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Abstract: In this study, the free vibration characteristics of symmetric three-layered beams with a soft
core, whereby the mass of the core could be ignored, were investigated. The coupling effect of the
axial and bending displacements owing to the presence of the soft core was considered. Classical
beam theory was employed for analyzing the top and bottom layers, and only the shear deformation
was applied for the core layer. The frequency determinant was deduced using the transfer matrix
method. The efficacy of the method was demonstrated through a comparison with the natural
frequencies obtained in previous studies. To determine the physical phenomena caused by the
exchange process in the order of modes of such beams, a new analytical method is proposed. As an
example, the dynamic behavior of a three-layered beam was analyzed by examining the changes in
the strain energies related to the natural frequencies and mode shapes. All bending-dominated modes
were accompanied by the axial displacements because of the existence of a core layer, whereas the
axial-dominated modes were uncoupled with the bending displacements. In addition, the efficiency
of the proposed method was demonstrated through relevant discussions of the predicted results.
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1. Introduction

Sandwich structures with strength-to-weight ratios have been widely applied in fields,
such as conveying structures, aeronautics, and astronautics. A three-layer sandwich beam
is usually composed of a top face, core made of lightweight materials, and bottom face
layers [1-5]. Investigating the dynamic characteristics of sandwich beams based on the
behavior of the core is important. In particular, it is necessary to analyze the dynamic
behavior of the face layer in relation to that of the core layer. Dynamic behavior analysis
of sandwich beams has been performed by many investigators [6-30], and advanced
techniques [7-12] based on the classical sandwich beam theory have been developed for
the vibration analysis of such beams.

The static analysis of sandwich beams for distributed and sinusoidal loadings using
the finite element model based on the higher-order zigzag shear deformation theory was
investigated [13], and a sandwich beam element was studied to design sandwich beams
with partially delaminated regions [14]. Studies on the bending, buckling, and free vibration
analyses of laminated sandwich beams are discussed in a review paper by Sayyad and
Ghugal [15]. The effect of height-to-length ratio on the natural frequencies of three-layered

Copyright: © 2022 by the author.
Licensee MDPI, Basel, Switzerland.

sandwich beams, with different boundary conditions, was examined using higher-order
zigzag beam theory [16]. The bending-dominated vibration of the soft core in the three-layer
sandwich beam was analyzed using the quadrature element method [17]. The dynamic
stiffness method was used to analyze the dynamic characteristics of the out-of-plane
bending vibrations of symmetric sandwich beams, and they investigated the independence
of the bending and torsional modes in the free vibration of such beams [18]. The effect
of the ratio of core to thickness to face thickness on the natural frequencies of soft-core
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sandwich beams was analyzed using tractable zig-zag beam theory [19]. A finite element
model for the vibration analysis of sandwich beams with a soft core was developed by
employing the Euler—Bernoulli theory for the face sheets and the Timoshenko beam theory
for the core sheet [20]. The effect of the length-to-height ratio on the natural frequencies
of sandwich beams with a soft core was studied using the zig-zag beam theory [21]. The
dynamic behaviors of axially moving sandwich beams with a soft core were studied
using the Galerkin method and complex mode method, which considered only the shear
deformation for the core layer of such beams [22]. The effects of the core thickness and
Poisson’s ratio on the dynamic characteristics of sandwich beams were analyzed using
Kriging-based finite element models based on different shear deformation theories [23].
The effect of thickness ratios and density ratios between the face and core layers on the
natural frequencies of sandwich beams is investigated by obtaining the discrete solution
of the differential equation using the Green function [24], the finite element method [25],
and the Chebyshev series [27], as well as by analyzing the dynamic behaviors of sandwich
beams in the core layer with the dynamic stiffness method, whereby the effect of bending
displacements is neglected and only shear deformation is considered [26]. The problems
presented in this study are similar to those considered in [24-27]; however, the physical
phenomena that were not discussed in previous studies have been analyzed using an
analytical method that has been developed in the present study. The axial, bending, and
shear deformations in all layers were considered in analyzing the natural frequencies
and mode shapes of the sandwich beams [28]; yet, the method can be used in a limited
manner for simply supported sandwich beams, and a fourth-order uncoupled governing
equation was used. However, the proposed method uses a sixth-order coupled differential
equation, and the present method can efficiently analyze the dynamic characteristics of
such structures for various boundary conditions. Moreover, a numerical method that can
accurately analyze the axial displacement effect on bending-dominated modes has not been
studied. To reduce the model error of finite elements, modeling updating techniques based
on the finite element method are being studied to predict the dynamic behavior of beam
structures [29-31].

Some researchers [32-34] have analyzed the dynamic characteristics of sandwich
beams using the transfer matrix method (TMM). The coupling of axial and bending dis-
placements was not considered in [32]; a discrete lumped mass system [33] and discretized
state equations [34] were used. The method proposed in this study is different from the
ones used in the above studies. The stubborn shortcomings, as well as the advantages
of the transfer matrix method have been discussed in previous works [35,36]. The use of
a simple precaution to overcome the non-physical numerical instability occurring in the
calculation of high-order frequencies is discussed [36].

This study aims to analyze the dynamic behaviors of sandwich beams with a soft
core, and the natural frequencies and mode shapes of beams with different boundary
conditions (i.e., clamped-free (C-F), clamped-clamped (C-C), clamped-pinned (C-P), and
pinned-pinned (P-P) end conditions) were successfully computed using the transfer matrix
method. The accuracy of the predicted results of the proposed method is compared with
the natural frequencies obtained from earlier studies [26,27].

For the sandwich beam, it is assumed that the mass of the core layer can be ignored,
and only the coupling of the axial and bending displacements is considered. The Euler—
Bernoulli beam theory is used for the top and bottom face layers, and only the shear
deformation is considered for the core layer. The continuity conditions between the core
and face layers are as follows. The proposed beam model assumes that no delamination
occurs between layers for free vibration. The bending of the core layer is caused by the
bending displacements of the face layers; however, the bending stiffness of the core is
ignored. Therefore, the shear deformation of the core, caused by the bending of the face
layers, is assumed by making the difference in the axial displacements of the face layers.
In addition, an analytical method that can distinguish the effects of the face and core
strain energies on the natural frequencies of soft-core sandwich beams is proposed. This is
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deduced from the relationship between the maximum normal strain and kinetic energies.
Some physical phenomena related to the dynamic behavior of sandwich beams are revealed
using the analytical method.

