1. Overview of the proposed T-DRL. The DRL training for object manipulation using the
estimated optimal hand pose from the transformer network.

We leverage the capabilities of the transformer network to infer the optimal natural
hand pose from the object affordance. The object affordance is represented by a 3-DoF
position and orientation (roll, yaw, and pitch) of an anthropomorphic robot hand. The
optimal grasping hand pose from the transformer network had 21-DoF joint positions,
corresponding to a five-fingered anthropomorphic hand. We leverage the DRL to train the
anthropomorphic robot hand for object manipulation with a natural hand pose. The DRL
is composed of a policy that performs robot actions and a reward function that evaluates
and updates the policy parameters. The proposed DRL uses the estimated optimal hand
pose to achieve natural grasping and relocation of various objects. The reward function is
configured such that the estimated hand pose is set as a goal, and the reward increases as
the joints of the anthropomorphic robot hand are aligned with the estimated hand pose.
The policy updates the hand poses (i.e., actions) of the anthropomorphic robot hand (i.e.,
agent) so that the value of the reward function increases for natural grasping. The proposed
T-DRL is trained to achieve natural grasping and relocation for six objects. In our work,
we selected objects based on the shape property representing most of the 24 objects in the
ContactPose DB. Therefore, the proposed T-DRL trained in this work can be generalized
for objects with similar shapes.
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2.1. Databases for T-DRL Trainings

To derive the optimal hand poses from the transformer network and incorporate them
into the proposed DRL, this work utilizes the databases of a 6-DoF object affordance and
21-DoF hand pose.

The information of the 6-DoF object affordance is derived from GraspNet [34] which
computes the point clouds of an object and produces 6-DoF affordance information. The
probability of possible grasping success rates is determined according to the object shape
and hand pose with a parallel gripper, as shown in Figure 1. GraspNet [34] is trained with
206 objects of five categories (boxes, cylinders, mugs, bottles, and bowls) and trained based
on a variational autoencoder, which estimates a predefined number of grasping poses in the
Cartesian coordinates. The 6-DoF object affordance is denoted as φM

i in this study, where
i = 1, . . . , M, with M denotes the number of grasps and each φi ∈ R6 denotes the position
and orientation of an anthropomorphic robot hand attempting to grasp the object.

The information of the 21-DoF hand pose, corresponding to the joint angles of a
five-fingered anthropomorphic hand, is derived from the ContactPose database [35]. This
database consists of grasping demonstrations made by human hands, holding various
household objects. The database also includes the point clouds of objects with the corre-
sponding 3D coordinates of the 21 finger joints used in a human hand pose. The grasping
data was collected with two intentional grasps of ‘use’ (i.e., using the object after grasping)
and ‘handoff’ (i.e., handing over the object after grasping) for fifty different objects. We
selected objects representing six geometric shapes (spherical, rod, cube, oval, cylindrical,
and curved) from the available 24 objects, including: apple, banana, camera, hammer,
bottle, and light bulb. Each object has a total of 25 grasping demonstrations that were
reduced to 10 corresponding to the right hand, with their functional intent being ‘use’.
Henceforth, the extracted 21-DoF joints that coordinate the hand poses are denoted as (ϕN

i )
where i = 1, . . . , N denotes the number of demonstrations and each ϕi ∈ R21 denotes the
joint angles in the hand pose reference system.

As input to the transformer network, we need a data tuple containing five 21-DoF
hand poses and five 6-DoF object affordances. Two of the ten 21-DoF hand pose data for
each object were classified for testing and eight for training. One tuple was formed by
matching with the 6-DoF generated at the exact same location as the center position of the
21-DoF. By randomly selecting five of the eight tuples, a list of approximately 16,500 unique
tuples is generated from the combination of 6-DoF object affordance φM

i and 21-DoF hand
poses ϕN

i for the six objects.

