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Abstract: High-resistance faults in direct current (DC) microgrids are small and thus difficult to
detect. Such faults may be “invisible” in that grid operation continues for a considerable time, which
damages the grid. It is essential to detect and remove high-resistance faults; we present a detection
method herein. First, the transient DC current during the fault is subjected to hierarchical wavelet
decomposition to identify high-resistance faults accurately and sensitively; the wavelet coefficients
are detected using the singular value decomposition (SVD) method. The SVD valve can denoise
the dc microgrid fault current, which eliminates the influence of converter switching frequency
and background noise effectively. Power system computer-aided design (PSCAD)/electromagnetic
transients including direct current (EMTDC)-based simulations showed that our method successfully
identified high-resistance faults.

Keywords: DC microgrid; high-resistance fault; orthogonal wavelet transformation; Cassie model;
PSCAD/EMTDC

1. Introduction

Direct current (DC) microgrids exhibit many advantages compared to AC (alternating
current) grids; the voltage is lower, less electric power is lost, supply reliability is high,
and distributed generation is simple. It is more suitable to choose DC microgrids for
interconnecting renewable resources.

However, DC microgrids have some challenges attached to them, such as that of the
fault protection. The DC current increases rapidly after a fault, which is challenging for
existing protective systems that fail to locate and isolate faults. DC microgrids contain
a variety of electronic devices generally concentrated within small areas, such as ships,
islands, grasslands, and data centers; the environmental conditions in these areas may be
challenging [1,2].

Therefore, DC microgrid cable faults occur frequently because of insulation degrada-
tion and breakdown. Line insulator damage, overheating of energy storage elements, loose
joints, aging wires, and environmental stress can cause two types of faults: pole-to-pole
faults (short circuits) and pole-to-ground faults [3].

The impedance caused by pole-to-pole faults is small because the conductors are
directly connected at the fault point. In contrast, pole-to-ground faults often show high
resistance (HR) because the conductor connects with the ground via the insulation [4].
During such faults, converter operation may continue, triggering a fault cascade involving
cables or converters. Therefore, whenever an HR fault (HRF) occurs, an operator must
be informed and then act [5,6]. After a metal or small-resistance fault, the fault current
increases quickly to a prominent peak that is easy to detect; the fault can then be rapidly
removed. However, after an HRF, the electrical parameters do not obviously change,
making it difficult to detect the fault [7–9].

Due to the small damping of the DC microgrid line, the fault may spread and affect
adjacent circuits, such as photovoltaic modules, energy storage systems, lines, control
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systems, etc., which will be damaged; this results in the fault operation of the DC microgrid,
which will pose a serious threat to personal safety and equipment safety and may even
cause accidents such as fires [10,11]. Therefore, accurate detection and effective treatment
of high resistance faults are important conditions to ensure the safe and stable operation of
DC microgrids [12].

Existing HRF detection methods [13] use mathematical morphology (MM; two ele-
mentary transformations) to detect faults in low-voltage DC (LVDC) distribution systems.
However, arc faults are not well-detected. An in-depth analysis [14] yielded the optimal
parameters for the detection of serious arc faults. The energies with and without arc faults
were compared to determine the effects of combinations of three parameters on arc fault
detection. However, this is not practical in the field. A transient algorithm [15] has been
used for HRF detection; a discrete wavelet transform is employed to monitor the high- and
low-frequency voltage components at several points. The utility of the method was verified
by simulation. However, it cannot be applied to a DC grid.

An impedance measurement algorithm for equivalent load detection in DC microgrids
has been developed [16]: the power converter injects small signal oscillations into the
DC bus throughout the duty cycle and an LIA (lock in amplifier) isolates the oscillations
and measures the equivalent incremental impedances. However, dedicated hardware
is required and it is difficult to distinguish overloads from faults. HRF can be detected
using a data-mining decision tree [17] and implemented in a distribution network. But the
interference problem of communication needs to be considered. A protection method based
on the time and polarity of initial current traveling waves is proposed for transmission lines
in [18]. However, the calculation process is complicated and requires a high communication
speed. The proposed algorithm calculates the fault distance based on the characteristics of
the voltage resonance in [19]. It presents an intelligent scheme for high impedance fault
detection using mathematical morphology and decision tree in [20]. However, the methods
of [19,20] are computationally complex and their reliability remains to be verified. There are
also arc characteristic identification method [21], circuit analysis method [22,23], artificial
intelligence method [24], etc.

