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Abstract: Third-party library (TPL) reuse may introduce vulnerable or malicious code and expose
the software, which exposes them to potential risks. Thus, it is essential to identify third-party
dependencies and take immediate corrective action to fix critical vulnerabilities when a damaged
reusable component is found or reported. However, most of the existing methods only rely on
syntactic features, which results in low recognition accuracy and significantly discounts the detection
performance by obfuscation techniques. In addition, a few semantic-based approaches face the
efficiency problem. To resolve these problems, we propose and implement a more precise and scalable
TPL detection method BBDetector . In addition to syntactic features, we consider the rich function-
level semantic features and form a feature vector for each function. Moreover, we design a scalable
function vector similarity search method to identify anchor functions and the candidate libraries,
based upon which we carry out TPL detection. The experiment results demonstrate that BBDetector
outperforms B2SFinder and ModX in terms of effectiveness, efficiency, and obfuscation-resilient
capability. For the nix binaries, the F1-score of BBDetector is 1.11% and 11.21% higher than that of
ModX and B2SFinder, respectively. Moreover, for the Ubuntu binaries, the F1-score of BBDetector
is 1.32% and 14.93% is higher than that of ModX and B2SFinder, respectively. And in terms of
efficiency, the detection time of BBDetector is only 30.02% of ModX. Besides, for the obfuscation-
resilient capability, BBDetector is much stronger than B2SFinder. BBDetector achieves a F1-score of
71%, slightly lower than the F1-score of 77% achieved with the non-obfuscated binary programs.
However, B2SFinder only achieves an F1-score of 28%, much lower than that of 67% achieved with
the non-obfuscated binary programs.

Keywords: third-party library detection; syntactic features; function-level semantic features; function
vector similarity search; anchor functions

1. Introduction

Third-party libraries (TPLs) have been widely adopted to boost production efficiency
and reduce artificial costs during software development.

However, TPL reuse may introduce vulnerable or malicious code and expose the
software, which reuses them to potential risks. According to the report of Sonatype [1],
open source vulnerabilities are prevalent among popular projects, 29% of which contain at
least one known vulnerability. For example, the remote code execution vulnerability (CVE-
2021-30116) was found in the Kaseya VSA. The REvil hacker group used this vulnerability
to deploy the ransomware in local clients and launch a large-scale extortion attack against
related companies [2]. In addition, attackers no longer wait for the public disclosure of
vulnerabilities to exploit but actively inject new vulnerabilities into open source projects
that support the global supply chain. For example, the popular NPM UA-Parser-JS library
was hijacked and planted with malicious code by hackers, resulting in numerous Windows
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and Linux devices infected with cryptocurrency mining software and password-stealing
trojans [3]. In addition, this library is part of the supply chain for many well-known software
and enterprises. It will therefore be used in user-facing end-use applications, which will
spread to millions of computers. Generally, researchers have no access to the program source
code containing the TPLs and are limited to analyzing the binary executables. Therefore,
there is an urgent need to discover the TLPs in binary executables.

Researchers have recently proposed different methods to detect TPLs [4–11]. For
example, OSSPolice [5] extracts both string literals and exported function names to detect
TPLs reused by the target binary program, and B2SFinder [7] extracts seven kinds of code
features to carry out TPL detection. ModX [11] extracts string literals, function call graph
(FCG), and functions accessing the same data to perform TPL detection.

However, we identify three major limitations of the existing TPL detection. First,
at present, the third-party detection methods mainly rely on syntactic features (function
names [5,6], strings [4], constants [7] etc.). On the one hand, some methods need function
name information, which can be stripped away in binaries. On the other hand, with the
increase of the third-party component database, the syntactic characters (e.g., strings and
constants) increase, and the uniqueness and validity of the characters decrease, resulting in
low accuracy of recognition. Moreover, obfuscation techniques (such as string encryption)
can discount the detection performance for syntactic-based methods. Second, in addition
to syntactic features, a few studies (such as ModX [11]) focus on the function call graph
(FCG) and some functions’ semantic features (accessing the same data) to detect third-
party libraries, but the comparison of FCG causes a lot of time consumption and the
functions selected for detection are based on syntactic features, causing performance
degradation when the syntactic features are obfuscated. Third, most existing TPL detection
methods [4–7,9,10] focus on the source code form of libraries. However, many third-party
libraries have difficulty downloading their source code from the Internet (closed source
libraries). In addition, some code in the source code will not be compiled into the binary
executable file, such as the “text” part of the source code; thus, features extracted from the
uncompiled source code will cause feature interference.