2. Theory

The schematic of a symmetric three-layered beam with a soft-core is illustrated in
Figure 1, where & is the total height of the cross section, and i and &, are the thicknesses
of the face and core layers, respectively. The Euler—Bernoulli theory was used in the face
layer, and it considers only the shear deformation in the core layer, owing to the bending of
face layers. The concept of linear elasticity, which considers only the deformation in the
X-Z plane, is employed. A core layer made of a lightweight material, whose mass can be
ignored in comparison to those of the face layers, is assumed.

zZ
Top face layer <
o bl B > X
Core layer
Bottom face layer &

Figure 1. Schematic of a symmetric three-layered beam with a soft core.

The strain energies of the top and bottom faces can be deduced as follows [26,27]:

1 L Qu(x,t)\? 1 L_/3%w(x, 1)\’

where E fr A fr and [ ¢ are the elastic modulus, area, and moment of inertia of the face layer,
respectively. EfAr and Efl; are the extensional and bending rigidities in the face layer,
respectively. L is the total beam length. In addition, Uy, is the axial strain energy, and U,
is the bending strain energy. u(x,t) and w(x, t) are the axial and bending displacements,
respectively.

The shear strain energy of the core is as follows [26,27]:

1 L2 e\ ow(x, )2
U = EkCACGC/O {hcu(x,t)—b— <1+hc) = } dx, @)

where k;, A., and G, are the shear correlation factor, area, and shear modulus of the core
layer, respectively.
Therefore, the total normal strain energy can be expressed by

U =Us +U 3)

The kinetic energy of a three-layered beam with a lightweight core can be formulated as

1 fF ou(x,t)\? 1 (L ow(x, ) >
T_E/o me< oF )dx+2/0 me( o )dx, 4)

where m1y is the mass per unit length of each face layer [26,27].
By employing Hamilton’s principle,

)
5/t1 (T —U)dt =0, ®)
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and the two differential equations, Equations (6) and (7), the bending moment and axial
and shear forces can be obtained as follows [26,27]:

Pu(x,t) 2k AGe

_ keAG he\ow(x, ) Pu(x,t)
B o R <1+ ) o e % O
and
tw(x,t)  kcAGe hs 282w(x,t) kA G he\ ou(x,t) w(x,t)
Eflf o — 5 (1 + hc) 32 — e (1 + hc> Y + mg 32 =0. 7)
Axial force,
_ ou(x,t)
F(X)— 2EfAf ox (8)
Bending moment,
w(x, t

Shear force,

V(x) = zgg% — keAcGe (1 + Z{) { (1 + Z’:) awg’;’t) + (}i) u(x, t)}. (10)

By assuming harmonic vibration with angular frequency (w), the following is obtained

u(x,t) = U(x)e'™t, w(x,t) = W(x)e', (11)

By substituting Equation (11) into Equations (6) and (7), the differential equations can
be rewritten as

d*U(x) 2 2 2 dW(x)
T+ (b oy )u(x) — = =0, (12)
d*W(x) a2 d®W(x) aPcdU(x) b? B
27 ae A @ AW =0 (13)
where )
keAcG mygw I
2 _ KeAcbe o T _ 2_ f
CTEAR T T EAC (hety). v As

The two differential equations can be expressed in a sixth-order differential equation:

dO¥ (x) b d*¥ (x) d¥¥ (x)
dx® dx#

+as¥(x) =0, (14)

where
2.2 2 22 2 (12 2
(2 o % b a*c _ bP(p*—2a%)
= (b —2a° — 21’2)' &y = —12(1+2>, a3 = T2
and ¥ (x) = U(x) or W(x).
If the solution of Equation (14) is assumed to be of the form

¥(x) = He™, (15)

then, a sixth-order polynomial in A can be obtained by substituting Equation (15)
into Equation (14):
AS +aAt A% +c=0. (16)
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To determine the solution of Equation (16), this polynomial can be transformed into a
third-order polynomial as follows:

§®+ag> + b +c=0, (17)
where
A=+VE (18)
Thus, the displacements U (x) and W(x) can be defined by

6
U(x) = Y Hie'?, (19)

j=1

and ]
W(x) =) Qe (20)

where H; and Q; are the different constants.
The relationship between the two constants (H; and Q;) can be defined by substituting
Equations (19) and (20) into Equation (12):

Q; = BiH;, 1)
and
{/\2 + (02— 2a2)}

Bi=—~1—p . (22)

ascA;

Thus, W(x) can be rewritten as
6
W(x) =Y pjHe"", (23)
j=1

The slope of the bending deformation curve can be obtained by differentiating
Equation (23) as:

®(x) = i AjBiH;eM*. (24)
j=1

By substituting Equations (23) and (24) into Equations (8)—(10), the expression for the
forces can be rewritten as

6
F(x) = —2E;Af Y AjHjeM, (25)
j=1
6
M(x) = —2E¢I; )" BiA2H;e"™, (26)
j=1
and
6 112C A
V(x) = Eflg Z{ZA?ﬁj — 7 (cAjBj+2) }Hje i, (27)
j=1
The state vector Z,_y, expressed in matrix form by substituting x = 0 into

Equations (19) and (23)—(27), is given by:

Z.o=CH (28)
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where
u Cii G2 Ciz Ciu Ci5 Cyg Hy
W Cor G Ciz Cyy Co5 Cyg Hp
d Cs1 C3;p Gz Cap G35 Cse Hj
y— ,C = SH = , 29
=0 F Cu Cap Ci3 Cy Cys Cy Hy @9)
M Csi Csp Csz3 Csy Cs5 Csg Hs
V). Co1 Co2 Cez3 Cesa Cos Cos Hg

and C1] =1, CZ] = ‘B], C3] = )L]‘B], C4] = —ZEfAf/\],

a’c
cwz—mﬂﬁﬂquzggpﬁm—12@@@+a}
From Equation (28), the constant H can be obtained as follows:
H=C'Z,_ (30)

Similarly, the state vector Z,_;, expressed in matrix form by substituting x = L into
Equations (19) and (23)—(27), is given by:

Z._; = GH (31)

where

’ G == ’ (32)

Zy—] =

<zTmeIC

x=L
and Glj = eAfL, sz = ﬁjeAjL, G3j = }\]',Bje/\jL, G4j = —ZEfAf)\]‘eAjL,

2
— 2 AL _ 3 ac AL
G5]‘ = _ZEfIf,Bj)\je 1=, G6]' = Eflf{z)tj ,3] — rT(C/\]ﬁ] + 2) }e 7.
By substituting Equation (30) into Equation (31), the relationship between state vectors
Z.—p and Z,_| can be expressed as follows:

Zx:L = TZJC:O/ (33)

where T = GCfl, and T is the transfer matrix of the three-layered beam element.