In summary, HRFs are difficult to detect and may cause serious harm; few practical
detection methods are available. In this paper, a fault detection method by combining
singular value decomposition (SVD) with orthogonal wavelet fusion in the time–frequency
domain was proposed and used to analyze the characteristics of HRFs in a DC microgrid.
This paper presents the detection method, evaluates its utility, and provides our conclusions.

The main innovations of this paper are as follows:

(1) This paper establishes a DC arc simulation model for high resistance faults in
DC microgrids.

(2) A detection method decomposes high frequency waveforms using orthogonal wavelets.
The fault characteristics of the fault time domain are analyzed.

(3) The amplitude of the wavelet coefficients is detected using the SVD. The Hankel-SVD
can eliminate the specified switching frequency and the background noise, it can
avoid the influence of the inverter noise and other electrical noise on the extraction of
HRF characteristics.

The rest of this paper is organized as follows: the second part is the HRF modeling of
the DC microgrid; the third part analyzes high resistance fault characteristics; the fourth
part is the HRF detection; the fifth part is the experimental verification; and the sixth part is
the conclusion.

2. HRF Modeling of DC Microgrid

DC microgrid HRFs are usually arc high resistance faults. DC arcs can be series or
parallel arcs, the latter of which develop when the two potentials change after damage to
the insulation. The arc resistance grounding is parallel and is affected by the arc voltage,
arc current, discharge gap, and arc length, among other factors. The main arc models are
the Cassie and Mayr models; the latter simulates arc ignition and extinguishment. The
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Cassie model can handle the continuous arc burning of a DC. Arc resistance is affected by
the energy relationship between the arc voltage and arc current.

In Equation (1), Q(MW·S = MJ) is the energy stored in the arc, P(MW) is the dissipa-
tion power, and u(kV) and i(kA) are the arc voltage and current, respectively. Equation (1)
shows that arc energy is gradually dissipated during combustion.

dQ
dt

= u·i− P (1)

Equation (1) can be transformed to quantify the relationship between the rate of change
of arc unit conductivity g and that of arc power:

dQ
dg
·dg

dt
=

1
P−1 (

g·u2

P
− 1) (2)

1
g
·dg

dt
=

1

g·P−1·(dQ
dg )

(
g·u2

P
− 1) (3)

Let τ = g·P−1·dQ
dg ; Equation (3) can now be simplified to yield Equation (4):

d ln g
dt

=
1
τ
(

g·u2

P
− 1) (4)

Let E be the arc voltage gradient, P0 the power emitted by the arc per unit volume,
and σ the arc conductivity. These parameters are related Equation (5):

E2 =
P0

σ
(5)

Substituting Equation (5) into Equation (4) yields Equation (6):

d ln g
dt

=
1
τc
(

u2

E2 − 1) (6)

where τc is the time constant of the Cassie model. Equation (7) shows the Cassie model
arc resistance:

Rarc = e
1
τc

∫
(1− u2

E2 )dt (7)

During an HRF, an arc occurs after the breakdown of the air gap between the line
and ground; the arc resistance is in series with that of the ground. In the Cassie model,
arc combustion stabilizes when the voltage between the arc and ground reaches a certain
value. As the arc and grounding point resistance are connected in series, the grounding
medium consumes some energy, rendering the arc current small and thus increasing the
overall arc resistance.

3. Analysis of High Resistance Fault

The voltage source converter is an important component of a DC microgrid. If a DC
line fault occurs, it is propagated through the capacitor discharge, diode free conduction
and power grid side-feed flow stages. Most HRFs are single-pole grounding faults; thus,
one should focus on these faults. A schematic of the capacitor discharge stage is shown in
Figure 1.
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Figure 1. Schematic diagram of the capacitor discharge stage during high resistance fault. (a) capacitor
discharge stage circuit; (b) equivalent diagram.