2.2. Object Manipulation T-DRL

In Figure 2, we have illustrated the two stages for training and testing of the proposed
method. For training, Figure 2a illustrates the inputs for the transformer network, including
a set of 6-DoF object affordances and 21-DoF hand poses. The network estimates the
optimal hand pose by computing the attention value between the two inputs. Attention
value indicates the similarity between information in the input and is used to estimate the
21-DoF hand pose in the decoder. In the testing phase, Figure 2b illustrates the process of
estimating hand pose corresponding to the 6-DoF object affordance generated from the
environment. In testing, a Mask R-CNN [36] with a ResNet-50-FPN backbone pre-trained
with the COCO object dataset [37] estimates a pixel-level mask for the object in the captured
RGBD image. Then, this mask is used to segment the image and extract a point cloud with
a partial view of the object. The point cloud goes through GraspNet to obtain the object
affordance and, combined with a set of hand poses from the ContactPose database, the
pre-trained transformer network estimates the optimal hand pose of 21-DoF ϕN .
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Figure 2. The architecture of the transformer Network. (a) In Training, it takes both 6-DoF object
affordance and 21-DoF hand pose as input to estimate an optimal 21-DoF hand pose for grasping
the object. (b) At test time, 6-DoF object affordance is generated through GraspNet from an RGB-D
image taken in the environment. Then, the trained transformer network estimates the optimal hand
pose for generated object affordance.

2.2.1. Transformer Network with Attention Mechanism

The transformer network illustrated in Figure 2a is composed of two modules to
derive an optimal hand pose for natural grasping: the 6-DoF object affordance encoder and
the 21-DoF hand pose encoder–decoder.

The object affordance encoder first uses a self-attention mechanism to discover the
local relationship between every element in the source input of 6-DoF object affordance. The
attention layer in the encoder uses three independent feedforward networks to transform
the input (i.e., the hand pose of 21-DoF and object affordance of 6-DoF) into query (Q), key
(K), and value (V) tensors of dimension dq, dv and dv, respectively. In the self-attention
layer, Q, K, and V are calculated from each encoder input. Then, the self-attention layer
finds the correlation between encoder inputs. Then, calculating the attention value, the
query and key tensors are dot-produced and scaled. A SoftMax function then obtains the
attention probabilities and the resulting tensor takes a linear projection using the value
tensor. The attention is then computed with the following equation [38]:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (1)

The computed attention weights represent the relative importance of the input in the
sequence (keys) for each particular output (query) and multiply it by a dynamic weight
(value). To improve the range of input features that could be learned via attention, the
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multi-head attention runs multiple self-attention layers in parallel and learns different
projections of the input data. These are expressed as:{

MultiHead(Q, K, V) = Concat(h1, . . . , hh)WO

hi = Attention
(

QWQ
i , KWK

i , VWV
i

) (2)

where linear transformations WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , and

WO
i ∈ Rhdv×dmodel are parameter matrices. The parameter h represents the number of

subspaces we compute with dk = dv = dmodel/h = 4. Therefore, the two self-attention
layers shown in Figure 2 compute the attention matrix to find similarity within the 6-DoF
object affordance and 21-DoF hand pose individually. The self-attention output is an
embedding of dimension d that carries the mutual information of each element in the input.
Then, a residual connection expands this embedding, concatenating with the original
object affordance. Later, a normalization layer and two feedforward networks, both with a
non-linear activation function, output the encoded representation (attention value) of the
object affordance from the encoder. The hand pose encoder does the same job as the object
affordance encoder, with the target input of the hand pose being 21-DoF. The output of the
hand pose encoder is an embedding vector of dimension d, which computed the mutual
information of the input elements through a self-attention mechanism, using a residual
connection and two feedforward layers.

The outputs of both encoders are used as input for the hand pose decoder. The cross-
attention layer learns to map between the encoded values of the hand pose of 21-DoF and
the object affordance of 6-DoF. Through this mapping the network can estimate the optimal
hand pose for the object affordance φM. The decoder uses the cross-attention mechanism.
In the cross-attention mechanism, K and V are calculated from 6-DoF object affordances
and Q is calculated from 21-DoF hand poses. Then, the cross-attention layer discovers the
relationship between 6-DoF object affordances and 21-DoF hand poses. The multi-head
attention expands the ability of the model to focus on different elements from the object
affordances of 6-DoF and hand poses of 21-DoF in parallel. It does this by estimating from
6-DoF to 21-DoF through the attention value calculated in the decoder. Later, this output
will be used in the shaping-reward funtion for training the DRL policy.

