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Abstract: Emotion monitoring can play a vital role in investigating mental health disorders that
contribute to 14% of global diseases. Currently, the mental healthcare system is struggling to cope
with the increasing demand. Robot-assisted mental health monitoring tools can take the enormous
strain off the system. The current study explored existing state-of-art machine learning (ML) models
and signal data from different bio-sensors assessed the suitability of robotic devices for surveilling
different physiological and physical traits related to human emotions and discussed their potential
applicability for mental health monitoring. Among the selected 80 articles, we subdivided our
findings in terms of two different emotional categories, namely—discrete and valence-arousal (VA).
By examining two different types of signals (physical and physiological) from 10 different signal
sources, we found that RGB images and CNN models outperformed all other data sources and
models, respectively, in both categories. Out of the 27 investigated discrete imaging signals, 25
reached higher than 80% accuracy, while the highest accuracy was observed from facial imaging
signals (99.90%). Besides imaging signals, brain signals showed better potentiality than other data
sources in both emotional categories, with accuracies of 99.40% and 96.88%. For both discrete and
valence-arousal categories, neural network-based models illustrated superior performances. The
majority of the neural network models achieved accuracies of over 80%, ranging from 80.14% to
99.90% in discrete, 83.79% to 96.88% in arousal, and 83.79% to 99.40% in valence. We also found
that the performances of fusion signals (a combination of two or more signals) surpassed that of
the individual ones in most cases, showing the importance of combining different signals for future
model development. Overall, the potential implications of the survey are discussed, considering
both human computing and mental health monitoring. The current study will definitely serve as the
base for research in the field of human emotion recognition, with a particular focus on developing
different robotic tools for mental health monitoring.

Keywords: emotion monitoring; mental health; machine learning; human-robot interaction; signals;
robots

1. Introduction

Mental health plays a vital role in our overall well-being. However, in recent times,
mental health issues have significantly escalated. A survey on the societal mental health of
600,000 U.S. people showed that the number of adolescents reporting a depressive episode
had doubled between 2009–2017, and many eventually resulted in suicide [1]. This study
clearly indicates the constantly growing mental health issues within our society. Numerous
mental health issues are linked to social isolation [2–4]. The concern over this issue is
even more intensified by the upward trend in single-person households, especially in
developed countries, where the number is alarmingly as high as 60% [5]. Furthermore,
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loneliness is not limited to adolescents either. Many elderly people are getting less familial
support and ending up living alone. Hence, our society is on the verge of brimming with
loneliness, and mental health is sure to deteriorate if nothing is done to remedy the situation.
Socially assistive robots can be useful in dealing with loneliness as they can also function
as companions [6,7].

Assistive robots have already seen widespread success in the healthcare and medicine
sectors [8]. Their versatile contributions in these sectors, such as surgeries [9], radiation
therapy, cancer treatment, and animal therapies [10], also led us to believe that robots can
play a crucial role in coping with the current mental health situation worldwide. One
possible use is to monitor patients’ mental health and refer them to a professional neuro-
therapist. The traditional approach to mental health monitoring is wholly based on patients
recounting their days. In the end, professionals have to rely on the patients to give a true
and accurate recount of their health. However, people often face difficulties remembering
events accurately. Further, sadness is highly correlated with depression among patients
and is a prime component of clinical diagnoses [11]. Therefore, robots can prove highly
beneficial in monitoring mental health through emotion monitoring. Currently, numerous
ML methods and literature reviews have shown the potentiality of different sensors to
monitor human emotions, but there is still a research gap between identifying suitable
signal sources and ML models for robotic applications. Moreover, our literature search
could not find any uniform methodology or analysis to assess available resources. As
different studies used different datasets and sources with varying evaluation metrics, it is
indeed a challenging task to make a proper comparative analysis.

While conducting the survey, we also came across a few survey and review papers
in the same or similar field. Dzedzickis et al. [12] performed a review of the sensor and
methods used for mental health monitoring. However, the pivoting factors of their work
were the sensors and the engineering view of the emotion recognition process. The survey
conducted by Mohammed et al. [13] also did not prioritize the machine learning methods
used for emotion recognition. Instead, they focused on the challenges faced by researchers
in developing a human–robot interaction system. Saxena et al. [14] performed a separate
analysis of the ML methods and feature-based techniques, lacking the robotic applicability
of these approaches. Moreover, their survey mostly involved discrete emotion recognition,
with a single study of the valence-arousal category. The foremost objective of Yadav
et al. [15] was speech emotion recognition and visual systems. Many other signal sources
that could potentially contribute to emotion recognition were not considered in their review.

