An Overview of the Historical Retrofitting Interventions on Churches in Central Italy
Abstract
:1. Introduction
2. Churches in Central Italy
2.1. Historical and Political Framework
2.2. Geometric and Stylistic Characteristics
2.2.1. Influence of the Mendicant Orders
2.2.2. Stylistic and Spatial Changes
2.3. Seismic History and Churches Post-Earthquake Reconstructions
3. The Main Interventions Observed in Central Italy
3.1. Wooden Elements
3.2. Metal Ties
3.2.1. Evolution of Materials and Geometry
3.2.2. Placement
3.3. Buttresses
3.4. Interventions on the Roof
4. Assessment of the Seismic Interventions
4.1. Central Italy Seismic Sequence
- -
- 1st shock—24 August 2016: epicenter in Amatrice, Mw = 6.0;
- -
- 2nd shock—26 October 2016: epicenter in Castelsantangelo sul Nera, Mw = 5.4
- -
- 3rd shock—26 October 2016: epicenter in Visso, Mw = 5.9
- -
- 4th shock—30 October 2016: epicenter in Norcia, Mw = 6.5
- -
- 5th shock on 18 January 2017: epicenter in Capitigliano, Mw = 5.5
4.2. Effective vs. Ineffective Interventions
4.3. Aftershock Damage Due to Lack of Prompt Intervention
4.4. Damage Due to Historical Stratifications
5. Conclusions
- The structural features of the surveyed churches, which soundly affected their seismic response, are often the result of past seismic events and subsequent post-earthquake reconstruction processes, whose knowledge is fundamental to provide reliable predictions of future damage scenarios;
- The seismic damage related to out-of-plane mechanisms was sufficiently reduced by the presence of transversal and longitudinal ties; conversely, churches with heavy RC roofs and ring beams, especially if placed on a poor-quality masonry, led to the worst seismic behavior, leading to 89% unusable churches in the area located at distance d < 25 km from the epicenter;
- Additions to the original plant represented a further source of vulnerability against horizontal actions;
- The lack of prompt temporary interventions after the first shock increased the proneness of the churches to undergo cumulative permanent damage during the aftershocks, which in some cases led to partial or complete failures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Limongelli, M.P.; Dolce, M.; Spina, D.; Guéguen, P.; Langlais, M.; Wolinieck, D.; Maufroy, E.; Karakostas, C.Z.; Lekidis, V.A.; Morfidis, K.; et al. S2HM in some European countries. In Seismic Structural Health Monitoring; Limongelli, M.P., Celeb, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 303–343. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Romão, X.; Lourenço, P.B.; Paupério, E.; Martins, N. Risk and Resilience in Practice: Cultural Heritage Buildings. Int. J. Archit. Herit. 2020, 15, 973–975. [Google Scholar] [CrossRef]
- Giordano, P.F.; Ubertini, F.; Cavalagli, N.; Kita, A.; Masciotta, M. Four years of Structural Health Monitoring of the San Pietro Bell Tower in Perugia, Italy: Two years before the earthquake versus two years after. Int. J. Mason. Res. Innov. 2020, 5, 445–467. [Google Scholar] [CrossRef]
- Anzani, A.; Cardani, G.; Condoleo, P.; Garavaglia, E.; Saisi, A.; Tedeschi, C.; Tiraboschi, C.; Valluzzi, M.R. Understanding of historical masonry for conservation approaches: The contribution of Prof. Luigia Binda to research advancement. Mater. Struct. Constr. 2018, 51, 140. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Lourenço, P.B. Seismic Analysis of Slender Monumental Structures: Current Strategies and Challenges. Appl. Sci. 2022, 12, 7340. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Roque, J.C.A.; Ramos, L.F.; Lourenço, P.B. A multidisciplinary approach to assess the health state of heritage structures: The case study of the Church of Monastery of Jerónimos in Lisbon. Constr. Build. Mater. 2016, 116, 169–187. [Google Scholar] [CrossRef] [Green Version]