From Equation (33), the natural frequencies and mode shapes of the three-layered
beams with classical boundary conditions can be computed by determining the frequency
determinant of the transfer matrix [31]. The end conditions of the displacements and
forces used for applying the boundary condition to Equation (33) are U, W, & = 0 and
F, M, V # 0 at the clamped end and U, W, ® # 0 and F, M, V = 0 at the free end. In
addition, the conditions U, W, M = 0 and ®, V, F # 0 are applied at the pinned end.

3. Results and Discussions

To demonstrate the accuracy of the developed method, the natural frequencies com-
puted using the developed transfer matrix method were compared with the natural frequen-
cies discussed in previous works. MATLAB(R2021b) was used to compute the results. The
C-F end condition was investigated, and the results are listed in Table 1. The parameters
of the sandwich beam used to predict the results shown in Table 1 are as follows [26,27]:
EfAr=31500N, Efl; =1.362 Nm?, k. AcGe =1050 N, my =0.001225 kg/m, hy = 0.4527 mm,
he =12.7 mm, L = 0.9144 m. The results of the present study and previous studies showed
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excellent agreement. Because there were no results for the C-C, C-P, and P-P end conditions
in previous studies, they are listed in Table 2 to analyze the effects of the axial and bending
modes, for example, beams with various end conditions.

Table 1. Comparison of the results of previous studies and the present method for the first four
natural frequencies of a symmetric three-layered beam with the cantilevered end condition.

Natural Frequency [Hz]

wj
Present Banerjee [26] Ruta and Szybinski [27]
1 31.459 31.46 31.46
2 193.71 193.7 193.7
3 529.20 529.2 529.2
4 1006.4 1006 1006

Table 2. First five natural frequencies of a symmetric three-layered beam with the different end conditions.

Natural Frequency [Hz]

wj
C-F C-P C-C pP-p
1 31.459 179.65 194.91 166.18
2 193.71 481.22 521.79 445.12
3 529.2 918.52 991.81 852.16
4 1006.4 1481.7 1590.1 1381.5
5 1612.8 2165.4 2308.9 2030.7

To analyze the dominant frequencies caused by the coupling of the axial and bending
displacements for each boundary condition, the first five mode shapes of a sample beam
structure with four classical end conditions are illustrated in Figure 2. As shown in Figure 2,
the first five modes of this structure for all boundary conditions were dominated by bending
frequencies, as expected. Because the length-to-height ratio (L/1) of a three-layered beam is
very large (67.21), all modes appear to be dominated by the bending frequencies.

To investigate the effect of the axial modes, the variation in the first five natural
frequencies was examined by changing the length-to-height ratio from 10 to 70 in steps of
10. The results are tabulated in Table 3, and the first five mode shapes of the three-layered
beams for L/h = 10 are shown in Figure 3. As shown in Figure 3, the third and fifth mode
shapes in the C-P, C-C, and P-P end conditions are clearly shown to dominate the axial
frequencies, whereas the third and fourth mode shapes in the C-F end condition appear to
be strongly influenced by both the axial and bending modes. This is caused by the coupling
of the axial and bending displacements.

For a more detailed investigation of this phenomenon, an effective method capable of
distinguishing the effects of strain energy is proposed. From Equations (1), (2) and (4), the
maximum strain and kinetic energies can be defined as follows:

dx dx? he he ) dx

Unax = /OL EfAf<du(x)>2 +Efly <dzw<x)>2 + ;kCACGC< 2 1(x) + (1 + hf) dw(x))z dx (34)

Toan = [ mp{ UG+ W) o5)

By equating the maximum strain energy (Upm,x) and maximum kinetic energy (7max),
the following equation is obtained:

W? = sf(: Sat sf,b) + S, (36)
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where S is the effect of the face strain energy on the natural frequency, and Sy, and S¢ ),
are the axial and bending strain energies, respectively.

du(x;)\2 EW(x)\2
n EfAf(Tc )) n Eflf( a0 ))
Sf=StatSpp=)1 ; SRp> . ~ (37)
Som{ )y + W)yt Smp )y + i)’}
and S, is the effect of the core strain energy on the natural frequency,
h d Xi 2
=Y. sheAcC{ AU + (1+ ) U ) (38)
= NN

Therefore, the effect of the strain energies of the core and faces can be deduced from
Equation (36):

cf(: Cra+ cf,,,) 1C =1 (39)

where Cy (: S¢/ w2> is the effect of the normal strain energy of the face layers on the natural

frequency of free vibrations of a symmetric three-layered beam, and C, (= Sc/w?) is the effect
of the strain energy of the core layer. In addition, Cy, (: Stal wz) and Cy, (: Stp/ wz) are
the effects of the axial and bending strain energies in the face layer, respectively.

1 1

C-F C-p c-C pP-p
o o
— U — U — U — U
— W | |— W ay w 2] w ay
0 0 0 0
@ @ @ @
0 0 0 0
@ @ @ @
@y wy [}
0 o o
@4
0 o o
) s s ws g
o 0z 04 o0s o8 17 02 04 05 08 [ 0z o4 o0s o8 17 02 o4 08 08 1
X X x X

Figure 2. First five mode shapes of the symmetric three-layered beam with four classical end conditions.

By using Equation (39), the effects of the axial, bending, and shear strain energies on
the natural frequencies can be analyzed. The effect of variations in these strain energies on
the natural frequencies of three-layered beams with four end conditions are presented in
Tables 4-11. TMM and Equation (36), as shown in Tables 4-11, are the natural frequencies
computed using the transfer matrix method and Equation (36), respectively. The effect
of the strain energies on the first natural frequency of three-layered beams with different
end conditions, depending on the variation in L/h, is presented in Table 4. The effects of
the strain energies on the natural frequencies of the three-layered beams with the C-F end
condition, depending on the variation in L/, are listed in Tables 5 and 6. The effects of
the strain energies on the natural frequencies of the three-layered beams with the C-P end
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condition, depending on the variation in L/, are listed in Tables 7 and 8. The effects of
the strain energy on the natural frequencies of the three-layered beams with the C-C end
condition, depending on the variation in L/h, are summarized in Tables 9 and 10. Further,
the effects of the strain energies on the natural frequencies of the three-layered beams with
the P-P end condition, depending on the variation in L/h, are presented in Tables 11 and 12.