This paper aims to analyze and determine which machine learning methods and
signal sources are the most appropriate for emotion monitoring through robots. While
there is plenty of research on emotion recognition and mental health, we systematically
set up a boundary to capture the latest works in this field. We have considered all the
papers relevant to emotion recognition and monitoring through machine learning from
June 2015 to August 2022. Moreover, machine learning is one of the core subject matters
of this survey. However, all the machine learning algorithms were not contemplated in
the survey because the researchers preferred to use the most sought-after methods for
their experiments. Further, even though there is a third emotion category (hierarchical
model), we only considered the two most widely used emotional categories. Recognizing
emotions through robots could provide an accurate account of people’s mental states.
To make this a reality, we must determine the means to recognize emotions accurately.
High accuracy for classifying emotion was prioritized in the decision-making. Ease of
implementation, accessibility of signal sources, and highly accurate ML methods are also
key factors. The current study can be utilized for future implementations of robotic mental
health monitoring.

2. Background

A brief description of different signal sources, machine learning models, and emotional
levels is essential to set up baseline knowledge about the types of signal sources, the mode
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of acquisition, suitable ML models, and their applicability in humanized robots. It also
helps readers to understand the technical and intellectual difficulties of achieving an
optimal outcome from ML models or datasets. Below, we first discussed seven human
signal sources, followed by ML models, and lastly discussed two different emotional levels.

2.1. Human Signal Sources

Different signals are generated from different parts of the human body. We have found
seven signal sources and Figure 1 has illustrated their originating places.

Figure 1. Several physiological signals with sources.

2.1.1. Brain Signals

The signals that are generated from the brain or related to brain activity are consid-
ered brain signals. Brain activity can be defined as the neurons sending signals to each
other [16]. Two types of signals fall into this category: Electroencephalogram (EEG) and
Electrooculography (EOG). Measuring brain activities through EEG is a difficult process.
Electroencephalograms (EEG) measure the surface potential of the scalp. Although the
brain is insulated from the outside by the skull and other tissue, this electrical activity still
presents minuscule changes in the electrical potential across the scalp [17]. These changes
can be recorded. However, since these voltages fluctuate in the micro-volt range [18], EEG
measurements are very prone to noise. However, as EEG is directly measured by the brain’s
activity, it has some obvious impacts to our mental state.

Electrooculography (EOG) measures the electrical potential between the front and
the back of the eye [19]. Like other electrical potential physiological sensors, this is ac-
complished through several surface electrodes. This time, the electrodes are placed above
and below or left and right of the eye to be measured. Eye position trackers are also often
used in this field, although eye position is more voluntarily controlled. Both EOG and
eye position have become increasingly relevant in emotion recognition studies [20]. One
reason for this is the role eye contact plays in human and primate behavior. Studies have
shown that the decoding of facial expressions is significantly impeded without clear eye
contact [21].

2.1.2. Heart Signals

The driving force of the cardiovascular system, the heart, plays a key role in our
physiology. Even characteristics that can be taken at a non-invasive level, such as blood
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pressure [22], contain information that can be used to infer emotional state. The most
common example of this is determining whether a person is stressed or not. When stressed,
the body releases a hormone that increases heart rate and blood pressure, and affects
many other cardiovascular interactions [23]. These signals can be obtained through blood
pressure sensors.

Blood volume pulse (BVP) measures how much blood moves to and from a site
over time. This signal is usually captured through optical, non-invasive means using a
photoplethysmogram (PPG). A PPG works through shining light, usually in the infrared
wavelengths, onto the body surface of interest [24]. Since tissues reflect light more than the
hemoglobin found in red blood cells [25], measuring the amount of light that returns to the
device can give an idea of how much blood is in the site. These devices are so widespread
now that they have been integrated into many smartphones [26] and smart watches [27]
created in the last decade. Although BVP signals have successfully been used to measure
peoples’ heart rates in recent years [28], these signals can provide a lot more information
than just that. The amplitude of the pulses and how much volume is being transferred
can provide key insights into the cardiovascular health of a patient as well as their mental
state [25].

Electrocardiograms (ECG) measure the heart’s electrical activity. It accomplishes this
by sensing the voltage of conductors placed on the chest surface, i.e., electrodes. Historically,
this has been used to evaluate how the heart functions in a patient [29]. However, due
to the strong connection between heart activity and mental state, it is now a mainstream
physiological measurement for effective computing.