- Brando, G.; Rapone, D.; Spacone, E.; O’Banion, M.S.; Olsen, M.; Barbosa, A.; Faggella, M.; Gigliotti, R.; Liberatore, D.; Russo, S.; et al. Damage Reconnaissance of Unreinforced Masonry Bearing Wall Buildings After the 2015 Gorkha, Nepal, Earthquake. Earthq. Spectra 2017, 33, 243–273. [Google Scholar] [CrossRef]
- Gaetani, A.; Monti, G.; Lourenço, P.B.; Marcari, G. Design and Analysis of Cross Vaults Along History Design and Analysis of Cross Vaults along History. Int. J. Arch. Herit. 2016, 10, 841–856. [Google Scholar] [CrossRef] [Green Version]
- Varagnoli, C. Materiali per un Atlante Della Costruzione Storica in Abruzzo; Dipartimento di Scienze, Storia dell’Architettura, Restauro e Rappresentazione: Pescara, Italy, 2000. [Google Scholar]
- Varagnoli, C. La Costruzione Tradizionale in Abruzzo: Fonti Materiali e Tecniche Costruttive Dalla Fine del Medioevo all’Ottocento; Gangemi: Rome, Italy, 2008. [Google Scholar]
- Verazzo, C. Le Tecniche Della Tradizione—Architettura e Città in Abruzzo Citeriore; Gangemi Editore: Rome, Italy, 2014. [Google Scholar]
- Como, F.; Iori, M.; Ottoni, I. Scientia Abscondita- Arte e Scienza del Costruire Nelle Architetture del Passato, 1st ed.; Marsilio: Venice, Italy, 2019; ISBN 978-88-297-0206-0. [Google Scholar]
- Papa, G.S.; Tateo, V.; Parisi, M.A.; Casolo, S. Seismic response of a masonry church in Central Italy: The role of interventions on the roof. Bull. Earthq. Eng. 2021, 19, 1151–1179. [Google Scholar] [CrossRef]
- Papa, G.S.; Silva, B. Assessment of post-earthquake damage: St. salvatore church in acquapagana, central Italy. Buildings 2018, 8, 45. [Google Scholar] [CrossRef]
- Gruppo Nazionale per la Difesa dai Terremoti; Doglioni, F.; Moretti, A.; Petrini, V. Le Chiese e il Terremoto—Dalla Vulnerabilità Constatata nel Terremoto del Friuli al Miglioramento Antisismico nel Restauro, verso una Politica di Prevenzione; Edizioni, L., Ed.; LINT: Trieste, Italy, 1994. [Google Scholar]
- Lagomarsino, S.; Podestà, S. Seismic vulnerability of ancient churches: I. Damage Assessment and Emergency Planning. Earthq. Spectra 2004, 20, 377–394. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Podestà, S. Seismic vulnerability of ancient churches: II. Damage Assessment and Emergency Planning. Earthq. Spectra 2004, 20, 395–412. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Podestà, S. Damage and vulnerability assessment of churches after the 2002 Molise, Italy, earthquake. Earthq. Spectra 2004, 20, 271–283. [Google Scholar] [CrossRef]
- Valente, M.; Barbieri, G.; Biolzi, L. Damage assessment of three medieval churches after the 2012 Emilia earthquake. Bull. Earthq. Eng. 2017, 15, 2939–2980. [Google Scholar] [CrossRef]
- Brandonisio, G.; Lucibello, G.; Mele, E.; de Luca, A. Damage and performance evaluation of masonry churches in the 2009 L’Aquila earthquake. Eng. Fail. Anal. 2013, 34, 693–714. [Google Scholar] [CrossRef]
- Criber, E.; Brando, G.; de Matteis, G. The effects of L’Aquila earthquake on the St. Gemma church in Goriano Sicoli: Part I—Damage survey and kinematic analysis. Bull. Earthq. Eng. 2015, 13, 3713–3732. [Google Scholar] [CrossRef]
- Brando, G.; Criber, E.; de Matteis, G. The effects of L’aquila earthquake on the St. Gemma church in Goriano Sicoli: Part II—Fem analysis. Bull. Earthq. Eng. 2015, 13, 3733–3748. [Google Scholar] [CrossRef]
- Tashkov, L.; Krstevska, L.; Naumovski, N.; de Matteis, G.; Brando, G. Ambient Vibration Tests on Three Religious Buildings in Goriano Sicoli Damaged during the 2009 L’Aquila Earthquake. In COST ACTION C26: Urban Habitat Constructions under Catastrophic Events—Proceedings of the Final Conference; CRC Press: Boca Raton, FL, USA, 2010; pp. 433–438. [Google Scholar]