As in the capacitor discharge phase, capacitor C discharges after a fault occurs; the
initial voltage Vp is equal to the normal line-end voltage; Ic is the capacitor discharge
current; R and L are the equivalent resistance and line equivalent inductance from the
capacitor to the fault point, respectively; Rf is the fault resistance; and If is the current
flow. The fault resistance current at this stage is the capacitive discharge current. The
time-domain expression of the discharge current is given by:

i(t) =
Vc(0)

L(s2 − s1)
[e−s1t − e−s2t] +

iL(0)
s2 − s1

[−s1e−s1t + s2e−s2t] (8)

s1, s2 is given by:

s1,2 = −α±
√

α2 −ω2
0 (9)

The damping coefficient α and resonance frequency ω0 are given by Equations (10)
and (11), respectively:

α =
R + Rf

2L
(10)

ω0 =
1√
LC

(11)

Substituting arc resistance into the Equation (10), yields Equation (12):

α =
R + e

1
τc

∫
(1− uF

2

E2 )dt

2L
(12)

After HRFs, the fault response curves are overdamped, the transient response times
are short, and the peak responses are small, unlike after metallic and low-resistance faults.
During the grid-side current-feeding stage, the AC side transmits current via the voltage
source converter bridge arm to the DC fault; the equivalent circuit is shown in Figure 2.
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If an HRF persists, the converter will lock up, then becoming equivalent to an uncon-
trolled rectifier bridge. The current at the fault point is the sum of the diode bridge arm
currents, which can be written as:

iVSC = iD1 + iD2 + iD3 = iga + igb + igc (13)

where iga, igb, and igc are the three-phase currents of AC, respectively, i.e., the current
passing through the diode bridge arm when a positive value is selected. Taking phase A as
an example, Equations (14)–(17) are applied:

iga = Ig sin(ωst + α− ϕ) + Igne
−t
τ (14)

ϕ = arctan
[

ωs(Lac + L)
R + Rf

]
(15)

τ =
Lac + L
R + Rf

(16)

Ign =
[

Ig|0| sin(α− ϕ0)− Ig sin(α− ϕ)
]

(17)

where Ig|0| is the amplitude of the initial grid current; ϕ0 is the impedance angle; Lac is
the AC-side inductance; α is the AC phase angle; and Ig is the amplitude of the periodic
component of the short-circuit current. After an HRF, the zero-mode current is extracted,
and the transient zero mode current is calculated as follows:

i0 =

√
2

2
(i1p + i1n) (18)

The frequency domain component of the current in the Cassie DC arc model decreases
with increasing frequency. After the arc current is superimposed, the amplitude of the
corresponding frequency band changes. Thus, phase decomposition of the low frequency
band reveals the amplitude change, allowing arc resistance fault detection with a low
arc current.

4. HRF Detection

Based on the above, time–frequency domain detection method was used to extract
the characteristics of arc HRFs. Orthogonal wavelet transformation and singular value
decomposition (SVD) extract information in the time and frequency domains, respectively.
After orthogonal wavelet transformation, the original signal is decomposed into various
components at different scales when h is a wavelet-based low-pass filter, g is a wavelet
based high-pass filter, aj(n) is the low-frequency part of the signal, and dj(n) is the high-
frequency part of the signal. As the decomposition time increases, aj(n) and dj(n) are given
by Equations (19) and (20), respectively:

aj+1(n) = ∑
k

h(k− 2n)aj(k) (19)

dj+1(n) = ∑
k

g(k− 2n)aj(k) (20)

where k is the length of the filter, n is the length of the signal, and j is the number of
decompositions. The upper-stage signal is successively processed by the low- and high-
pass filters, yielding the lower stage low- and high-frequency signals. The decomposition
is shown in Figure 3.
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After wavelet transformation, SVD is used to distinguish signals of different frequency
bands; this can be applied to decompose non-square matrices, and it is assumed that
matrix A is an m*n-order matrix. There then exists an m*n-order orthogonal matrix U and
m*n-order orthogonal matrix V, so that Equation (21) holds:

A = UDVT (21)

where D is an m × n-order diagonal matrix and D = (diag(σ1, σ2, . . . , σq), O). The diagonal
element σ1, σ2, . . . , σq is the singular value of matrix A. Common forms of matrix A include
the Toeplitz, cycle, and Hankel matrices; the latter was used. During SVD, the phase of
the decomposed semaphore in the original signal remains unchanged; in other words,
the decomposition simply subtracts the decomposed signal from the original signal. The
Hankel matrix of the original signal y(n) is given by Equation (22):

A =


y(1) y(2) · · · y(n)
y(2) y(3) · · · y(n + 1)

...
...