To tackle the above problems, we propose and implement a more precise and scalable
TPL detection method, named BBDetector , which focuses on the binary form of third-party
libraries. To solve the problem of TPL detection considering only syntactic features, we
also consider the rich semantic features of functions contained in the libraries for more
accurate matching. Moreover, in terms of efficiency, we do not consider the expensive FCG
matching but consider all the function semantics. However, the function semantic matching
may introduce the problem of large time consumption with the expansion of third-party
libraries. To deal with fast and scalable function semantic matching, we first learn the rich
semantic information of functions using the presentation learning model [12] and form
a feature vector for each function. Then, we design a scalable function vector similarity
search method, which can support fast vector similarity retrieval when facing a large-scale
function vector database. Moreover, we use the function vector similarity search method to
identify function pairs (i.e., anchor functions) that are highly similar and likely to have the
same functionalities and the candidate libraries. Then, we carry out TPL detection based
on these anchor functions and the candidate libraries.

To demonstrate the efficacy of BBDetector in TPL detection, we collect two types of
datasets: Dataset I and Dataset II. Dataset I is a binary target program dataset with known
TPL reused relationships, which includes programs built by the nix [13] package manager
and a set of manually building binaries on Ubuntu 20.04. Dataset II is a TPL dataset, which
is used to build third-party library databases. In addition, we use effectiveness (including
precision, recall, and F1-score), efficiency, and code obfuscation-resilient capability as the
evaluation metrics. We compare BBDetector with the state-of-the-art binary-to-binary TPL
detection method ModX [11] and binary-to-source TPL detection method B2SFinder [7].
The experiment results show that BBDetector outperforms B2SFinder and ModX in terms
of effectiveness, efficiency, and obfuscation-resilient capability. For the nix binaries, the
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F1-score of BBDetector is 1.11% and 11.21% higher than that of ModX and B2SFinder, respec-
tively. In addition, for the Ubuntu binaries, the F1-score of BBDetector is 1.32% and 14.93%
higher than that of ModX and B2SFinder, respectively. Moreover, in terms of efficiency, the
detection time of BBDetector is only 30.02% of ModX. Furthermore, for the obfuscation-
resilient capability, BBDetector is much stronger than B2SFinder. BBDetector achieves an
F1-score of 71%, slightly lower than that of 77% achieved with the non-obfuscated binary
programs. However, B2SFinder only achieves an F1-score of 28%, much lower than that of
67% achieved with the non-obfuscated binary programs.

In summary, our contributions are summarized as follows: Current TPL detection
methods mainly rely on syntactic features, which results in low recognition accuracy and
significantly discounted detection performance by obfuscation techniques. A few semantic-
based approaches (such as FCG graph) face the efficiency problem. We propose a more
precise and scalable TPL detection method to resolve these problems. To improve accuracy,
in addition to syntactic features, we also consider the rich function-level semantic features
and form a feature vector for each function. Moreover, in terms of efficiency, we design
a scalable function vector similarity search method to identify anchor functions and the
candidate libraries. Then, we perform TPL detection based on these anchor functions and
the candidate libraries. We implement and evaluate BBDetector with binary target programs
with the known TPL reused relationships and TPL dataset. Moreover, the experiment
results show that BBDetector outperforms B2SFinder and ModX in terms of three metrics:
effectiveness, efficiency, and obfuscation-resilient capability.

2. Related Work

In this section, we introduce the related works of TPL detection. According to the forms
of detection target programs and third-party libraries, current TPL detection methods can be
divided into three categories: source-to-source comparison, binary-to-source comparison,
and binary-to-binary comparison.

2.1. Source-To-Source Comparison

Source-to-source comparison methods detect reused libraries when the source code
of detection target programs and third-party libraries are both available. Source-to-source
comparison methods often perform syntactic analysis on the source code and carry out a
matching based on tokens [14] and abstract syntax trees (AST) [15].

Baxter et al. [15] propose a tool that transforms source code into abstract syntax trees
(AST) and detects copy-paste by finding identical subtrees. CCFinder [14] represents a
source code as a token sequence and applies the rule-based transformation to the sequence.
Then, it uses a suffix-tree matching algorithm to make a token-by-token comparison.
Centris [10] is capable of detecting modified and nested libraries reuse by segmenting the
source code and detecting the reuse of a unique part of the libraries only. For scalability, it
adopts a redundancy elimination technique to reduce space complexity and stores hashed
functions to accelerate the search.