- de Matteis, G.; Criber, E.; Brando, G. Damage Probability Matrices for Three-Nave Masonry Churches in Abruzzi after the 2009 LAquila Earthquake. Int. J. Archit. Herit. 2016, 10, 120–145. [Google Scholar] [CrossRef]
- Salzano, P.; Cescatti, E.; Casapulla, C.; Ceroni, F.; da Porto, F.; Prota, A. 2016–17 Central Italy: Macroscale assessment of masonry churches vulnerability. In Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering, Crete, Greece, 24–26 June 2019; pp. 1000–1013. [Google Scholar] [CrossRef] [Green Version]
- De Matteis, G.; Brando, G.; Corlito, V.; Criber, E.; Guadagnuolo, M. Seismic vulnerability assessment of churches at regional scale after the 2009 L’aquila earthquake. Int. J. Mason. Res. Innov. 2019, 4, 174–196. [Google Scholar] [CrossRef]
- De Matteis, G.; Zizi, M. Seismic damage prediction of masonry churches by a PGA-based approach. Int. J. Archit. Herit. 2019, 13, 1165–1179. [Google Scholar] [CrossRef]
- Cescatti, E.; Salzano, P.; Casapulla, C.; Ceroni, F.; da Porto, F.; Prota, A. Damages to Masonry Churches after 2016–2017 Central Italy Seismic Sequence and Definition of Fragility Curves; Springer Netherlands: Berlin/Heidelberg, Germany, 2020; Volume 18. [Google Scholar]
- Penna, A.; Calderini, C.; Sorrentino, L.; Carocci, C.F.; Cescatti, E.; Sisti, R.; Borri, A.; Modena, C.; Prota, A. Damage to churches in the 2016 central Italy earthquakes. Bull. Earthq. Eng. 2019, 17, 5763–5790. [Google Scholar] [CrossRef]
- Cocco, G.; D’Aloisio, A.; Spacone, E.; Brando, G. Seismic vulnerability of buildings in historic centers: From the “urban” to the “aggregate” scale. Front. Built Environ. 2019, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Borri, A.; Corradi, M.; Castori, G.; Sisti, R.; De Maria, A. Analysis of the collapse mechanisms of medieval churches struck by the 2016 Umbrian earthquake. Int. J. Archit. Herit. 2018, 13, 215–228. [Google Scholar] [CrossRef]
- Rossi, A.; Tertulliani, A.; Azzaro, R.; Graziani, L.; Rovida, A.; Maramai, A.; Pessina, V.; Hailemikael, S.; Buffarini, G.; Bernardini, F.; et al. The 2016–2017 earthquake sequence in Central Italy: Macroseismic survey and damage scenario through the EMS-98 intensity assessment. Bull. Earthq. Eng. 2019, 17, 2407–2431. [Google Scholar] [CrossRef]
- Valensise, G.; Tarabusi, G.; Guidoboni, E.; Ferrari, G. The forgotten vulnerability: A geology- and history-based approach for ranking the seismic risk of earthquake-prone communities of the Italian Apennines. Int. J. Disaster Risk Reduct. 2017, 25, 289–300. [Google Scholar] [CrossRef]
- Borri, A.; Castori, G.; Corradi, M.; Sisti, R. Tecniche Innovative di Rinforzo di Murature Storiche. Sperimentazioni in situ con un intonaco armato di nuova generazione. Ingenio 2013, 16, 1–15. [Google Scholar]
- Corradi, M.; Borri, A.; Castori, G.; Sisti, R. The Reticulatus method for shear strengthening of fair-faced masonry. Bull. Earthq. Eng. 2016, 14, 3547–3571. [Google Scholar] [CrossRef]
- Milani, G.; Shehu, R.; Valente, M. Seismic Vulnerability Mitigation of a Masonry Church by Means of CFRP Retrofitting. Procedia Eng. 2017, 195, 40–47. [Google Scholar] [CrossRef]
- Moreira, S.; Ramos, L.F.; Oliveira, D.V.; Lourenço, P.B. Design Parameters for Seismically Retrofitted Masonry-To-Timber Connections: Injection Anchors. Int. J. Archit. Herit. 2016, 10, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Borri, A.; Candela, M.; Fonti, R. Old masonry structures in L’Aquila historical centre: Retrofitting strategies and full scale tests. The assessments. In Proceedings of the 15th World Conference on Earthquake Engineering (WCEE), Lisbon, Portugal, 24 September 2012. [Google Scholar]