2.1.3. Skin Signals

Electrodermal activity (EDA) is the umbrella term for any electrical changes that occur
within the skin. Like ECG, this is measured through surface electrodes, often placed on the
body’s extremities. One signal that is measured under EDA is the galvanic skin response
(GSR). GSR, a measure of the conductivity of human skin, can provide an indication of
changes in stress levels in the human body [30]. Depending on our emotional state’s
intensity, our skin produces sweat at different rates [31]. This results in the electrical
conductance of our skin changing, which can then be measured.

In addition to conductance, our skin temperature (ST) also changes in response to
several internal and external stimuli. External stimuli, such as ambient temperature and
any applied heat sources, are of little use to researchers studying physiological signals.
However, internal causes of skin temperature change are of great interest. Emotionally
charged music causes skin temperatures to rise or fall [32]. Therefore, emotional states are
linked to skin temperature, and it may be possible to infer patients’ emotions through skin
temperature. Skin temperature is measured either through contactless or contact methods,
but recently, researchers have taken great interest in contactless methods, such as infrared
cameras, that measure temperatures by collecting radiation emitted by the surface [33].

2.1.4. Lungs Signals

Lung signals are physiological data of great interest in numerous studies. Breathing
has been proven to change in response to emotional changes [34]. Typically, respiration
data comes in the form of respiration volume (RV) and respiration rate (RR) and can be
recorded by a single device, such as a wearable strain sensor [35]. Their implementation
varies widely, with some new methods even going contactless [36], but often a belt with
several sensors is used, such as one by Neulog [37]. Oxygen saturation [38] can also contain
information regarding emotional state. SpO2 and HbO2 are measures of oxygen saturation.

2.1.5. Imaging Signals

Facial expression recognition from imaging signals is potentially a great technique
for emotion recognition. Facial expressions are a great way to detect human emotions,
as human faces most often portray their internal emotional states [39]. General facial
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expression recognition involves three key phases—preprocessing, feature extraction, and
classification [40]. The process of emotion recognition from facial expressions can be
performed from either facial images or video extracts that comprise facial expressions.
While, in most cases, the images used for the recognition are 2D, depth information can
also be incorporated into these 2D images using 3D sensors [41].

Our bodily expressions can also be a significant source of information regarding
our emotions. Postural, kinematic, and geometrical features can be conveyors of human
emotions [42]. Our emotional states also reflect in our walking and sitting actions [43].
Motion data collected using the RGB sensors are used for detection purposes [42].

2.1.6. Gait Sequences

Human gait refers to the walking style of a person. Alongside uniquely identifying the
walker, it can also be used for detecting the walker’s emotions [44]. Kinetic or motion data
collected by motion capture sensors, in combination with neural network algorithms, can be
very effective in recognizing human emotions from gait sequences [45,46]. Traditionally, gait
was measured by motion capture systems, force plates, electromyography, etc.; however, the
emergence of modern technologies, such as accelerometers, electrogoniometers, gyroscopes,
in-shoe pressure sensors, etc., has made gait analysis much easier and more efficient [47].

2.1.7. Speech Signals

Speech is the most commonly used and one of the most important mediums of
communication for humans. The signals generated from human voice or audio clips are
considered speech signals. Speech signals can contain information regarding the message,
speaker, language, and emotion [48]. Therefore, speech signals have been of great interest
to researchers for emotion recognition. Similar to imaging signals, the general approach for
speech emotion recognition has three stages; signal preprocessing, feature extraction, and
feature classification [49]. Besides audio extracts, speech signals are usually collected from
smartphones and wearable devices where local interaction of on-body, environmental, and
location sensor modalities are merged [50].

2.2. ML Models

In order to develop a reliable mental health monitoring system through emotion
recognition, it is important to figure out which machine learning methods perform most
efficiently in this sector. To accurately classify emotions, the machine learning methods are
fed with input signals (discussed in Section 2.1). The system determines a pattern from
this input data and uses this information to correctly classify emotions. Afterwards, when
non-classified data are fed to the classifier, it outputs a single discrete emotional category
or several numerical values corresponding to a position on an emotional plane.

Among diverse machine learning methods, the most commonly found methods are:
Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Convolutional Neural Net-
work (CNN), Deep Neural Network (DNN), Artificial Neural Network (ANN), Decision
Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP), etc. We also came across
a few hybrid or ensemble methodologies, such as voting, adaboost, a combination of
Principal component analysis (PCA) and Linear discriminant analysis (LDA), etc. These
techniques are comprehensively included in several studies, and thus interested readers
are referred to [51–53]. The majority of machine learning methods evaluate performance in
accuracy [54]. However, there are a few other evaluation metrics, e.g., correlation coefficient
and RMSE (Root Mean Square Error). The correlation coefficient is the statistical measure
of how strongly related two variables are [55]. Moreover, RMSE refers to the numerical
error between a prediction and its true value [56]. A lower error corresponds to a closer
match between the estimator and the ground truth.