...
...

y(m) y(m + 1) · · · y(N)

 (22)

where u1, u2, . . . , uq are the elements in matrix u of order m*1, and v1, v2, . . . , vq are the
elements in matrix v of order n*1. Orthogonal wavelet transformation is combined with
SVD for time-frequency domain decomposition. First, the current signal (collected on the
line) is decomposed at various scales to obtain coefficients that are used to construct a
Hankel matrix; SVD then yields singular value spectra at different wavelet decomposition
scales. Among the frequency domain ranges represented by each scale after wavelet
decomposition, aj[n] decomposed to layer j is the lowest-frequency region.

If the DC arc current is small, most current energy is of low frequency. After an HRF
fault, an obvious gain change will be seen at low frequency. The amplitude of random line
noise is usually small and can thus be ignored. The arc frequency band is predominantly
low-frequency, and the line high-frequency components do not interact.

Then sum the singular value amplitudes of all points of the low-frequency singular
value sequence of the jth layer decomposed by the wavelet; thus, sum the singular value of
the aj[n] layer of the fault line and singular value sequence of the aj[n] layer of the non-fault
line at least k times. The fault detection criterion is represented by Equation (23):

aj_fault

[
q

∑
i=1

σi

]
> aj_Non fault

[
q

∑
i=1

σi

]
(23)

A flow chart of the time-frequency domain detection method is shown in Figure 4.
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5. Experimental Verification

The simulation model of the DC microgrid built using PSCAD/EMTDC is shown in
Figure 5. At the sending ends, the transmission terminal is in constant power (PQ) control
mode and the receiving terminal is in constant DC voltage (Udc) control mode. The DC
microgrid voltage is 1.2 kV and the transmission power is 0.5 MW [25,26].
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mode and the receiving terminal is in constant DC voltage ( dcU ) control mode. The DC 
microgrid voltage is 1.2 kV and the transmission power is 0.5 MW [25,26]. 
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Figure 5. A two-port DC microgrid. Figure 5. A two-port DC microgrid.

The parameters and cable lengths of each element are shown in Table 1. A DC cable
and bipolar connections were used.

Table 1. DC microgrid model parameters.

Parameter Value

DC line voltage 1.25 kV
Cable resistance 0.02 ohm/km

Cable inductance 7.68 × 10−6 H/km

The DC arc current is nonlinear; changes in amplitude are not obvious at HRF. The
amplitude frequency variations of various arc currents are shown in Figure 6. As the
arc current increases, so too does the high-frequency component; the current amplitude
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decreases when the frequency increases. The frequency-domain characteristics of arc
current were directly related to the amplitude. When the amplitude is low, the frequency
fluctuates. Therefore, the Cassie model can represent a DC arc under a low arc current.
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Figure 6. The DC arc current spectrum.

The arc resistance current depends on the arc voltage. During simulation, the arc
current was affected mainly by the grounding point in series with the arc resistance. The
fault time was 3 s, the arc resistance ground connection was 100 ohm, the fault distance
was 1 km, and the interaction voltages were 160 and 200 V. The amplitude and frequency
characteristics of the normal and line currents grounded by the arc resistance are shown in
Figure 7.
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Figure 7. Amplitude frequencies of the normal and arc-resistance grounding fault currents: (a) Nor-
mal current amplitudes and frequency characteristics; (b) amplitude frequency characteristics when
the inter-arc voltage was 160 V and the grounding resistance was 100 ohm; (c) amplitude frequency
characteristics when the inter-arc voltage was 200 V and the grounding resistance 100 ohm.

Comparison of Figure 8a,b shows that, after grounding, the frequency amplitudes at
lower layer increased, as did the arc voltages. The amplitudes of the line current changes
were in line with this analysis. Time-based frequency-domain analyses are commonly
used to explore arc resistance grounding, with wavelet decomposition then applied to
extract the characteristics thereof. Analysis of the detail wavelet coefficients is preferred
via decomposition to five layers, of which d5 is the special frequency layer (in which arc
current amplitudes typically increase). This layer yields valuable information about arc
frequency decomposition. The decomposed fault current is shown in Figure 8.
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Wavelet decomposition does not directly yield frequency data. Thus, after collecting
the decomposition data of all components of the frequency domain, The Hankel matrix was
constructed and subjected to SVD, which yielded normal and arc currents with 30 single
values (Figure 9).
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Figure 9. SVD of the (a) arc and (b) normal currents.