- de Santis, S.; AlShawa, O.; de Felice, G.; Gobbin, F.; Roselli, I.; Sangirardi, M.; Sorrentino, L.; Liberatore, D. Low-impact techniques for seismic strengthening fair faced masonry walls. Constr. Build. Mater. 2021, 307, 124962. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Binda, L.; Modena, C. Mechanical behaviour of historic masonry structures strengthened by bed joints structural repointing. Constr. Build. Mater. 2005, 19, 63–73. [Google Scholar] [CrossRef]
- Longarini, N.; Crespi, P.; Scamardo, M. Numerical approaches for cross-laminated timber roof structure optimization in seismic retrofitting of a historical masonry church. Bull. Earthq. Eng. 2020, 18, 487–512. [Google Scholar] [CrossRef]
- Facconi, L.; Lucchini, S.S.; Minelli, F.; Plizzari, G.A. Analytical model for the in-plane resistance of masonry walls retrofitted with steel fiber reinforced mortar coating. Eng. Struct. 2023, 275, 115232. [Google Scholar] [CrossRef]
- Preti, M.; Loda, S.; Bolis, V.; Cominelli, S.; Marini, A.; Giuriani, E. Dissipative Roof Diaphragm for the Seismic Retrofit of Listed Masonry Churches. J. Earthq. Eng. 2019, 23, 1241–1261. [Google Scholar] [CrossRef]
- Giresini, L.; Casapulla, C.; Croce, P. Environmental and economic impact of retrofitting techniques to prevent out-of-plane failure modes of unreinforced masonry buildings. Sustainability 2021, 13, 11383. [Google Scholar] [CrossRef]
- Liberotti, R.; Cluni, F.; Faralli, F.; Gusella, V. Natural FRCM and Heritage Buildings: Experimental Approach to Innovative Interventions on ‘Wall Beams’. Buildings 2022, 12, 1076. [Google Scholar] [CrossRef]
- Mistretta, F.; Stochino, F.; Sassu, M. Structural and thermal retrofitting of masonry walls: An integrated cost-analysis approach for the Italian context. Build. Environ. 2019, 155, 127–136. [Google Scholar] [CrossRef]
- de Matteis, G.; Brando, G.; Corlito, V. Predictive model for seismic vulnerability assessment of churches based on the 2009 L’Aquila earthquake. Bull. Earthq. Eng. 2019, 17, 4909–4936. [Google Scholar] [CrossRef]
- DPC. “Survey form of the Cultural Heritage—Damage of the Churches”. Department of Civil Protection. Available online: https://egeos.eucentre.it/danno_osservato/web/danno_osservato?lang=EN (accessed on 18 July 2022). (In Italian).
- Dolce, M.; Speranza, E.; Giordano, F.; Borzi, B.; Bocchi, F.; Conte, C.; di Meo, A.; Faravelli, M.; Pascale, V. Da.D.O—A web-based tool for analyzing and comparing post-earthquakedamage database relevant to national seismic events since 1976. In Proceedings of the Atti del XVII Convegno ANIDIS L’ingegneria Sismica in Italia, Pistoia, Italy, 17–21 September 2017. [Google Scholar]
- Sisti, R.; di Ludovico, M.; Borri, A.; Prota, A. Damage assessment and the effectiveness of prevention: The response of ordinary unreinforced masonry buildings in Norcia during the Central Italy 2016–2017 seismic sequence. Bull. Earthq. Eng. 2019, 17, 5609–5629. [Google Scholar] [CrossRef]
- Trifan, S.; Gociman, C.O.; Ochinciuc, C.V. Sustainability and resilience in the old town of Norcia, Italy. WIT Trans. Ecol. Environ. 2019, 238, 383–393. [Google Scholar] [CrossRef]
- Sorrentino, L.; Liberatore, L.; Decanini, L.D.; Liberatore, D. The performance of churches in the 2012 Emilia earthquakes. Bull. Earthq. Eng. 2014, 12, 2299–2331. [Google Scholar] [CrossRef]