2.2. Binary-To-Source Comparison

In the case of binary-to-source comparison detection, the target programs are binary
files and the third-party libraries are source code files.

Binary Analysis Tool (BAT) [4] extracts the strings from both sources and binaries.
It considers longer strings to have more uniqueness and assigns them larger weights.
OSSPolice [5] extracts syntactical features, such as strings and exported function names
when matching binaries against library sources. It introduces a novel hierarchical indexing
scheme to achieve both high scalability and accuracy. BCFinder [6] selects string constants
as features to generate a profile for sources and binaries. When extracting strings from
sources, it ignores strings that are required by programming syntax such as “%s” , “%d”,
which are required by printf. B2SMatcher [9] extracts five kinds of code features: string
literals, exported function names, constants in assignments, constant parameters in function
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calls, and in/out-degrees of a function on call graph. It categorizes these features into
program-level features (string literals, exported function names) and function-level features
(constants in assignments, constant parameters in function calls, and in/out-degrees of a
function on call graph) and proposes a two-stage version identification approach based
on the two levels of code features. B2SFinder [7] is a state-of-the-art method for binary-to-
source TPL detection. It extracts seven kinds of code features (String literal, Switch/Case,
If/else, Export function name, String Array, Integer Array, Enum Array) to make a separate
analysis and detection.

2.3. Binary-To-Binary Comparison

When the target programs and third-party libraries are in binary format, we need to
do a binary-to-binary comparison.

As far as we know, BinShape [16] is the first method to detection reused libraries in
binary files. It produces a robust signature for each library function based on heterogeneous
features covering CFGs, instruction-level characteristics, statistical characteristics, and
function-call graphs. And then it desin a novel data structure to store these signatures
and facilitate efficient matching against the target function. LibDX [8] extracts contents in
the read-only DATA segment of binaries, which are mainly composed of string constants
and sometimes contain function names and import libraries. Moreover, it takes a fuzzy
filename and requires information as supplementary features. OSLDetector [17] detects
third-party libraries for multi-platform software in binaries. It chooses constant strings
extracted from .rodata section and .data section. And it takes measures such as filtering
features and building an internal clone forest for all libraries to eliminate internal strings
clones. LibDB [18] can effectively and efficiently detect imported TPLs even in stripped
and fused binaries. It extracts basic and coarse-grained features and function contents
features. It further adopts a function call graph-based comparison method to improve the
accuracy of the detection. ModX [11] is a state-of-the-art method for binary-to-binary TPL
detection. It extracts syntactic features (strings literals, constant numbers) and semantic
features (function call graph, functions accessing common data) to make TPL detection.

In this paper, we design a binary-to-binary comparison to detect third-party libraries.
The considerations that we collect libraries in binary format as our local feature database for
two reasons. On the one hand, it is hard for many libraries downloaded from the Internet to
look for their source code. Especially some libraries, such as Google-Mobile-Ads-SDK [19],
are closed source libraries [8]. On the other hand, by analyzing binary files, we can get
much higher-quality features to build a database. Open-source repositories have a great
deal of code duplication, which is usually stored in the source code but not compiled in
the binary file. Such as OpenCV and LibPNG, the source code of LibPNG is included in
the OpenCV source repository but it is not compiled into OpenCV library binaries. The
source code in text is not compiled into released binaries. Features extracted from these
uncompiled source codes will increase the number of features, potentially leading to a low
matching ratio and causing false negatives.

3. Methodology
3.1. Overview

In this paper, we design our TPL detection method named BBDetector , shown in Figure 1,
and we present the details as follows. As illustrated in Figure 1, there are three components:

• Feature extraction. When given a target binary or a third-party library, we disassemble
it using IDA Pro [20] and extract corresponding features, including string literal features
and function semantic features, to represent it. We extract these features by writing an
IDA python script.

• Feature database construction. In this process, we construct the local TPL feature
database. The output of the TPL feature extraction process contains two types of features:
string literal features and function semantic features, which are used to constitute the
string feature database and the function feature database, respectively.
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• TPL detection. BBDetector performs TPL detection by checking whether a target binary
could be matched to any library in the local TPLs by calculating their similarity score.
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Figure 1. Overview of BBDetector.

3.2. Feature Extraction

In this process, we extract features from the target binaries and the third-party libraries,
including two stages: raw feature extraction and feature generation.