Table 3. Effects of the variation of L/k on the first five natural frequencies of the symmetric three-
layered beam with the classical boundary conditions.

Natural Frequency [Hz]

BCs wi
L/h=10 L/h =20 L/h =30 L/h =40 L/h =50 L/h =60 L/h=70
C-F 1 1310.27 345.99 156.09 88.332 56.700 39.441 28.964
2 7011.14 1954.89 917.34 530.69 345.03 24191 179.11
3 18,088.83 5089.99 2413.49 1415.47 930.62 657.89 489.23
4 19,682.60 9470.86 4480.32 2642.07 1749.99 1245.75 931.88
5 32,498.4 15,123.1 7119.82 4192.78 2784.40 1990.21 1495.33
C-C 1 6897.36 1911.31 905.78 528.24 345.30 242.96 180.05
2 18,331.8 4940.14 2342.93 1380.56 911.99 647.23 482.80
3 24,893.4 9342.52 4390.35 2588.27 1717.59 1225.63 918.96
4 35,425.9 15,090.0 7023.93 4126.09 2739.84 1960.30 1474.85
5 40,805.0 18,899.5 10,253.1 5992.01 3971.80 2843.09 2142.57
pP-P 1 3665.73 1230.82 652.27 407.94 279.50 203.35 154.50
2 12,209.0 3508.24 1762.27 1087.04 744.22 543.14 414.15
3 24,878.8 7170.46 3469.72 2100.78 1427.38 1039.58 793.18
4 26,431.7 12,201.3 5775.96 3448.74 2325.13 1687.17 1285.73
5 40,779.7 18,616.8 8683.41 5130.46 3436.08 2483.81 1889.17
C-P 1 5071.04 1526.65 764.63 462.35 309.75 221.79 166.58
2 15,090.2 4174.85 2031.11 1223.08 822.37 591.93 446.57
3 24,880.3 8208.9 3908.08 2332.14 1564.95 1127.86 853.09
4 30,755.4 13600.2 6378.66 3775.09 2524.52 1818.33 1376.53
5 40,783.5 18,896.6 9447.37 5549.20 3696.06 265791 2011.81
Tcr C-P [ec [ pp
T— U — U — U | — U
} w o wnr‘fW wl_‘fVV 2
S ST I S S -

— /¥ T - o — /)
@y @y [on wy
P . . E
o 02 04 05 08 [ 02 04 05 08 1 :o 02 04 06 08 I 0z o4 06 08 1
\ /
\
o o 0 o
\ / /|

Figure 3. First five mode shapes of the symmetric three-layered beam with four end conditions when L/ = 10.
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Table 4. Effect of strain energies on the first natural frequency of three-layered beams with different
end conditions depending on the variation in L/h.

Effect of Strain Energy on the First Natural Frequency [Hz]

BCs.
L/h=10 L/h=20 L/h =30 L/h =40 L/h =50 L/h =60 L/h=70
C-F TMM 1310.3 345.99 156.09 88.332 56.700 39.441 29.007
Cra 0.2977 0.4212 0.4596 0.4757 0.4839 0.4886 0.4915
Crp 0.5954 0.5317 0.5152 0.5088 0.5057 0.5040 0.5029
C. 0.1068 0.0471 0.0252 0.0155 0.0104 0.0074 0.0056
Equation (36) 1310.3 345.99 156.09 88.332 56.700 39.441 29.007
C-p ™M 5071.0 1526.7 764.63 462.35 309.75 221.79 166.50
Cta 0.0331 0.1636 0.2877 0.3709 0.4230 0.4557 0.4768
Crp 0.7606 0.5332 0.4388 0.4041 0.3935 0.3927 0.3960
C. 0.2063 0.3032 0.2736 0.2250 0.1835 0.1515 0.1273
Equation (36) 5071.1 1526.7 764.65 462.36 309.76 221.80 166.50
Cc-C ™M 6897.4 1911.3 905.78 528.24 345.30 242.96 180.05
Cra 0.0231 0.1288 0.2386 0.3155 0.3658 0.3991 0.4218
Crp 0.8646 0.7048 0.6206 0.5773 0.5532 0.5386 0.5292
C. 0.1123 0.1664 0.1409 0.1072 0.0810 0.0623 0.0490
Equation (36) 6897.5 1911.3 905.8 528.2 345.3 243.0 180.1
P-P TMM 3665.7 1230.8 652.27 407.94 279.50 203.34 154.46
Cra 0.0493 0.2104 0.3449 0.4300 0.4813 0.5121 0.5308
Crp 0.5957 0.3350 0.2548 0.2370 0.2419 0.2547 0.2698
C. 0.3550 0.4545 0.4004 0.3330 0.2769 0.2332 0.1994
Equation (36) 3665.8 1230.8 652.28 407.95 279.51 203.35 154.47
Table 5. Effect of strain energies on the natural frequencies of three-layered beams with the C-F end
condition depending on the variation in L/h.
w Effect of Strain Energy on the Natural Frequency [Hz]
;
L/h=10 L/h=12 L/h=14 L/h=16 L/h=18 L/h=20 L/h=22 L/h=24
1 ™M 1310.3 927.19 690.32 533.69 424.77 345.99 287.20 242.18
Cra 0.2977 0.3376 0.3673 0.3899 0.4074 0.4212 0.4322 0.4411
Crp 0.5954 0.5732 0.5577 0.5464 0.5381 0.5317 0.5268 0.5229
C. 0.1068 0.0892 0.0750 0.0637 0.0545 0.0471 0.0410 0.0360
Equation (36) 1310.3 927.19 690.32 533.69 424.77 345.99 287.20 242.18
2 TMM 7011.1 5007.1 3770.3 2949.5 2374.5 1954.9 1638.5 1393.8
Cra 0.0867 0.1079 0.1325 0.1582 0.1837 0.2082 0.2313 0.2527
Crp 0.7919 0.7553 0.7229 0.6950 0.6712 0.6508 0.6335 0.6187
Ce 0.1214 0.1368 0.1445 0.1468 0.1451 0.1410 0.1352 0.1286
Equation (36) 7011.1 5007.1 3770.3 2949.5 2374.5 1954.9 1638.5 1393.8
3 TMM 18,088.8 13,139.1 9855.2 7688.2 6182.0 5090.0 4270.9 3639.4
Cta 0.1203 0.0471 0.0571 0.0716 0.0879 0.1052 0.1228 0.1406
Crp 0.5728 0.8471 0.8246 0.7978 0.7722 0.7486 0.7273 0.7080
C. 0.3069 0.1058 0.1182 0.1306 0.1399 0.1462 0.1499 0.1514
Equation (36) 18,088.8 13,139.1 9855.2 7688.2 6182.0 5090.0 4270.9 3639.4
4 ™M 19,682.6 18,301.7 17,350.3 14,312.3 11,520.0 9470.9 7935.7 6756.0
Cra 0.1431 0.1705 0.1112 0.0383 0.0418 0.0506 0.0612 0.0729
Crp 0.3275 0.0389 0.2809 0.8350 0.8412 0.8240 0.8046 0.7854
C. 0.5294 0.7906 0.6079 0.1267 0.1171 0.1254 0.1342 0.1417