- Acito, M.; Garofane, M.S.; Magrinelli, E.; Milani, G. The 2016 Central Italy seismic sequence: Linear and non-linear interpretation models for damage evolution in S. Agostino’s church in Amatrice. Bull. Earthq. Eng. 2021, 19, 1467–1507. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Reinhorn, A.M.; de Stefano, A. Considerations regarding the retrofit intervention of Santa Maria di Collemaggio basilica in L’Aquila following 2009 Italian earthquake. Struct. Congr. 2010, 2010, 1082–1091. [Google Scholar] [CrossRef]
- Clementi, F.; Quagliarini, E.; Monni, F.; Giordano, E.; Lenci, S. Cultural Heritage and Earthquake: The Case Study of ‘Santa Maria Della Carità’ in Ascoli Piceno. Open Civ. Eng. J. 2018, 11, 1079–1105. [Google Scholar] [CrossRef]
- Menestò, E. L’UMBRIA NEL XIII SECOLO; Fondazione CISAM, CENTRO ITALIANO DI STUDI SULL’ALTO MEDIOEVO: Spoleto, Italia, 2011; p. 441. ISBN 9788879883672. [Google Scholar]
- Guidoboni, E. Il valore della memoria. Terremoti e ricostruzioni in Italia nel lungo period. Quellen und Forschungen aus Italienischen Archiven und Bibliotheken 2017, 96, 415–444. [Google Scholar] [CrossRef]
- Spagnoli, L.; Gallia, A. Il libro delle province francescane: Uno speciale atlante per la storia del territorio. La Marca Anconitana nei secoli XIV-XVIII / The book of the Franciscan provinces: A special atlas for the history of the land. The Marca Anconitana between 14th–18th centuries. In Bollettino dell’Associazione Italiana di Cartografia; EUT Edizioni Università di Trieste: Trieste, Italia, 2017; Volume 160, pp. 104–121. [Google Scholar] [CrossRef]
- Pellegrini, L. Gli insediamenti degli ordini mendicanti a al loro tipologia. Considerazioni metodologiche e piste di ricerca. Mélanges l’Ecole française Rome. Moyen-Age Temps Mod. 1977, 89, 563–573. [Google Scholar] [CrossRef]
- Baldelli, A.; Bartolacci, F.; Del Punta, I.; Frezza, F.; Lambertini, R.; Lamy, A.; Melatini, C.; Monaldi, A.; Palmucci, I. Picenum seraphicum. Rivista di studi storici e francescani. 2016, 30, 245. [Google Scholar]
- Pardi, R. Edifici Monumentali ad Orvieto nel Medioevo; Storia di Orvieto, II, II Medioevo: Orvieto, Italy, 2007; p. 672. ISBN 88-901852-5-2. [Google Scholar]
- Dolce, M.; Speranza, E.; Giordano, F.; Borzi, B.; Bocchi, F.; Conte, C.; Meo, A.D.; Faravelli, M.; Pascale, V. La Piattaforma web-GIs Da.D.O per la ConsultazIone e la comparazione del danno osservato in eventi sismici di rilevanza nazionale dal 1976. Gngts 2017, 2016, 30. [Google Scholar]
- Zizi, M.; Cacace, D.; Corlito, V.; Rouhi, J.; de Matteis, G. A preliminary structural analysis of typical arches of italian gothic churches. In Advances in Utopian Studies and Sacred Architecture; Springer: Cham, Switzerland, 2021; pp. 65–77. [Google Scholar]
- Chisari, C.; Cacace, D.; De Matteis, G. Parametric investigation on the effectiveness of frm-retrofitting in masonry buttressed arches. Buildings 2021, 11, 406. [Google Scholar] [CrossRef]
- Rouhi, J.; Cacace, D.; Corlito, V.; Zizi, M.; de Matteis, G. Literature review on the structural preservation of arches and vaults in masonry churches. Acad. Res. Community Publ. 2019, 1–5. [Google Scholar]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. The Italian earthquake catalogue CPTI15. Bull. Earthq. Eng. 2020, 18, 2953–2984. [Google Scholar] [CrossRef]
- Ortega, J.; Vasconcelos, G.; Rodrigues, H.; Correia, M.; Lourenço, P.B. Traditional earthquake resistant techniques for vernacular architecture and local seismic cultures: A literature review. J. Cult. Herit. 2017, 27, 181–196. [Google Scholar] [CrossRef]
- Tosone, A.; Bellicoso, A. Anti-seismic presidia in the historical building of l’aquila: The role of the wooden elements. Int. J. Herit. Archit. Stud. Repairs Maintence 2017, 2, 48–59. [Google Scholar] [CrossRef]
- D’Antonio, M. Ita Terraemotus Damna Impedire, Note Sull Tecniche Antisismiche Storiche in Abruzzo, 2nd ed.; Carsi Edizioni: Pescara, Italy, 2013; ISBN 978-88-501-0356-0. [Google Scholar]