3.2.1. Raw Feature Extraction

We first use IDA Pro to disassemble binary executables and identify function bound-
aries in this stage. Then, we extract raw string literals and function assembly code. String
literals are basic syntactic features easily extracted from the data segment (.data, .rodata)
and usually have unique values that can be easily distinguished. Suppose two functions
from two binaries have identical string literals. In that case, they have a high chance of
being the same function, and the two corresponding binaries maybe have a reuse relation-
ship. We write the IDAPython script to extract raw string literals. In addition to syntactic
string features, we extract function-level semantic features to represent the binaries more
accurately. Given a binary file, we extract a list of assembly functions, their basic blocks,
and control flow graphs.

3.2.2. Feature Generation

We preprocess the extracted raw features in this stage, including raw string feature
filtering and function vector generation. String duplication is common among large-scale
libraries, reduces detection efficiency, and results in possible false positives, so it is essential
to filter some common and frequently occurring strings. OSLDetector [17] analyzes the
distribution of string features length. It finds that the number of strings less than five
in length (such as %s, #, etc.) accounted for 32% of their total strings, and they do not
make a robust matching in the detecting process. Therefore, we select filter strings with
a length of less than five, which can save storage space and improve detection efficiency.
For function-level semantic feature, to facilitate subsequent searching and matching, we
use an assembly code representation learning model Asm2Vec [12] to produce a numeric
vector for each assembly function, as depicted in Figure 2. We use the assembly code of
functions as training data without prior knowledge, and this model produces a vector for
each function after training. The training process is as shown in the lower part of Figure 2:
when given the current function and neighbor instructions, this model uses the current
function’s vector and the context provided by the neighborhood instructions to predict the
current instruction and maximizes the log probability of seeing current instruction. When
given a new target function that is not from training data, we use this representation
learning model to predict its vector.
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Figure 2. Function embedding module.

3.3. Feature Database Construction

After extracting the features of the third-party libraries, we need to store their features
as a local TPL feature database for the subsequent TPL detection of the target binaries. The
storage form of features is closely related to the detection efficiency. In this section, we
introduce the building process of our TPL feature database, shown in Figure 1, including
two components: string feature database and function feature database.

3.3.1. String Feature Database

Due to the challenge of string feature duplication, we assign a unique weight to each
string feature to reduce the values of frequently-used strings. In BBDetector , we use TF-IDF
algorithm, which is a popular algorithm to reflect the importance of words in a document
in the corpus, to calculate the weight of each string literal. The weight w of a string i to a
library j is shown as Equation (1).

wij = TF− IDF(i) = TF(i) ∗ IDF(i) = ∑
k

nij

nkj
∗ |L|
|{l ∈ L : i ∈ l}| (1)

where nij is the frequency of string i in library j; |L| is the total number of libraries and
|{l ∈ L : i ∈ l}| is the number of libraries which contain the string i.

After calculating the weight for each string, we build index tables to store the re-
lationship between string features and libraries. We adopt hashing method to generate
hash values for each string (hash(str1)) and use the same column width to store strings
which can avoid space waste. Moreover, we adopt an inverted index technique [5,7] to
create an inverted mapping of string literal features to the third-party libraries to speed
up string literal feature searching and matching. The specific information is as shown
in Figure 1, which includes two index tables: the left one uses the inverted index to store
the information about the library where the string resides, and the right one stores the
information about strings that the library contains to retrieve strings through a library
name easily.

3.3.2. Function Feature Database

Next, we describe how to build a function vector database for scalable similarity search
and matching. When detecting TPLs based on function features, we need to calculate the
function vector similarity scores between the target binary and the libraries. In other words,
we need to find similar matching function vectors for the target binary from a large database
of TPL function vectors, which can be considered a function search problem. To search a
similar vector facing a massive vector dataset efficiently, we can organize vector data by
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building indexes on them. After the dataset is indexed, queries can be routed to clusters, or
subsets of data, that are most likely to contain vectors similar to an input query. Then, we
perform a one-to-one similarity matching in these clusters and reduce similarity comparison
in unrelated clusters. Our method uses a quantization-based index [21,22], which has a
high-speed query capability. We first perform vector quantization for each function vector
and build a quantization-based index. Specifically, we apply a quantizer q to map a function
vector v to a codeword q(v) chosen from a codebook C, which is constructed by using
K-means clustering algorithm and where each codeword is the clustering centroid and q(v)
is the closest centroid to function vector v. After building the index, we store these vectors
in the segments, each of which stores an index. Figure 1 shows an example of 10 vectors (v0
to v9) of three clusters with centroids c0, c1 and c2. And q(v0), q(v1), q(v2) and q(v3) is c0
and so on.