2.2.2. DRL with Reward Shaping

The DRL policy illustrated in Figure 1 is trained to control the robot’s movements for
generating a natural grasping hand pose for object manipulation. The model-free DRL
policy πθ(at,st) describes the control problem of the robot hand as a Markov Decision
Process (S, A, R), where s ∈ S, S ⊆ Rn is an observation vector describing the current
location of the robot hand and object in Cartesian coordinates. The agent’s actions a ∈ A, A
⊆ Rm control the robot hand’s movements to interact with the object. A reward function
rt = R(s, a, s′) evaluates the completeness of the manipulation task.

To optimize the parameters of the DRL policy we follow the implementation of natural
policy gradient (NPG) in [38], which computes the policy gradient as:

∇θ J(θ) =
1

NT

N

∑
i=1

T

∑
t=1
∇θ logπθ

(
ai

t

∣∣∣si
t

)
Aπ
(

si
t, ai

t

)
(3)

Then, it pre-conditions the gradient with the Fisher Information Matrix, Fθ and makes
the following normalized gradient ascent update:

θk+1 = θk +

√
δ

∇θ J(θ)T · F−1
θk
·∇θ J(θ)

·F−1
θk
·∇θ J(θ) (4)
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where δ is the step size. The advantage function Aπ is the difference between the value for
the given state–action pair and the value function of the state. The NPG in [38] uses the
general advantage estimator (GAE), which is defined as:

AGAE =
T

∑
l=0

(γλ)lδV
t+l (5)

where, δV
t = rt + γV(st+1) − V(st) defines the temporal difference residual between consecu-

tive predictions, assuming a value function V that approximates the true value function,
Vπ . Both the policy and value networks share the same architecture and were defined by a
three-layer neural network with 64 units in the hidden layers.

The reward function maximizes the sum of the expected rewards at the end of each
training episode. This function measures the similarity of the robot hand’s pose to the
optimal hand pose estimated by the transformer network. It also evaluates how close the
object is to the target location at the end of an episode. Defining the reward function to
solve the manipulation tasks is expressed as follows:

rg =

{
λ1 × rjoints i < t150

λ2 × rh:o + λ3 × ro:t o.w.
(6)

where rjoints is the mean squared error between the hand pose of 21-DoF, derived from
the transformer network, and the robot hand’s pose after following the policy actions.
Empirically, we found that by optimizing for rjoints during the first 150 timesteps of each
iteration, the policy could learn how to shape the robot hand before grasping an object. The
second term of the reward function minimizes the distance between the hand and the object
rh:o and the distance of the object to the target location ro:t. The values of λ1, λ2 and λ3 are
constant weights to balance the total reward, rg, which measures the completeness of the
task. The value of rg gives a larger reward when at the end of the episode the object finishes
near the target location.

2.3. Training and Validation of T-DRL

The proposed method is trained for natural object manipulation, including grasping
and relocating of the randomly located object to a random target position.

2.3.1. Training and Validation of Transformer Network

For each training step, a minibatch B was sampled from the tuples. More specifically,

we defined the input tuple as
(

φM
i , ϕN−1

i

)B

j=1
and hand pose output as

(
ϕN)B

j=1. We

minimized the MSE loss function between the ground truth and predicted hand pose using
the Adam optimizer with a learning rate of 3e−4, β1 = 0.9, and β2 = 0.98. The model
was trained until the MSE error for every joint between the predicted and ground truth
hand pose was lower than 5%. We validated the transformer network by MSE between the
estimated hand joint and the ContactPose hand joint. Additionally, we compared the joint
angle’s range distribution with the dataset and the estimated hand pose.

2.3.2. Training and Validation of T-DRL

The T-DRL policy updates its parameters by computing the sum of the rewards
∑T

i=0 γiri from Equation (6). Learning is optimized using the natural policy gradient (NPG)
described in [38]. First, for each object two policies were initialized with a random normal
distribution and trained for 5000 iterations, each iteration with N = 200 episodes, and a
time horizon of T = 1000 time steps. At the start of each episode the transformer network
computes the 21-DoF hand pose for grasping the object in the simulation environment.
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We have compared our approach with a baseline DRL (i.e., the NPG algorithm) in
Section 2.2.2 using a sparse reward ro:t of the reward function rg. After training, we
compared the probability of success of successful grasping and relocation (i.e., rg over a
threshold that indicates the policy has learned to grasp and move the object to the target
location) among 100 trials of NPG and T-DRL.