- Modena, C.; Valluzzi, M.R.; Da Porto, F.; Casarin, F.; Garbin, E.; Munari, M.; Mazzon, N.; Panizza, M.; Dalla Benetta, M.A. Recent advances in the structural analysis and intervention criteria for historic stone masonry constructions subjected to seismic actions. In Proceedings of the ISCARSAH Symposium Mostar-09, Mostar, Bosnia and Herzegovina, 12 July 2009. [Google Scholar]
- Lourenco, P.B.; Mendes, N.; Ramos, L.F.; Oliveira, D.V. Analysis of Masonry Structures Without Box Behavior. Int. J. Archit. Herit. 2011, 5, 369–382. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Mendes, N.; Silva, R. Multiscale seismic vulnerability assessment and retrofit of existing masonry buildings. Buildings 2019, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Huerta, S. The safety of masonry buttresses. Proc. Inst. Civ. Eng.—Eng. Hist. Herit. 2010, 163, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Gedik, Y.H.; Sesigur, H.; Celik, O.C.; Cili, F. Effect of Wooden Ties on the Behaviour of Historic Stone Masonry Vaults. In Proceedings of the 8th International Masonry Conference 2010 in Dresden, Dresden, Germany, 4–7 July 2010; pp. 1–6. [Google Scholar]
- Borria, A.; Sistia, R.; Castoria, G.; Corradia, M.; De Mariab, A. Analisi del comportamento di alcuni edifici di culto in valnerina a seguito dei sismi del 2016. In Proceedings of the XVII Convegno ANIDIS—L’Ingegneria Sismica Ital., Pistoia, Italy, 17–21 September 2017; pp. 17–21. [Google Scholar]
- Cescatti, E.; da Porto, F.; Modena, C.; Casarin, F. Ties in historical constructions: Typical features and laboratory tests. In Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 1301–1307. [Google Scholar] [CrossRef]
- Calderini, C.; Dillmann, P. Historic metal tie-rods. Int. J. Archit. Herit. 2019, 13, 315–316. [Google Scholar] [CrossRef] [Green Version]
- Calderini, C.; Piccardo, P.; Vecchiattini, R. Experimental Characterization of Ancient Metal Tie-Rods in Historic Masonry Buildings. Int. J. Archit. Herit. 2019, 13, 416–428. [Google Scholar] [CrossRef]
- Podestà, S.; Scandolo, L. Earthquakes and Tie-Rods: Assessment, Design, and Ductility Issues. Int. J. Archit. Herit. 2019, 13, 329–339. [Google Scholar] [CrossRef]
- Velilla, C.; Alcayde, A.; San-Antonio-Gómez, C.; Montoya, F.G.; Zavala, I.; Manzano-Agugliaro, F. Rampant arch and its optimum geometrical generation. Symmetry 2019, 11, 627. [Google Scholar] [CrossRef] [Green Version]
- Gallotta, E. La “costruzione” di un modello: L’impiego degli archi-diaframma nell’edilizia civile duecentesca del Basso Lazio. In Studi e Ricerche di Storia dell’Architettura; Edizioni Caracol: Palermo, Italy, 2018; Volume 3, pp. 52–63. ISSN 2532-2699. [Google Scholar]
- Longarini, N.; Crespi, P.; Franchi, A.; Giordano, N.; Ronca, P.; Scamardo, M. Cross-lam roof diaphragm for the seismic retrofitting of historical masonry churches. Proc. Int. Mason. Soc. Conf. 2018, 1073–1087. [Google Scholar]
- Modena, C.; Casarin, F.; da Porto, F.; Munari, M. L’Aquila 6th April 2009 Earthquake: Emergency and Post-emergency Activities on Cultural Heritage Buildings. In Earthquake Engineering in Europe. Geotechnical, Geological, and Earthquake Engineering; Garevski, M., Ansal, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 17. [Google Scholar]
- Minister of Heritage and Cultural Activities. Circular n.26, Italian Code for protection of cultural heritage. In Linee Guida per la Valutazione e la Riduzione del Rischio Sismico del Patrimonio Culturale con Riferimento alle Norme Tecniche per le Costruzioni, Prot. 10953 of 2 December 2010; Minister of Heritage and Cultural Activities: Rome, Italy, 2 December 2011. [Google Scholar]