Appl. Sci. 2023, 13, 387 6 of 20

2.3. Emotional Levels

Emotion/facial expression recognition has been an intriguing topic to explore since last
century [57,58]. For emotion recognition, machine learning models are scored against the
classification performed prior by psychologists or trial participants. Emotions are classified
based on emotional models. Emotional models illustrate how many discrete emotion states
there are (e.g., a model just containing happy, neutral, and sad) or how many levels of
emotion there are (e.g., anger intensity). Hence, over the last few centuries, there have been
numerous emotional models created. We can differentiate between these as models using
discrete emotional classes and those using dimensional models. A hierarchical framework
has also been introduced by Metallinou et al. [59] as a category of emotion recognition.
The hierarchical model is capable of incorporating multimodal information and temporal
context from speakers, and their experiments suggest that their multimodal classifiers can
proficiently outperform unimodal classifiers. However, the focus of our survey was limited
to only discrete and dimensional emotional classes.

2.3.1. Discrete Emotions

The emotions that a person is likely to experience in their day-to-day life are labeled
as discrete emotions. For instance, happiness, sadness, boredom, neutrality, and anger are
examples of discrete emotions. One type of discrete model that has been used in multiple
studies is the “basic 6” or the Ekman model [60]. Ekman et al. identified six basic emotions
that covered most human interactions. These are anger, disgust, fear, happiness, sadness,
and surprise [61]. Although many other models have introduced more emotions, such
as Lazarus’s 15-emotion model [62], many researchers find the basic 6 to work well for
their purposes. A potential reason for many to prioritize the basic 6 models over the other
models is that having more classes requires higher accuracy to get a similar significance of
results.

2.3.2. Continuous Emotions

Some emotional models use dimensions for emotion instead. Amongst them, the most
popular is the Valence-Arousal emotion model. This has two dimensions, as the name
would suggest: valence and arousal. Valence ranges from feeling pleasant to unpleasant,
and arousal ranges from feeling quiet to active [63]. Due to the lack of discretisation of
these dimensions, the number of specific emotions that can be located on the valence-
arousal plane is infinite. However, our typical everyday emotion models, such as Ekman’s
6-emotion model, can be mapped out onto this plane. Figure 2 shows an example of a
correspondence between a discrete emotional model and the V-A (valence-arousal) plane.

Figure 2. Valence-Arousal emotional model.
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Although mapping discrete emotions on continuous models is often performed, classi-
fying emotions on the continuous labels presents an interesting challenge. The classification
task, in this case, is exceptionally complicated since there are infinite points along any
continuous dimension and hence infinite classes. However, researchers have come up with
several ways to accomplish this, and one of them is through the segmentation of the V-A
plane into compartments of interest. For example, splitting the plane into four quadrants:
high valence + high arousal, high valence + low arousal, low valence + high arousal, and
low valence + low arousal.

3. Methods

We explored six academic databases due to their relevance to the topic. These databases
were IEEE Xplore, Google Scholar, ANU SuperSearch, Scopus, Pubmed Central, and Re-
searchGate. In order to search these databases, a set of keywords was derived in con-
sultation with university librarians. These keywords were robot*, emotion recognition,
and sensor* (where * denotes wildcard characters). For consistency, the six databases
were searched to find papers that contained all three terms in any meta field. As tech-
nology is rapidly evolving and to keep our research accurate-to-date, our search results
were narrowed down to papers published in the last seven years; from 1 June 2015 to 1
August 2022.

If the databases searched this way had less than 200 results, all papers were added
to be screened. In the case where there were more than 200 results (Google Scholar, ANU
SuperSearch, and Scopus), the results were sorted by the engine’s definition of relevance,
and the top 200 results were added to the screening pool. This resulted in a collection of
1141 articles in total, of which 885 were unique.

Following this, the records were screened in order to provide papers relevant to our
research interests. Articles were excluded if they were either: (1) publications that were not
original peer-reviewed papers, (2) not related to emotion recognition, (3) do not mention
the applicability of research to improving robots or machines or agents, or (4) do not state
research applicability in a mental health context. For the validation of excluded results,
two reviewers acted independently on the 885 unique papers. There were 17% mismatched
papers from each reviewer. By discussing with the third reviewer, 80 papers were finally
included for detailed analyses. The process and milestones are displayed in Figure 3. Then,
both quantitative and qualitative data were extracted from the 80 papers. The aim of
each paper, the number of participants, the physiological data used, the methods used
for emotion classification, the emotional category type, and the outcome of each paper
were recorded.