3. Results
3.1. Simulation Environments

The experiments were conducted in a simulation environment based on the MuJoCo
physics engine. MuJoCo is a robotics simulation package providing tools for research
and development, such as robotic kinematics, objects models, and articulated structures
interacting with the environment for machine learning applications [39]. The simulated
anthropomorphic robot hand is modeled after the ADROIT robot hand [40] and has a 3-DoF
wrist and 21-DoF hand pose with five fingers for dynamic and dexterous manipulations.
The first, middle, ring, and little fingers have 4-DoF, meanwhile the thumb has 5-DoF.
Each joint is equipped with a joint angle sensor and a haptic sensor. The movements are
controlled via a position control actuator.

3.2. Hand Pose Estimation via Transformer Network

After training the transformer network, it was tested on 250 tuples generated from
the combination of 6-DoF object affordance and 21-DoF hand poses for the six objects.
Figure 3 shows the distribution range of the joint angles alongside the estimated hand pose
and ground truth. For each finger in the anthropomorphic robot hand, the ground truth
distribution of 21 joint angles from the ContactPose database hand poses is illustrated in
Figure 3a. The distribution of 21 joint angles as estimated by the transformer network is
shown in Figure 3b. Visual difference between the hand poses is within 0.4× 10−3 range
in MSE in the joints for all fingers. To visualize the difference between the ground and
estimated hand pose, MSE was computed between both hand poses as shown in Figure 3c.
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Figure 3. The mean squared error (c) between the joint angle distributions of the ContactPose dataset
(a) and the angles’ distributions as estimated by the transformer network (b) for each finger in the
anthropomorphic hand. A lower error indicates higher confidence in estimation.

The error is 4.6e−3 located in the first joint of the index finger. However, considering the
range of motion for each joint, the angular error of every finger DoF in the anthropomorphic
hand is lower than 5%. These results show that the hand pose estimated by the transformer
network has a similar joint angle distribution with a similar hand pose.
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3.3. Object Manipulation Performance by T-DRL

The average success rates of T-DRL and NPG for grasping and relocation tasks of
the six objects are shown in Table 1. The success rate achieved by our T-DRL was 90.1%,
outperforming the 65.3% achieved by NPG. For the objects, such as light bulb, bottle,
and camera, the baseline policy could not learn a proper grasping strategy, resulting in a
low success rate. However, for objects such as the bottle and camera (those with values
under 50%), we noticed the policy achieved to increase the reward by hitting the object
and lifting it in the air. This is not a desired behavior that we expected the DRL policy
to learn without proper guidance. The results for each object reported in Table 1 are the
averaged success rate for policies trained by T-DRL and NPG, which were trained with
three random initializations per object. In total, we trained 36 different DRL policies (18
T-DRL and 18 NPG) for grasping and relocation in a workstation with two RTX-2080 GPU
for more than 100 h.

Table 1. Success rate (%) of natural manipulation tasks using NPG and T-DRL.

Objects NPG
(Mean ± std)

T-DRL
(Mean ± std)

Apple 91.58 (±3.03) 94.68 (±1.42)
Banana 88.36 (±8.12) 92.63 (±3.20)

Hammer 89.03 (±4.85) 94.37 (±2.98)
Light-bulb 68.53 (±8.45) 87.61 (±7.14)

Bottle 21.81 (±7.51) 90.35 (±4.20)
Camera 32.40 (±6.06) 81.21 (±3.52)

In the left column of Figure 4, the average cumulative reward for all objects is shown,
where the solid line represents the mean and the shadow area the standard deviation of the
rewards. Overall, the cumulative reward from T-DRL achieves a higher success rate under
1000 iterations with 70% of the maximum return. This increment in speed is significant
compared to NPG. The right column of Figure 4 illustrates the time-series frames of the DRL
policies during grasping and relocation. Without shaped rewards, the resulting actions
were unnatural and failed to grasp the object. This is shown in the row frames of Figure 4g,
where the light bulb was hit and thrown into the air with force. In Figure 4i, the robot
hand merely pushed the bottle off the table and did not learn to lift it. In Figure 4k, a
similar behavior is shown with the light bulb. This phenomenon is all part of the learning
process as DRL continues to explore the environment. By T-DRL, we were able to minimize
these errors and prevent unnatural behaviors, manipulating the objects in a manner that
resembled human-like actions.