- Grünthal, G. (Ed.) European Macroseismic Scale 1998 (EMS-98) European Seismological Commission, Sub Commission on Engineering Seismology, Working Group Macroseismic Scales; Conseil de l’Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie: Luxembourg, 1998; Volume 15. [Google Scholar]
- Carbonari, S.; Dall’Asta, A.; Dezi, L.; Gara, F.; Leoni, G.; Morici, M.; Prota, A.; Zona, A. First analysis of data concerning damage occurred to churches of the marche region following the 2016 central Italy earthquakes. Boll. Di Geofis. Teor. Ed Appl. 2019, 60, 183–196. [Google Scholar] [CrossRef]
- Hofer, L.; Zampieri, P.; Zanini, M.A.; Faleschini, F.; Pellegrino, C. Seismic damage survey and empirical fragility curves for churches after the August 24, 2016 Central Italy earthquake. Soil Dyn. Earthq. Eng. 2018, 111, 98–109. [Google Scholar] [CrossRef]
- Da Porto, F.; Silva, B.; Costa, C.Q.M.; Modena, C. Macro-scale analysis of damage to churches after earthquake in Abruzzo (Italy) on 6 April 2009. J. Earthq. Eng. 2012, 16, 739–758. [Google Scholar] [CrossRef]
- Modena, C.; Valluzzi, M.R.; da Porto, F.; Casarin, F. Structural aspects of the conservation of historic masonry constructions in seismic areas: Remedial measures and emergency actions. Int. J. Archit. Herit. 2011, 5, 539–558. [Google Scholar] [CrossRef]
- Adeli, H.; Kim, H. Time-Frequency Signal Analysis of Earthquake Records1. In Wavelet-Based Vibration Control of Smart Buildings and Bridges, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022; pp. 55–76. [Google Scholar] [CrossRef]
- Michelini, A.; Faenza, L.; Lanzano, G.; Lauciani, V.; Jozinović, D.; Puglia, R.; Luzi, L. The new ShakeMap in Italy: Progress and advances in the last 10 yr. Seism. Res. Lett. 2019, 91, 317–333. [Google Scholar] [CrossRef]
- Faenza, L.; Michelini, A.; Crowley, H.; Borzi, B.; Faravelli, M. ShakeDaDO: A data collection combining earthquake building damage and ShakeMap parameters for Italy. Artif. Intell. Geosci. 2020, 1, 36–51. [Google Scholar] [CrossRef]
- Fiorentino, G.; Forte, A.; Pagano, E.; Sabetta, F.; Baggio, C.; Lavorato, D.; Nuti, C.; Santini, S. Damage patterns in the town of Amatrice after August 24th 2016 Central Italy earthquakes. Bull. Earthq. Eng. 2018, 16, 1399–1423. [Google Scholar] [CrossRef]
- De Matteis, G.; Cacace, D.; Rouhi, J. Masonry Vaults: Architectural Evolution, Structural Behaviour and Collapse Mechanisms. In Proceedings of the Structural Engineers Word Congress 2019 Architecture and Structure: From Past to Future, Istanbul, Turkey, 24–26 April 2016. [Google Scholar]
Year | Epicentral Area | Mw | Year | Epicentral Area | Mw | Year | Epicentral Area | Mw |
---|---|---|---|---|---|---|---|---|
1612 | Appennino umbro-marchigiano | 5.1 | 1804 | Gran Sasso | 5.4 | 1916 | Aquilano | 5.1 |
1619 | Aquilano | 5.3 | 1806 | Colli Albani | 5.6 | 1916 | Alto Reatino | 5.5 |
1626 | Macerata | 5.1 | 1815 | Valnerina | 5.6 | 1917 | Ternano | 5.0 |
1627 | Monti della Laga | 5.3 | 1821 | Rieti | 5.1 | 1922 | Val Roveto | 5.2 |
1631 | Appennino umbro-marchigiano | 5.1 | 1832 | Valle Umbra | 6.4 | 1927 | Marsica | 5.2 |
1639 | Monti della Laga | 6.2 | 1832 | Appennino umbro-marchigiano | 5.4 | 1933 | Maiella | 5.9 |
1646 | Monti della Laga | 5.9 | 1838 | Valnerina | 5.1 | 1933 | Maiella | 5.1 |
1654 | Sorano | 6.3 | 1838 | Valnerina | 5.5 | 1941 | Monti Sibillini | 5.0 |
1667 | Spoleto | 5.1 | 1838 | Valnerina | 5.2 | 1943 | Monti Sibillini | 5.0 |
1672 | Monti della Laga | 5.3 | 1854 | Valle Umbra | 5.6 | 1943 | Ascolano | 5.7 |
1689 | Reatino | 5.1 | 1859 | Valnerina | 5.7 | 1948 | Monti Reatini | 5.4 |