Figure 3. Screening process for the review.
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4. Results and Discussion

Following data extraction, we assembled the classification accuracy results from the
papers and identified different signal sources. We found a total of 18 signal sources
generated from different parts of the human body. Applying different machine learning
methods, the studies attempted to identify or monitor human emotions. Among all papers,
only one [64] used fully synthesized data, where no participants were involved. Due to
many experiments involving multiple sensors, the number of signal sources and sensors
is greater than the number of experiments. In total, 112 signals were studied across
different physical and physiological sources, namely Brain, Lung, Skin, Heart, Muscle,
Imaging, Speech, Tactile, etc. (Details will be found in Supplementary Material). The
choice of the classifier plays a key role in accurately classifying emotions. Therefore, in
various experiments, we have come across multiple supervised, unsupervised, and hybrid
classifiers.

To allow for accurate comparisons, papers are split into two main categories of emotion:
discrete and valence-arousal. However, even among discrete emotions studies, there are
intensity experiments, e.g., anger intensity [65] and stress level [66]. This adds another
dimension to an emotion classification task. Since this is not the same kind of classification
as mapping out a user state to the six basic emotions, and all results in a shared category
should be comparable to each other, this kind of experiment is categorized as “other”.
Gesture recognition tasks that are not validated to emotions are also in the other category.
The distribution of emotion classification type is illustrated in Figure 4.

Figure 4. Used emotional model for recognition tasks.

The focus of our study was detecting emotion correctly for better mental health
monitoring. Amongst the 80 papers, 70 papers provided single or a range of accuracy
percentages as an evaluation matrix. The remaining eight studies used different eval-
uation metrics for their experiments and, therefore, are excluded from Figures 5 and 6.
Carmona et al. [64] calculated their results in terms of sensitivity and specificity, whereas
Yu et al. [65] used RMSE to evaluate the accuracy of predicted ratings. Spaulding et al. [67]
measured their performance in terms of area under curve where the result varied from 55%
to 62%. The experiments performed by Wei et al. [68] and Mencattini et al. [69] were evalu-
ated in terms of the correlation coefficient. On the other hand, Bhatia et al. [45] evaluated
their performance on the basis of mean average precision, whereas Hassani et al. [70] and
Yun et al. [71] utilized predictive and statistical data analysis rather than classification. Few
studies did not include any evaluation matrix at all, as their aims were beyond classification
tasks. Al-Qaderi et al. 2018 [72] proposed a perceptual framework for emotion recognition.
Miguel et al. 2019 [73] showed that socio-emotional brain areas do not react to effective
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touch in infants. These provide conclusions to their research questions but do not yield a
percentage accuracy figure.

Although discrete emotion classification experiments take up 54% of the total, it is
nearly matched by experiments mapping emotions to the valence-arousal plane (30%). The
remaining 16% are emotion models that do not fit any of these emotion-label categories.
Most experiments classified emotions using discrete labels, such as happy, neutral, sad, or
the continuous valence-arousal plane. How studies classified emotions using the plane
varied; however, some split the V-A plane into quadrants to create four emotion labels
(Figure 2). Meanwhile, some others measured distance along the valence and arousal
axes. To visualize the findings of our survey, we created two separate scatter plots for the
discrete (Figure 5) and valence-arousal (Figure 6) categories. Highest accuracies for the
discrete and the V-A categories are shown in Tables 1 and 2. The graphs were plotted based
on the data we assembled from our study across the 80 papers. Four papers ([50,74–76])
did not provide a separate accuracy for valence and arousal. Instead, they provided an
overall accuracy for their whole experiment. The neural network-based methodologies
were commonly plotted under the label NN. Similarly, the Bayes variants were commonly
denoted as Bayesian and tree-based methods were placed under DT. Hybrid methodologies
or the combination of different methods are commonly denoted as fusion.

Figure 5. Scatter plot for the discrete emotional category.

Table 1. Summary of the included papers in the discrete emotional category.

Authors Participant No. Source Dataset Methods Highest
Accuracy

Latif et al. [77] 1 Skin ST SVM 63.5

Fan et al. [78] 16 Brain EEG KNN 86

Khezri et al. [79] 25 Fusion EEG, EMG SVM 82.7

Tivatansakul et al. [80] 8 Heart ECG KNN 95.25

Boccanfuso et al. [81] 10 Skin ST, EDA SVM 77.5

Ruiz-Garcia et al. [82] 188 Imaging RGB NN 96.93

Mehmood et al. [74] 21 Brain EEG DT 76.6

Mohammadpour et al. [83] 32 Brain EEG NN 59.19

Lowe et al. [84] 64 Tactile Tactile SVM 22.3

Noor et al. [85] 44 Fusion SA, RGB KNN 96.67
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Table 1. Cont.