The NPG policy grasps the hammerhead and reaches the target location with a similar
success ratio compared to T-DRL, as shown in Figure 4c,d. While it achieves a high success
rate, this hand pose does not comply with the object affordance that is inferred when using
hand pose priors in the training loop. T-DRL reduces the expectation that the policy learns
these behaviors. More importantly, T-DRL generated a pre-shape of the hand by extending
the fingers, as seen in the row frames of Figure 4h,j, and then proceeded to close the hand
grasping the object.
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Figure 4. On the left, the average sum of rewards for object manipulation by NPG (blue, top) and
T-DRL (purple, bottom). On the right, the evaluation time-series frames from grasping and relocation
of each object using the best policies of NPG (blue, top) vs. T-DRL (purple, bottom) for apple (a) vs.
(b), hammer (c) vs. (d), banana (e) vs. (f), light bulb (g) vs. (h), bottle (i) vs. (j), and camera (k) vs. (l).
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4. Discussion

For dexterous object manipulation, using natural hand poses has a significant im-
pact on the success of natural object grasping. Several previous studies have conducted
dexterous object manipulation with hand pose estimation and DRL [32,41]. Yueh-Hua
Wu et al. [32] used GraspCVAE and DRL to manipulate objects with an ADROIT robot
hand. GraspCVAE is based on a variational autoencoder that estimates the natural hand
pose from the object affordance. In this work, DRL imitated the estimated hand pose
without reward shaping and manipulated five objects (a bottle, a remote, a mug, a can,
and a camera), achieving an average manipulation success rate of 80%. Similarly, Priyanka
Mandikal et al. [41] used the FrankMocap regressor and DRL to manipulate objects with
an ADROIT robot hand. They utilized the FrankMocap regressor to estimate natural hand
poses according to object affordance. The six objects (a pan, a mug, a teapot, a knife, a
cup, and a hammer) were manipulated, achieving an average success rate of 60%. The
low success rate was mainly due to the FrankMocap regressor, which has shown poor
performance in generating novel natural hand poses without object and hand pose data.
In our study, we incorporated the transformer network into DRL with reward shaping for
object manipulation. Our T-DRL outperforms the object manipulation of similar objects
with an average success rate of 90.1%. We believe DRL’s transformer network and reward
shaping contributes to this performance.

In T-DRL, dexterous object manipulation of an anthropomorphic robot hand is possible
through natural hand poses produced by the transformer network. For instance, NPG
without natural hand poses grasps only a few objects, such as an apple, a hammer, a
banana, and a light bulb as shown in Figure 4. For the bottle and camera, NPG fails to
grasp them. The results demonstrate that for complex shaped objects, proper guidance
through natural hand poses plays a critical role in grasping them. In contrast, the proposed
T-DRL with natural hand poses successfully grasps all six objects. Unlike NPG, when
grasping each object with T-DRL, we noticed that each object gets grasped in a hand pose
that suits the object affordance. This is because of the natural hand pose produced by the
transformer network according to the object affordance. Accordingly, T-DRL utilizes the
natural hand pose in learning via reward shaping. The reward curves in Figure 4 show that
the proposed reward function performs effective exploitation of the object grasping space
in comparison to NPG. For example, when manipulating the objects of the hammer and
banana, NPG and T-DRL obtain high rewards, but only T-DRL grasps objects with natural
hand poses. This suggests that the proposed reward function provides better guidance for
natural object manipulation in comparison to the NPG reward function. In general, the
reward of T-DRL increases much faster than that of NPG. This suggests that unnecessary
exploration for object grasping is reduced for the anthropomorphic robot hand, while the
useful experience for successful grasping is gained much more quickly. The proposed
reward-shaping function in T-DRL results in improving the grasping success rates from
65.3% by NPG to 90.1% by T-DRL. Using natural hand poses and reward shaping in T-DRL
seems to play a significant role in training the anthropomorphic robot hand for dexterous
object manipulation, especially considering the high-DoF of the five fingers.

5. Conclusions

In this paper, we present the T-DRL intelligence of an anthropomorphic robot hand for
dexterous manipulation of various objects with natural hand poses. The transformer net-
work improves the performance of object manipulation by the robot hand pose, providing
natural hand poses from object affordance to DRL. The reward function via reward shaping
in T-DRL efficiently trains the high-DoF anthropomorphic robot hand via estimated natural
hand poses. An extension of this work in the future could include estimating natural hand
poses to manipulate novel unseen objects with T-DRL.
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