Equation (36) 19,682.6 18,301.7 17,350.3 14,312.3 11,520.0 9470.9 7935.7 6756.0
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Table 5. Cont.
w Effect of Strain Energy on the Natural Frequency [Hz]
;
L/h=10 L/h=12 L/h=14 L/h=16 L/h=18 L/h=20 L/h=22 L/h =24
5 TMM 32,498.4 25,214.5 19,198.6 17,669.0 17,189.2 15,123.1 12,680.9 10,779.4
Cta 0.7235 0.0258 0.0488 0.1008 0.0806 0.0354 0.0372 0.0430
Crp 0.0161 0.8850 0.6222 0.0539 0.1269 0.8354 0.8515 0.8390
Ce 0.2604 0.0892 0.3289 0.8453 0.7926 0.1292 0.1112 0.1181
Equation (36) 32,4984 25,214.5 19,198.6 17,669.0 17,189.2 15,123.1 12,680.9 10,779.4
Table 6. Effect of strain energies on the natural frequencies of three-layered beams with the C-F end
condition depending on the variation in L/h.
ws Effect of Strain Energy on the Natural Frequency [Hz]
1
L/h =26 L/h=28 L/h =30 L/h =40 L/h =50 L/h =60 L/h=70
1 TMM 206.94 178.85 156.09 88.332 56.700 39.441 29.007
Cra 0.4484 0.4545 0.4596 0.4757 0.4839 0.4886 0.4915
Crp 0.5198 0.5173 0.5152 0.5088 0.5057 0.5040 0.5029
Ce 0.0318 0.0282 0.0252 0.0155 0.0104 0.0074 0.0056
Equation (36) 206.94 178.85 156.09 88.332 56.700 39.441 29.007
2 TMM 1200.3 1044.6 917.336 530.686 345.033 241.909 178.831
Cta 0.2724 0.2904 0.3067 0.3682 0.4061 0.4304 0.4465
Crp 0.6060 0.5950 0.5856 0.5537 0.5364 0.5262 0.5197
Ce 0.1217 0.1146 0.1077 0.0781 0.0575 0.0435 0.0338
Equation (36) 1200.3 1044.6 917.336 530.686 345.033 241.909 178.831
3 TMM 3141.3 2740.7 2413.5 1415.5 930.618 657.894 489.296
Cra 0.1581 0.1753 0.1918 0.2644 0.3189 0.3586 0.3876
Crp 0.6906 0.6750 0.6610 0.6091 0.5776 0.5574 0.5440
Ce 0.1513 0.1497 0.1472 0.1265 0.1036 0.0840 0.0684
Equation (36) 3141.3 2740.7 2413.5 1415.5 930.618 657.894 489.296
4 TMM 5828.8 5085.8 4480.3 2642.1 1750.0 1245.7 931.908
Cra 0.0853 0.0982 0.1114 0.1770 0.2351 0.2829 0.3210
Crp 0.7672 0.7500 0.7339 0.6696 0.6260 0.5962 0.5753
Ce 0.1475 0.1518 0.1546 0.1535 0.1389 0.1209 0.1037
Equation (36) 5828.8 5085.8 4480.3 2642.1 1750.0 1245.7 931.908
5 TMM 9285.2 8090.5 7119.8 4192.8 2784.4 1990.2 1495.2
Cra 0.0502 0.0583 0.0671 0.1171 0.1690 0.2168 0.2583
Crp 0.8236 0.8079 0.7926 0.7252 0.6746 0.6374 0.6100
Ce 0.1262 0.1338 0.1403 0.1576 0.1564 0.1458 0.1317
Equation (36) 9285.2 8090.5 7119.8 4192.8 2784.4 1990.2 1495.2
Table 7. Effect of strain energies on the natural frequencies of three-layered beams with the C-P end
condition depending on the variation in L/h.
w: Effect of Strain Energy on the Natural Frequency [Hz]
1
L/h=10 L/h=12 L/h=14 L/h=16 L/h=18 L/h=20 L/h =22 L/h =24
1 TMM 5071.0 3670.0 2806.4 2231.2 1825.6 1526.7 1298.8 1120.3
Cra 0.0331 0.0542 0.0792 0.1066 0.1351 0.1636 0.1913 0.2179
Crp 0.7606 0.7013 0.6488 0.6036 0.5653 0.5332 0.5065 0.4844
Ce 0.2063 0.2444 0.2720 0.2898 0.2997 0.3032 0.3022 0.2977
Equation (36) 5071.1 3670.0 2806.4 2231.3 1825.6 1526.7 1298.8 1120.4
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Table 7. Cont.
w Effect of Strain Energy on the Natural Frequency [Hz]
i
L/h=10 L/h=12 L/h=14 L/h=16 L/h=18 L/h=20 L/h=22 L/h =24
2 ™M 15,090.2 10,684.9 8010.9 6261.4 5050.5 4174.9 3519.1 3013.7
Cra 0.0181 0.0234 0.0320 0.0428 0.0554 0.0695 0.0847 0.1007
Crp 0.8946 0.8623 0.8287 0.7956 0.7637 0.7336 0.7055 0.6795
Ce 0.0873 0.1143 0.1393 0.1616 0.1809 0.1969 0.2098 0.2197
Equation (36)  15,090.4 10,685.0 8011.0 6261.5 5050.6 4174.9 3519.1 3013.7
3 T™MM 24,880.3 21,606.4 16,076.4 12,473.7 9992.9 8208.9 6880.8 5863.6
Cra 0.5572 0.0132 0.0162 0.0217 0.0286 0.0366 0.0457 0.0557
Crp 0.0025 0.9173 0.8964 0.8729 0.8492 0.8256 0.8026 0.7804
Ce 0.4403 0.0696 0.0874 0.1053 0.1222 0.1377 0.1517 0.1639
Equation (36)  24,880.4 21,606.6 16,076.5 12,473.8 9993.0 8209.0 6880.9 5863.7
4 T™MM 30,755.4 22,629.6 21,151.4 20,078.0 16,612.5 13,600.2 11,360.1 9649.0
Cra 0.0112 0.4678 0.3941 0.3087 0.0177 0.0205 0.0256 0.0316
Crp 0.9386 0.0031 0.0028 0.0823 0.8930 0.8785 0.8606 0.8425
Ce 0.0502 0.5290 0.6032 0.6090 0.0893 0.1010 0.1138 0.1259
Equation (36)  30,755.7 22,629.7 21,1515 20,078.1 16,612.7 13,600.3 11,360.2 9649.1
5 ™M 40,783.5 35,173.8 26,984.4 20,914.1 19,442.0 18,896.6 16,975.3 14,383.7
Cra 0.8300 0.7760 0.0092 0.0361 0.2809 0.2421 0.0165 0.0197
Crp 0.0030 0.0020 0.9298 0.8333 0.0048 0.0015 0.8970 0.8828
Ce 0.1669 0.2220 0.0611 0.1307 0.7142 0.7564 0.0865 0.0975
Equation (36)  40,783.8 35,174.1 26,984.7 20,914.3 19,442.1 18,896.7 16,975.5 14,383.8