Authors Participant No. Source Dataset Methods Highest
Accuracy

Ruiz-Garcia et al. [86] 70 Imaging RGB Fusion 96.26

Wei et al. [87] 30 Fusion EEG, ECG, Resp.,
EDA SVM 84.60

Wei et al. [88] 27 Fusion EEG, ECG, Resp.,
EDA SVM 84.62

Goulart et al. [89] 28 Imaging RGB, ST LDA 85.75

Gu et al. [90] 14 Fusion Motion, RGB,
Radio KNN 84.8

Huang et al. [91] 487 Speech SA Fusion 94.50

Ilyas et al. [92] 221 Imaging RGB Fusion 91

Lopez-Rincon et al. [93] 1192 Imaging RGB NN 44.9

Ma et al. [94] 52 Fusion SA, RGB NN 86.89

Mithbavkar et al. [95] 1 Muscle EMG NN 99.69

Rahim et al. [96] 40 Fusion ECG, GSR NN 93

Taran et al. [97] 20 Brain EEG SVM 93.13

Balan et al. [98] 8 Fusion EEG, HR, EDA KNN 99.5

Chen et al. [99] 4 Speech SA DT 87.85

Ding et al. [100] 4 Imaging 3D KNN 92.8

Melinte et al. [101] 24,336 Imaging RGB NN 90.14

Shu et al. [102] 25 Heart HR DT 84

Uddin et al. [103] 339 Speech SA NN 93

Yang et al. [104] 3 Imaging RGB NN 99.9

Zvarevashe et al. [105] 28 Speech SA DT 99.55

Ahmed et al. [43] 30 Imaging RGB LDA 94.67

Kumar et al. [106] 94 Imaging RGB NN 91.02

Hsu et al. [107] 32 Fusion GSR, SA, ECG KNN 86

D’Onofrio et al. [108] 27 Imaging RGB DT 99

Modi et al. [109] Sim. Imaging RGB NN 82.5

Chang et al. [110] Sim. Brain EEG LDA 99.44

Mittal et al. [111] 10 Fusion RGB, SA NN 89

Tuncer et al. [112] Sim. Brain EEG SVM 99.82

Nimmagadda et al. [113] Sim. Imaging RGB NN 80.6

Zhao et al. [114] 12 Imaging RGB FGSM 93.31

Ilyas et al. [115] 10 Speech SA NN 91.32

Martínez-Tejada et al. [116] 40 Fusion EEG NN 89

Filippini et al. [117] 24 Imaging RGB NN 91

Hefter et al. [118] 70,000 Imaging RGB NN 93

Shan et al. [119] 84 Lungs KINECT SVM 99.67

Gümüslü et al. [120] 15 Fusion EEG, BVP, ST, SC Fusion 94.58

Mocanu et al. [121] 24 Speech SA NN 83.95
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In Figure 5, the accuracies of the methods are plotted against the source of the signals.
Different colors denote the methodologies used in the experiments. If any of the experi-
ments were conducted under different experimental settings, the best results from all of
those settings were considered. Further, if any of the experiments used multiple sources al-
together, they were considered a fusion source. The highest level of accuracy was achieved
from imaging signals. Amongst the 27 imaging signals, 25 of the signal studies resulted
in above 80% accuracy. While two of the imaging signals showed poor accuracies (44.90%
and 46.70%), the rest of the imaging signals showed accuracies ranging from 80.33% to
99.90%. Therefore, facial imaging can potentially be the most prevalent signal for emotion
recognition. The brain, heart, and skin signal sources provided good accuracies of above
60–70%. Another signal of interest is speech audio, for which classification accuracies
varied a lot, from 55% to 99.55%. However, with an accuracy of up to 90% in some cases,
speech is definitely a signal worth considering for mental health robots. On the other hand,
the tactile signal did not perform well at all. With an accuracy of 22.30%, tactile signals were
the worst performer among the discrete signals. A similar thing can be noticed in Figure 6
as well—tactile signals had very low accuracies. Accuracies procured from the eye signals
were unsatisfactory as well (52.70% and 59.60%). However, the lung signals and the muscle
signals are particularly worth mentioning in this regard as they had a few data points, and
it would not be constructive to reach any conclusion based on the average performances. It
is worthwhile to mention that most of the fused source signals had accuracies over 80%
and more than 90% in some cases. Therefore, another interesting approach to emotion
recognition can be fusing signals from different sources

In Figure 6, the accuracies of valence are plotted against the accuracies of arousal.
Different colors, shapes, and sizes represent different methodologies, sources, and the
number of participants, respectively. For accuracies provided in a range, the maximum
value was used in both figures. The only well-performing signal is the brain signals. None
of the other signals provided a good accuracy value. If we consider the 10 best accuracies,
8 of them were from brain signals. The brain signals, including other associated signals,
might be useful for diagnosing and maintaining other brain disorders, for example multiple
sclerosis [122,123] and autism spectrum disorder [124].