3.4. TPL Detetction

We have selected two kinds of code features shown in Figure 1. For different code
features, we design different matching algorithms.

3.4.1. TPL Detection Based on String Features

In TPL detection based on string features, we calculate the matching score between the
target binary and TPLs. The matching score is calculated based on the matched weighted
feature instances. As the number of matched feature instances increases, the matching
score increases. Therefore, we set a threshold for the matching score, the same as B2SFinder.
Specifically, when the matching score satisfies any of the following conditions: (1) the ratio
of the matched strings between the target binary and a library is greater than 0.5, as shown
in Equation (2); (2) the sum weight of matched string instances is larger than 100, and the
ratio of this weight is larger than 0.1, as shown in Equation (3). We consider the target
binary having a reuse relationship with the corresponding library.

|SB ∩ SL|
|SL|

> 0.5 (2)

W(SB ∩ SL) > 100 &
W(SB ∩ SL)

W(SL)
> 0.1 (3)

where SB represents the string instances including in the target binary B; SL represents the
string instances including in the library L to be compared; |SB ∩ SL| represents the number
of common string instances including both B and L; W(SB ∩ SL) represents the weight sum
of the common string instances; and W(SL) represents the weight sum of string instances
including in L.

The specific algorithm of TPL detection based on string features is shown in Algorithm 1.
The algorithm’s input is the string features SB of the target binary and the string index tables.
Firstly, we obtain the candidate reused TPLs based on the strings included in the target
binary and the string inverted index table (line 2–4). When a string of the target binary
is in the index table, we take libraries that include this string as candidate reused TPL.
Then, for each candidate library, we calculate the matching score and compare it with the
predefined threshold to determine whether it is reused by the target binary (line 5–20). We
obtain the matched string instances between the target binary and the candidate library (line
8–11). Then, we calculate the weight sum of matched string instances (line 12–16). Last, we
calculate the matching scores to determine whether the values are greater than the threshold
and whether this library is reused by the target binary (line 17–19).
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Algorithm 1 TPL detection based on string features

1: function TPL_DETECTION_BASED_ON_STRING_FEATURES(SB)
2: candidate_matched_libs← []
3: for s in SB do
4: candidate_matched_libs.append(GET_LIBS(s))

//feature match
5: matched_libs← []
6: for lib in candidate_matched_libs do
7: SL ← GET_STRINGS(lib)

// match string instances
8: Sm ← []
9: for sb × sl ∈ SB × SL do

10: if sb = sl then
11: Sm.append(sl)

//calculate weights
12: for s in SL do
13: W← GET_LIB_STRING_WEIGHT(s)
14: WL ←WL+W
15: if s in Sm then
16: Wm ←Wm+W

//calculate matching scores
17: score←Wm/WL
18: if score ≥ threshold then
19: matched_libs.append(lib)
20: return matched_libs

3.4.2. TPL Detection Based on Function Features

In TPL detection based on function semantic features, we measure semantic similarity
between functions in the target binary B and the third-party libraries L = L1, L2, . . . , Lk,
where k is the number of libraries in the TPL database. Suppose we need to determine
whether the target binary B reuses a library Li ∈ L, since B and Li consist of multiple
functions, the matched function similarity score will be aggregated to measure the similarity
score SBLi between B and Li. To calculate SBLi , a problem we need to deal with is how to
choose the matched functions (called anchor functions), which have a high similarity score
and may have a high probability of reuse relationships, from B and Li to compare with.

Due to B, which may reuse multiple libraries Li, Lj, . . . and partially reuse Li, many
functions may be contained in only one. Therefore, we cannot directly conduct a one-to-
many search to find the similar function l f j ∈ Li of a function b f j ∈ B (i.e., anchor functions)
which may be only contained in B and vice versa. Thus, we design a fast and scalable
method to obtain the anchor functions for each library.

In the acquisition of anchor functions stage, we select the anchor functions. For
each function f ∈ B, we find vectors that are most similar from the function vector
database to obtain candidate reused TPL list and the anchor functions, respectively, i.e.,
Li : [(b f1, l f1), (b f2, l f2), . . . , (b f j, l f j)], where b f j is a function in the target binary B; l f j is a
function in the candidate matching library Li; and (b f j, l f j) represent the matching anchor
functions and we take their similarity scores as part of the similarity scores of B and Li.
Therefore, the problem of anchor function acquisition is expressed as the problem of vector
similarity search. Specifically, it can be expressed as, given a collection of m function vectors
in VB : q1, q2, . . . , qm and a collection of n ∗ k function vectors in VL : v1, v2, . . . , vn∗k, how
to quickly find the top-k similar function vectors for each qi? In BBDetector , we search
similar function vectors based on quantization-based indexes.