Table 8. Effect of strain energies on the natural frequencies of three-layered beams with the C-P end
condition depending on the variation in L/h.
ws Effect of Strain Energy on the Natural Frequency [Hz]
1
L/h =26 L/h=28 L/h=30 L/h =40 L/h =50 L/h =60 LIh=170
1 TMM 977.48 861.01 764.63 462.35 309.75 221.79 166.50
Cra 0.2429 0.2661 0.2877 0.3709 0.4230 0.4557 0.4768
Crp 0.4661 0.4511 0.4388 0.4041 0.3935 0.3927 0.3960
Ce 0.2910 0.2828 0.2736 0.2250 0.1835 0.1515 0.1273
Equation (36) 977.50 861.03 764.65 462.36 309.76 221.80 166.50
2 TMM 2614.9 2293.9 2031.1 1223.1 822.37 591.93 446.57
Cra 0.1173 0.1341 0.1510 0.2306 0.2959 0.3460 0.3835
Crp 0.6557 0.6340 0.6142 0.5405 0.4972 0.4721 0.4577
Ce 0.2270 0.2319 0.2348 0.2289 0.2070 0.1819 0.1587
Equation (36) 2614.9 2293.9 2031.1 1223.1 822.38 591.94 446.58
3 TMM 5065.9 4427.6 3908.1 2332.1 1565.0 1127.9 853.01
Cra 0.0664 0.0777 0.0894 0.1508 0.2097 0.2613 0.3045
Crp 0.7591 0.7389 0.7197 0.6401 0.5840 0.5451 0.5185
Ce 0.1745 0.1835 0.1909 0.2091 0.2063 0.1935 0.1770
Equation (36) 5066.0 4427.7 3908.1 2332.2 1565.0 1127.9 853.03
4 T™M 8311.2 7244.2 6378.7 3775.1 2524.5 1818.3 1376.5
Cra 0.0384 0.0458 0.0539 0.0998 0.1492 0.1967 0.2396
Crp 0.8245 0.8069 0.7897 0.7135 0.6538 0.6086 0.5746
Ce 0.1371 0.1473 0.1564 0.1867 0.1969 0.1947 0.1858
Equation (36) 8311.2 72443 6378.7 3775.1 2524.6 1818.4 1376.5
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Table 8. Cont.
w Effect of Strain Energy on the Natural Frequency [Hz]
;
L/h =26 L/h=28 L/h =30 L/h =40 L/h =50 L/h =60 L/h=70
5 TMM 12,360.9 10,750.8 9447 .4 5549.2 3696.1 2657.9 2011.8
Cta 0.0238 0.0286 0.0339 0.0670 0.1066 0.1480 0.1878
Crp 0.8680 0.8531 0.8384 0.7687 0.7098 0.6621 0.6242
Ce 0.1082 0.1183 0.1278 0.1643 0.1836 0.1900 0.1880
Equation (36) 12,361.0 10,750.9 9447.5 5549.3 3696.1 2657.9 2011.9
Table 9. Effect of strain energies on the natural frequencies of three-layered beams with the C-C end
condition depending on the variation in L/h.
ws Effect of Strain Energy on the Natural Frequency [Hz]
1
L/h=10 L/h=12 L/h=14 L/h =16 L/h=18 L/h =20 Lih=22 L/h=24
1 TMM 6897.4 4899.8 3680.6 2877.8 2318.3 1911.3 1604.9 1367.9
Cra 0.0231 0.0390 0.0586 0.0808 0.1045 0.1288 0.1528 0.1761
Crp 0.8646 0.8264 0.7907 0.7585 0.7299 0.7048 0.6830 0.6640
Ce 0.1123 0.1346 0.1506 0.1607 0.1656 0.1664 0.1642 0.1599
Equation (36) 6897.5 4899.9 3680.7 2877.8 23184 1911.3 1604.9 1367.9
2 TMM 18,331.8 12,919.2 9635.2 7490.3 6008.8 4940.1 41419 3528.6
Cta 0.0186 0.0195 0.0259 0.0349 0.0458 0.0584 0.0722 0.0869
Cf/b 0.9190 0.8979 0.8727 0.8472 0.8224 0.7987 0.7764 0.7556
Ce 0.0624 0.0826 0.1014 0.1179 0.1318 0.1430 0.1515 0.1575
Equation (36) 18,332.1 12,919.5 9635.4 7490.4 6008.9 4940.2 4142.0 3528.6
3 TMM 24,893.4 22,629.1 18,440.1 14,271.2 11,402.9 9342.5 7810.4 6638.3
Cra 0.5540 0.4684 0.0138 0.0181 0.0239 0.0309 0.0389 0.0479
Crp 0.0060 0.0020 0.9164 0.8972 0.8775 0.8577 0.8383 0.8195
Ce 0.4400 0.5296 0.0698 0.0847 0.0986 0.1114 0.1228 0.1326
Equation (36)  24,893.5 22,629.2 18,440.4 14,271.4 11,403.1 9342.7 7810.5 6638.4
4 TMM 35,425.9 24,844.3 21,152.3 20,127.3 18,429.4 15,090.0 12,586.6 10,674.5
Cra 0.0179 0.0114 0.3943 0.3321 0.0295 0.0182 0.0221 0.0273
Crp 0.9438 0.9342 0.0019 0.0075 0.8682 0.8953 0.8809 0.8653
Ce 0.0382 0.0544 0.6037 0.6604 0.1022 0.0865 0.0969 0.1073
Equation (36)  35,426.6 24,844.8 21,152.4 20,127.4 18,429.7 15,090.3 12,586.9 10,674.7
5 TMM 40,805.0 35,176.3 30,077.3 23,221.7 19,477.6 18,899.5 18,487.0 15,658.3
Cta 0.8224 0.7756 0.0081 0.0113 0.2670 0.2416 0.2090 0.0177
Crp 0.0098 0.0022 0.9413 0.9213 0.0453 0.0026 0.0024 0.8970
Ce 0.1678 0.2222 0.0506 0.0674 0.6876 0.7557 0.7887 0.0853
Equation (36)  40,805.3 35,176.6 30,077.9 23,222.1 19,477.6 18,899.5 18,487.0 15,658.6
Table 10. Effect of strain energies on the natural frequencies of three-layered beams with the C-C end
condition depending on the variation in L/h.
w: Effect of Strain Energy on the Natural Frequency [Hz]
1
L/h =26 L/h=28 L/h =30 L/h =40 L/h =50 L/h =60 L/h=70
1 TMM 1180.4 1029.4 905.78 528.24 345.30 242.96 180.05
Cra 0.1983 0.2191 0.2386 0.3155 0.3658 0.3991 0.4218
Crp 0.6475 0.6331 0.6206 0.5773 0.5532 0.5386 0.5292
Ce 0.1543 0.1478 0.1409 0.1072 0.0810 0.0623 0.0490
Equation (36) 1180.5 1029.4 905.8 528.2 345.3 243.0 180.1
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Table 10. Cont.