Figure 6. Scatter plot for the Valence-Arousal emotional category.
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Table 2. Summary of the included papers in the valence-arousal emotional category.

Authors Parcitipant No. Source Datasets Methods Accuracy
Valence

Accuracy
Arousal

Altun et al. [125] 32 Tactile Tactile DT 56 48

Mohammadi et al. [126] 32 Brain EEG KNN 86.75 84.05

Wiem et al. [127] 24 Fusion ECG, RV SVM 69.47 69.47

Wiem et al. [128] 25 Fusion ECG, RV SVM 68.75 68.50

Wiem et al. [129] 24 Fusion ECG, RV SVM 56.83 54.73

Yonezawa et al. [130] 18 Tactile Tactile Fuzzy 69.1 63.1

Alazrai et al. [131] 32 Brain EEG SVM 88.9 89.8

Bazgir et al. [132] 32 Brain EEG SVM 91.1 91.3

Henia et al. [133] 27 Fusion ECG, GSR, ST, RV SVM 57.44 59.57

Marinoiu et al. [134] 7 Imaging RGB, 3D NN 36.2 37.8

henia et al. [135] 24 Fusion ECG, EDA, ST, Resp. SVM 59.57 60.41

Salama et al. [136] 32 Imaging RGB NN 87.44 88.49

Pandey et al. [137] 32 Imaging RGB NN 63.5 61.25

Su et al. [138] 12 Fusion EEG, RGB Fusion 72.8 77.2

Ullah et al. [139] 32 Brain EEG DT 77.4 70.1

Yin et al. [140] 457 Skin EDA NN 73.43 73.65

Algarni et al. [141] 94 Imaging RGB NN 99.4 96.88

Panahi et al. [142] 58 Heart ECG SVM 78.32 76.83

Kumar et al. [106] 94 Imaging RGB NN 83.79 83.79

Martínez-Tejada et al. [116] 40 Brain EEG SVM 59 68

For Figures 5 and 6, neural network-based methods outperformed the other methods.
K-Nearest Neighbours and Support Vector Machine also performed well in both emotional
categories. However, Decision Tree-based methods slightly outperformed KNN and SVM
in the discrete emotional category. The highest accuracy was scored by the neural network-
based methods, but the most common method found in our studies, with 30% of the total,
is SVM. There could be two reasons for the comparatively lower number of papers using
NN. First, training NNs or any deep networks require a large number of data. This is hard
to come by with physiological signals. Even the largest sample size in all of the papers was
457 for an EDA-based experiment. However, image sets can have potentially thousands of
faces, and this does not count video datasets. Another reason for fewer experiments with
neural network-based methods could be computational effort, as SVM is a faster process
than neural network methods [143].

It is also noticeable that the accuracy of imaging (RGB sensors) appears much higher
than other sensors, representing 40% of the papers with the highest accuracies. However,
while facial expression accuracy is very high compared to other physiological categories,
there is a key difference in emotional validation. At face value, the facial expression is a
sort of derived signal where people can counterfeit their smile. Unless we can differentiate
between fake and genuine facial expressions, the emotional expressions we get from
patients might not always represent their true mental state. However, one could argue that
if robots were used in a person’s home environment, where they were more likely to be
relaxed, they would most likely capture the genuine emotions of the person. Furthermore,
there is evidence that facial muscles activate differently depending on whether the person
is genuine or acting a smile [144]. However, since none of the papers investigated the
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difference between genuine or acted smiles, it remains to be seen how useful standalone
imaging (RGB cameras) can be for mental health monitoring.