The singular value arrangement was guided mainly by the wavelet decomposition
scale scores, using a5 as the feature contrast sequence. The effect of the arc current was
then apparent; the top 10 a5 singular points on the fault current SVD decomposition graph
exhibited obvious amplitude changes, reflecting the amplitude of the DC low-frequency
band and low arc current amplitude. Figure 10 shows the result of fault signal after
denoising the specified converter switching frequency and the background noise.

Table 2 shows the time-domain data for different fault situations. The detection thresh-
old was selected based on the normal current value, i.e., 27. The test results exceeded this
threshold; thus, our time-domain detection method effectively detects arc resistance faults.
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Table 2. Results of our time-domain detection method obtained under different fault conditions.

Fault Distance Resistance: 100 ohm
Arc Voltage: 200 V

Resistance: 100 ohm
Arc Voltage: 250 V

Resistance: 300 ohm
Arc Voltage: 200 V

1 km 277.5936 277.3821 275.9747
3 km 277.9686 278.8989 277.1487
5 km 276.1013 275.4974 275.1601
7 km 276.1919 276.6416 275.4519

In order to verify the ability of the time–frequency detection method to detect arc
resistance, its reliability is tested by setting the fault resistance, fault distance, and inter
arc voltage with different resistance values. The average value and standard deviation of
singular value under different fault conditions are shown in Tables 3 and 4.

Table 3. Mean value of low frequency singular value under different fault conditions.

Fault Distance Resistance: 100 ohm
Arc Voltage: 200 V

Resistance: 100 ohm
Arc Voltage: 250 V

Resistance: 300 ohm
Arc Voltage: 200 V

1 km 0.0427 0.044 0.0422
3 km 0.0427 0.0446 0.0432
5 km 0.046 0.0427 0.0417
7 km 0.0427 0.0416 0.0428

Table 4. Standard deviation of singular value in low frequency layer under different fault conditions.

Fault Distance Resistance: 100 ohm
Arc Voltage: 200 V

Resistance: 100 ohm
Arc Voltage: 250 V

Resistance: 300 ohm
Arc Voltage: 200 V

1 km 0.0483 0.0494 0.0477
3 km 0.0411 0.0446 0.0474
5 km 0.0501 0.0477 0.0480
7 km 0.0423 0.0472 0.0443

To verify the ability of time-frequency detection method. We compared the wavelet
method with other methods such as the S-transform-based method, the Short Time Fourier
transform-based method, and the Wigner–Ville distribution-based method. As shown in the
Figure 11, the proposed wavelet-based method can better extract the fault characteristics.
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Figure 11. Simulation results comparison: (a) Wavelet based method (b) S-transform based method 
(c) Short Time Fourier transform based method (d) Wigner-Ville distribution-based method. 

6. Conclusions 
In this paper, an HRF fault detection method for DC microgrids was proposed. This 

method uses wavelet decomposition to improve the speed and sensitivity of fault detec-
tion. The fault characteristics of HRF are weak. This method uses the singular value de-
composition to extract information in the time and frequency domains. The Hankel-SVD 
can eliminate the specified converter switching frequency and the background noise, and 
it can avoid the influence of the inverter noise and other electrical noise on the extraction 
of HRF characteristics. The DC microgrid and high-resistance arc fault models were cre-
ated using PSCAD/EMTDC, and the proposed detection method was verified by changing 
the high resistance fault occurrence position and the resistance value. The simulations 
showed that the proposed method can correctly judge the HRF fault information. 
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6. Conclusions

In this paper, an HRF fault detection method for DC microgrids was proposed. This
method uses wavelet decomposition to improve the speed and sensitivity of fault detection.
The fault characteristics of HRF are weak. This method uses the singular value decom-
position to extract information in the time and frequency domains. The Hankel-SVD can
eliminate the specified converter switching frequency and the background noise, and it can
avoid the influence of the inverter noise and other electrical noise on the extraction of HRF
characteristics. The DC microgrid and high-resistance arc fault models were created using
PSCAD/EMTDC, and the proposed detection method was verified by changing the high
resistance fault occurrence position and the resistance value. The simulations showed that
the proposed method can correctly judge the HRF fault information.
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