Effect of Strain Energy on the Natural Frequency [Hz]

wj
L/h =26 L/h=28 L/h =30 L/h =40 L/h =50 L/h =60 L/h=70
2 ™M 3046.1 2658.9 2342.9 1380.6 911.99 647.23 482.81
Cta 0.1023 0.1180 0.1338 0.2087 0.2701 0.3172 0.3526
Crp 0.7365 0.7189 0.7028 0.6412 0.6021 0.5766 0.5592
Ce 0.1612 0.1631 0.1634 0.1501 0.1278 0.1063 0.0881
Equation (36) 3046.1 2658.9 2343.0 1380.6 912.01 647.24 482.82
3 T™M 5720.2 4986.6 4390.3 2588.3 1717.6 1225.6 918.96
Cra 0.0577 0.0681 0.0791 0.1381 0.1953 0.2452 0.2866
Crp 0.8014 0.7841 0.7678 0.6997 0.6513 0.6172 0.5928
Ce 0.1410 0.1477 0.1531 0.1623 0.1534 0.1376 0.1206
Equation (36) 5720.3 4986.7 4390.4 2588.3 1717.6 1225.6 918.98
4 T™MM 9180.2 7989.3 7023.9 4126.1 2739.8 1960.3 1474.8
Cra 0.0334 0.0401 0.0475 0.0909 0.1390 0.1857 0.2278
Crp 0.8496 0.8341 0.8190 0.7513 0.6984 0.6584 0.6282
Ce 0.1170 0.1258 0.1335 0.1578 0.1625 0.1559 0.1440
Equation (36) 9180.4 7989.5 7024.1 4126.2 2739.9 1960.3 1474.8
5 ™M 13,442.7 11,679.7 10,253.1 5992.0 3971.8 2843.1 2142.5
Cra 0.0211 0.0253 0.0301 0.0608 0.0989 0.1394 0.1788
Crp 0.8840 0.8708 0.8575 0.7946 0.7410 0.6977 0.6635
Ce 0.0948 0.1039 0.1124 0.1446 0.1601 0.1629 0.1577
Equation (36) 13,443.0 11,680.0 10,253.3 5992.1 3971.9 2843.1 2142.6
Table 11. Effect of strain energies on the natural frequencies of three-layered beams with the P-P end
condition depending on the variation in L/h.
ws Effect of Strain Energy on the Natural Frequency [Hz]
1
L/h=10 L/h=12 Lih=14 Lih=16 L/h=18 L/h=20 L/h =22 L/h =24
1 T™MM 3665.7 2728.6 2138.8 1737.3 1448.2 1230.8 1062.0 927.61
Cra 0.0493 0.0780 0.1102 0.1439 0.1777 0.2104 0.2415 0.2706
Crp 0.5957 0.5187 0.4562 0.4062 0.3665 0.3350 0.3102 0.2907
Ce 0.3550 0.4033 0.4336 0.4499 0.4558 0.4545 0.4482 0.4386
Equation (36) 3665.8 2728.6 2138.8 1737 .4 1448.2 1230.8 1062.1 927.63
2 T™MM 12,209.0 8709.6 6580.6 5183.5 4212.9 3508.2 2978.1 2567.7
Cra 0.0211 0.0290 0.0395 0.0521 0.0664 0.0822 0.0990 0.1166
Crp 0.8544 0.8104 0.7667 0.7246 0.6851 0.6485 0.6150 0.5846
Cc 0.1245 0.1606 0.1938 0.2233 0.2485 0.2693 0.2860 0.2988
Equation (36)  12,209.1 8709.6 6580.6 5183.5 4213.0 3508.3 2978.2 2567.7
3 T™M 24,878.8 18,625.3 13,901.8 10,822.3 8699.2 7170.5 6030.6 5156.2
Cta 0.5580 0.0142 0.0195 0.0262 0.0343 0.0435 0.0536 0.0645
Crp 0.0014 0.8981 0.8702 0.8417 0.8132 0.7852 0.7581 0.7321
Ce 0.4406 0.0877 0.1103 0.1321 0.1525 0.1713 0.1883 0.2033
Equation (36) 24,878.9 18,625.3 13,901.8 10,822.3 8699.2 7170.5 6030.6 5156.2
4 ™M 26,431.7 22,628.7 21,146.2 18,596.2 14,879.9 12,201.3 10,210.3 8688.6
Cra 0.0110 0.4687 0.3926 0.0213 0.0190 0.0237 0.0297 0.0365
Crp 0.9241 0.0015 0.0071 0.8832 0.8770 0.8568 0.8359 0.8151
Cc 0.0650 0.5298 0.6003 0.0954 0.1040 0.1194 0.1344 0.1484

Equation (36) 26,431.7 22,628.8 21,146.3 18,596.2 14,880.0 12,201.3 10,210.3 8688.7
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Table 11. Cont.