1695 | Lazio settentrionale | 5.8 | 1873 | Appennino marchigiano | 5.9 | 1950 | Gran Sasso | 5.7 |
1703 | Valnerina | 6.9 | 1873 | Val Comino | 5.4 | 1951 | Gran Sasso | 5.3 |
1703 | Aquilano | 6.7 | 1874 | Aquilano | 5.1 | 1951 | Monti Sibillini | 5.3 |
1706 | Maiella | 6.8 | 1874 | Val Comino | 5.5 | 1958 | Aquilano | 5.0 |
1707 | Monti Martani | 5.2 | 1876 | Monti Prenestini | 5.1 | 1961 | Reatino | 5.1 |
1714 | Narni | 5.3 | 1877 | Lazio meridionale | 5.2 | 1962 | Valnerina | 5.0 |
1719 | Valnerina | 5.6 | 1878 | Valle Umbra | 5.5 | 1962 | Valle Umbra | 5.3 |
1721 | Appennino umbro-marchigiano | 5.1 | 1879 | Valnerina | 5.6 | 1972 | Marche meridionali | 5.5 |
1730 | Valnerina | 6.0 | 1881 | Chietino | 5.4 | 1973 | Valle del Chiascio | 5.1 |
1745 | Valle Umbra | 5.1 | 1882 | Chietino | 5.3 | 1979 | Valnerina | 5.8 |
1747 | Appennino umbro-marchigiano | 6.1 | 1882 | Costa ascolana | 5.2 | 1984 | Monti della Meta | 5.5 |
1747 | Appennino umbro-marchigiano | 5.4 | 1883 | Monti Prenestini | 5.1 | 1987 | Costa Marchigiana | 5.1 |
1751 | Ternano | 5.1 | 1883 | Monti della Laga | 5.1 | 1997 | Appennino umbro-marchigiano | 5.7 |
1751 | Appennino umbro-marchigiano | 6.4 | 1892 | Colli Albani | 5.1 | 1997 | Appennino umbro-marchigiano | 6.0 |
1762 | Aquilano | 5.5 | 1898 | Reatino | 5.5 | 1997 | Appennino umbro-marchigiano | 5.2 |
1767 | Valle Umbra | 5.5 | 1898 | Valnerina | 5.0 | 1997 | Appennino umbro-marchigiano | 5.5 |
1771 | Sorano | 5.1 | 1898 | Valnerina | 5.5 | 1997 | Valnerina | 5.2 |
1785 | Appennino umbro-marchigiano | 5.1 | 1899 | Colli Albani | 5.1 | 1997 | Valnerina | 5.6 |
1785 | Monti Reatini | 5.8 | 1901 | Sabina | 5.3 | 1998 | Appennino umbro-marchigiano | 5.0 |
1791 | L’Aquila | 5.3 | 1901 | Sorano | 5.2 | 1998 | Appennino umbro-marchigiano | 5.3 |
1791 | Appennino umbro-marchigiano | 5.6 | 1904 | Marsica | 5.7 | 1998 | Appennino umbro-marchigiano | 5.1 |
1792 | Ternano | 5.1 | 1905 | Valle Peligna | 5.2 | |||
1793 | Appennino umbro-marchigiano | 5.3 | 1915 | Marsica | 7.1 | |||
1799 | Appennino marchigiano | 6.2 | 1915 | Marsica | 5.0 | |||
1799 | Foligno | 5.1 | 1915 | Marsica | 5.1 |
Ring Beam | Longitudinal Tie | Trasversal Tie | |||||||
---|---|---|---|---|---|---|---|---|---|
>50 km | 25–50 km | <25 km | >50 km | 25–50 km | <25 km | >50 km | 25–50 km | <25 km | |
Unusable | 36% | 50% | 89% | 0% | 17% | 25% | 16% | 25% | 64% |
Partially unusable | 9% | 6% | 5% | 40% | 17% | 15% | 20% | 13% | 0% |
Accessible with provision | 27% | 13% | 5% | 20% | 17% | 17% | 24% | 29% | 0% |
Temporarily unusable | 0% | 0% | 0% | 0% | 0% | 5% | 0% | 0% | 7% |
Accessible | 27% | 31% | 0% | 40% | 50% | 35% | 40% | 33% | 21% |
Unsafe external dangers | 0% | 0% | 0% | 0% | 0% | 3% | 0% | 0% | 7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cianchino, G.; Masciotta, M.G.; Verazzo, C.; Brando, G. An Overview of the Historical Retrofitting Interventions on Churches in Central Italy. Appl. Sci. 2023, 13, 40. https://doi.org/10.3390/app13010040
Cianchino G, Masciotta MG, Verazzo C, Brando G. An Overview of the Historical Retrofitting Interventions on Churches in Central Italy. Applied Sciences. 2023; 13(1):40. https://doi.org/10.3390/app13010040
Chicago/Turabian StyleCianchino, Giorgia, Maria Giovanna Masciotta, Clara Verazzo, and Giuseppe Brando. 2023. "An Overview of the Historical Retrofitting Interventions on Churches in Central Italy" Applied Sciences 13, no. 1: 40. https://doi.org/10.3390/app13010040
APA StyleCianchino, G., Masciotta, M. G., Verazzo, C., & Brando, G. (2023). An Overview of the Historical Retrofitting Interventions on Churches in Central Italy. Applied Sciences, 13(1), 40. https://doi.org/10.3390/app13010040