However, even though emotion recognition using imaging sources scored well, there
is much debate on the link between facial recognition and true emotion [145], and for our
purpose of mental health monitoring, it is vital that we determine the patients’ mental
health accurately. Moreover, high computational power is required for deep NN methods
to analyse imaging data. Thus it is unclear whether imaging is the most suited sensor
for mental health monitoring. In addition, brain signal sources (EEG and ECG), are too
invasive and non-consumer friendly to be used in this space [146,147]. However, EDA-
based skin signals also performed well. Out of the 80 papers, 17 used skin signals in
emotion recognition, and only two used standalone EDA [81,140], while the rest of the
studies used a fusion of sensors. Notably, the three EDA emotion recognition experiments
that used CNN achieved accuracies ranging from 68.5% to 95%, averaging 79%. It is likely
that CNN is a good strategy for the classification of skin data, but incorporating skin-
signals in robots remain challenging. The future direction of the study would investigate
the feasibility and possibility of skin-based sensors to incorporate physiological signals
in robots. Another signal source of interest, at 7.1% of the total, is speech audio. Audio
recordings of people talking are used to classify their emotions, which can be easily applied
in robots, but its classification accuracy varies a lot through speech audio. With an accuracy
of over 90% in some cases [103,105], speech audio is definitely a signal worth considering
for mental health robots.

We conducted an extensive survey and found some promising results. However, there
are still a few limitations on which we can work in the future. The main limitation of the
current study is the lack of common ground for comparison. Each experiment or study
is different from another in terms of sources, ML models, and sometimes even in their
evaluation metrics. Therefore, our study could not directly compare different models and
sources; rather we set up a priority list of sources and ML models to work for robotic
emotion monitoring. Moreover, most of the neural network-based methods outperformed
other traditional ML methods. However, it was also noticed that, in a lot of cases, the
experiments suffered from a lack of data. As per our survey, NN-based LSTM was the
highest-performing method for valence-arousal data. However, only a few experiments
used NN. Therefore, we still need to explore the applicability of NN models in emotion
recognition. Another limitation would be that, even though facial imaging data had the
highest level of accuracy among other data sources, most of the works did not consider
fake expressions. Humans are capable of faking an expression, which may alter the results.
Further, humans are capable of having more than one feeling in a moment, which was not
considered in any of the experiments. Therefore, fake emotions and multiple emotions also
need to be considered for future experiments in this field.

5. Summary

Our survey assessed 80 latest articles on robotic emotion recognition of two emotional
categories—discrete and valence-arousal and discussed the applicability of different sources
and ML models in robots. For both categories, our survey found neural network-based
methods, especially CNN, performed the best. To be specific, for the discrete category,
the highest accuracy of 99.90% was achieved by CNN. Another neural network-based
method, LSTM, was the best performer, with accuracies of 99.40% and 96.88% for valence
and arousal, respectively. The majority of the experiments that used neural networks had
accuracies above 80%. Besides neural network models, SVM can be an alternative model,
as this model has been widely used by numerous researchers, with ease of implementation
and accuracies of 80% to 99.82%. From the signal sources, Imaging signals were the most
proficient and widely used source. Within the VA category, the top eight best-performing
models used brain signals as signal sources, showing the great potential of brain signals
for this recognition. Despite this, imaging and brain signals also perform well for VA and
discrete categories. Among the signal sources, tactile signals performed worst in both
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categories, which gives an indication of the cautious usage of tactile signals for human
emotion recognition. It is also noticeable that fusion signals performed comparatively
better than individual signals. In terms of applicability, brain signals need sophisticated
acquisition devices and data processing procedures, while imaging signals can be readily
used in ML models. Therefore, to apply within humanized robots for emotion monitoring,
we believe imaging sources could be the first choice. Therefore, ML methods, neural
networks and SVM, and signal sources of facial imaging should be most promising for
further research on emotion monitoring, with some focus on using fusion signals to make
the model more robust.

6. Conclusions

We surveyed different ML models and signal sources for emotion monitoring, con-
sidering the accessibility, accuracy, and applicability in robots and found imaging can be
the most convenient and accurate signal source to consider. Besides imaging, brain and
skin signals performed well but were not convenient to implement in robots. However,
speech audio has potential applicability in robots, but its varied accuracies raise questions
about its application in mental health monitoring. Our survey also showed neural network-
based methods, especially CNN, outperformed other machine learning methods. When we
compared different emotion categories, we did not find significant differences among the
sources and ML models, indicating the potential of using similar sources and models for
both discrete and valence-arousal categories. Our study also found fusion signal sources
perform better than signal sources. We recommend taking advantage of NN-based models
to analyze fusion sources, especially imaging data, as a first choice to solve any tasks
related to emotion monitoring. The future direction of our research includes developing
a sustainable neural network-based robotic model for monitoring human mental health.
Even though we have found that even standalone imaging signals are a convenient way
for robotic emotion recognition, using the combination of brain, skin signals, and speech
audios can help us attain a very high emotion recognition accuracy, well above standalone
CNN-classified data. By conversing with the robot occasionally, the robot would get even
more insight into the person’s well-being. Thus, this research can help pave the way
towards improved social robotics and robot-assisted mental health solutions.
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