Effect of Strain Energy on the Natural Frequency [Hz]

wj
L/h=10 L/h=12 L/h=14 L/h=16 L/h=18 L/h=20 L/h=22 L/h =24
5 TMM 40,779.7 32,430.6 24,082.8 20,183.3 19,436.9 18,616.8 15,528.7 13,173.1
Cta 0.8314 0.0081 0.0117 0.3253 0.2822 0.0153 0.0183 0.0223
Crp 0.0018 0.9364 0.9121 0.0160 0.0015 0.8982 0.8824 0.8659
Ce 0.1668 0.0555 0.0762 0.6587 0.7163 0.0865 0.0993 0.1118
Equation (36)  40,780.0 32,430.6 24,082.8 20,183.4 19,436.9 18,616.8 15,528.7 13,173.1
Table 12. Effect of strain energies on the natural frequencies of three-layered beams with the P-P end
condition depending on the variation in L/h.
ws Effect of Strain Energy on the Natural Frequency [Hz]
1
L/h =26 L/h=28 L/h =30 L/h =40 L/h =50 L/h =60 L/h=70
1 TMM 818.33 727.99 652.27 407.94 279.50 203.34 154.46
Cra 0.2976 0.3223 0.3449 0.4300 0.4813 0.5121 0.5308
Crp 0.2755 0.2637 0.2548 0.2370 0.2419 0.2547 0.2698
Ce 0.4269 0.4140 0.4004 0.3330 0.2769 0.2332 0.1994
Equation (36) 818.34 728.00 652.28 407.95 279.51 203.35 154.47
2 TMM 22422 1978.9 1762.3 1087.0 74422 543.14 414.20
Cta 0.1347 0.1530 0.1712 0.2561 0.3249 0.3772 0.4159
Crp 0.5571 0.5325 0.5105 0.4318 0.3894 0.3679 0.3581
Ce 0.3081 0.3145 0.3184 0.3121 0.2856 0.2549 0.2259
Equation (36) 2242.3 1978.9 1762.3 1087.1 744.24 543.15 414.21
3 TMM 4469.3 3918.7 3469.7 2100.8 1427.4 1039.6 793.22
Cra 0.0761 0.0881 0.1005 0.1646 0.2256 0.2792 0.3239
Crp 0.7074 0.6841 0.6622 0.5723 0.5106 0.4694 0.4424
Ce 0.2165 0.2278 0.2373 0.2631 0.2638 0.2515 0.2336
Equation (36) 4469.3 3918.7 3469.7 2100.8 1427 .4 1039.6 793.23
4 TMM 7498.0 6547.6 5776.0 3448.7 2325.1 1687.2 1285.7
Cra 0.0441 0.0522 0.0609 0.1092 0.1600 0.2084 0.2523
Crp 0.7946 0.7746 0.7553 0.6701 0.6041 0.5545 0.5178
Ce 0.1613 0.1731 0.1838 0.2207 0.2359 0.2371 0.2299
Equation (36) 7498.0 6547.7 5776.0 3448.8 2325.2 1687.2 1285.7
5 TMM 11,334.1 9869.6 8683.4 5130.5 3436.1 2483.8 1889.2
Cra 0.0270 0.0323 0.0381 0.0736 0.1147 0.1568 0.1972
Crp 0.8493 0.8326 0.8162 0.7394 0.6750 0.6230 0.5819
Ce 0.1238 0.1351 0.1457 0.1870 0.2103 0.2202 0.2209
Equation (36) 11,334.1 9869.6 8683.4 5130.5 3436.1 2483.8 1889.2

Based on the results computed in Tables 5-12, the effect of variations in the normal
and shear strain energies on the natural frequencies of such beams, as well as the effect
of change in axial, bending, and shear strain energies on the natural frequencies of three
layered beams with different end conditions, are illustrated in Figures 4-7. In the dynamic
behaviors of such beams, as shown in Figures 4-7, the bending modes for all boundary
conditions are significantly affected by the normal strain energy of the face layer, but the
effect of the shear strain energy of the core is also sufficiently large that it cannot be ignored.
By observing the variations in the axial, bending, and shear strain energies represented in
Figures 4-7, it can be concluded that the axial strain energy has a significant effect, even in
the bending-dominated modes.
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Moreover, all the strain energies in the fourth and fifth natural frequencies, as shown
in Figures 4-7, undergo sudden changes. These phenomena can be analyzed in connection
with the third and fourth mode shapes of the three-layered beam with the C-F end condition
shown in Figure 3. To analyze the variation in mode shapes in detail, the variation in the
mode shapes of three-layered beams with the cantilevered end condition, with respect
to the change in L/, was investigated. The mode shapes between L/h = 10 and L/h = 20
exhibited sudden changes in the strain energies. L/h was increased from 10 to 20 at intervals
of 2, and the results are presented in Figure 8. As shown in Figure 8, the sudden changes
in the axial, bending, and shear strain energies were found to be caused by the exchange
process in the order of modes. In addition, it can be observed that the influence of the shear
strain energy of the core is significantly increased in the exchange process in the order of
the modes.
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Figure 8. Variation in the first five mode shapes of soft-core three-layered beams with the cantilevered
end condition with respect to the variation of L/h.

4. Conclusions

An analytical technique capable of distinguishing the effects of axial and bending
displacements and shear deformation on the natural frequencies of three-layered beams
was proposed in this study. The effect of these strain energies was calculated using the
relation between the maximum normal strain and kinetic energies by applying the shape
functions of the displacements defined by the developed transfer matrix. The transfer
matrix method is used to determine the eigenpairs of three-layered beams with a soft
core, and the efficacy of the method is demonstrated through a comparison of the results
computed using the proposed method and those discussed in previous works.

From the analyzed results, all the bending-dominated modes of top and bottom layers
were accompanied by the axial displacements because of the existence of a core layer, whereas
the axial-dominated modes were uncoupled with the bending displacements. Moreover, the
axial displacements have a significant effect, even in bending-dominated modes.

The proposed method has been considered a reasonable assumption for practical
problems, but the method is somewhat limited for applications because the mass of the
core layer was ignored, and the shear deformation beam theory was not considered in the
top and bottom layers. For a wide range of applications for such beams, the mass and shear
deformation in all layers should be considered in future studies.
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