Search processing of a query qi over quantization-based indexes takes two steps:
(1) Find the closest nprobe clusters based on the distance between qi and the centroid of each
clusters. (2) Search within each of the nprobe relevant clusters to find similar vectors. For
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example, as shown in the lower right corner of Figure 1, assuming nprobe is 2, the closet
clusters centroids of qi are c0 and c1, and then we scan vectors v0, v1, v2, v3, v4, v5, v6 to find
similar vectors.

In the stage of the feature match, we measure the similarity score SBLi based on
these anchor functions. We measure their similarity by computing their function vectors’
cosine similarity scores for the anchor functions, which are often used to compare the
similarity degree of the binary function vectors [12,23,24]. We obtain the similarity score
SBLi by calculating the sum of the cosine similarity of these anchor function vectors and
averaging it. When the similarity score is greater than the threshold (we set it to 0.8, which is
determined empirically), we consider the target binary having a reuse relationship with the
corresponding library. If the detected matching libraries have multiple versions in the TPL
database, we use the version with the highest similarity score as the final matching version.

The specific algorithm of TPL detection based on function features is shown in Al-
gorithm 2. The algorithm’s inputs are the function vectors VB of the target binary and
the function vector index table. Firstly, we obtain the candidate reused TPLs and anchor
functions based on the vectors including the target binary (line 2–9). For each vector q ∈ VB
in the target binary B, we find its top-k similar function vectors (line 5). For each similar
function vector libv, we consider the library including it as a candidate library (line 7–8)
and take (q, libv) as an anchor function (line 9). Then, we calculate the matching score
between B and a candidate library to judge whether the vector similarity values are greater
than the threshold and determine whether this library is reused by the target binary (line
10–18). Then, we determine whether there are multiple versions of a library in the matching
result. We first judge the number of a library (regardless of the specific version) exists in
the matching result. If the number is greater than one (line 21), we select the version of this
library with the highest similarity score (line 22) and take this version as the final matching
result (line 23). If there is only one version in the matching result, we simply take the version
as the final matching result (line 24–25). The similarity score between B and a candidate
library is the average of the sum of the similarity scores of the anchor functions they contain.

Algorithm 2 TPL detection based on function features
1: function TPL_DETECTION_BASED_ON_FUNCTION_FEATURES(VB)

// get candidate libraries and the anchor functions
2: candidate_matched_libs← []
3: lib_anchor_functions← {}
4: for q in VB do
5: similar_lib_vs← GET_TOP_K_SIMILAR_VECTOR(q, k)
6: for lib_v in similar_lib_vs do
7: lib← GET_LIBS(lib_v)
8: candidate_matched_libs.append(lib)
9: lib_anchor_functions[lib].append([q,lib_v])

//feature match
10: matched_libs← []
11: for lib in candidate_matched_libs do
12: anchor_functions← GET_LIB_ANCHOR_FUNCTIONS(lib)
13: for anchor_function in anchor_functions do
14: similarity← CALCULATE_SIMILARITY(anchor_ f unction)
15: similarity_scores← similarity_scores + similarity
16: ave_similarity_scores← AVERAGE(similarity_scores)
17: if ave_similarity_scores ≥ threshold then
18: matched_libs.append(lib)
19: function_matched_libs← []
20: for lib_without_version in matched_libs do
21: if LEN(lib_without_version) > 1 then
22: matched_version← SELECT_MAX_SIMILARITY_SCORE_VERSION(lib_name)
23: function_matched_libs.append(matched_version)
24: if LEN(lib_without_version) == 1 then
25: function_matched_libs.append(lib_name_version)
26: return f unction_matched_libs
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4. Evaluation

In this section, we design several experiments to evaluate BBDetector in terms of
effectiveness, efficiency, and code obfuscation-resilience capability and compare it with the
state-of-the-art tool ModX [11] and B2SFinder [7].

4.1. Experimental Setup
4.1.1. Data Collection

To evaluate our TPL detection method, we collect two types of datasets from ModX:
Dataset I and Dataset II. Dataset I is a binary target program dataset with a known TPL
reused relationship, which includes programs built by the nix package manager and a
set of manually building binaries on Ubuntu 20.04. The nix binary dataset is as shown
in Table 1, which is classified into three classes according to binary program size. A brief
description of the ubuntu dataset is as shown in Table 2, in which the first column presents
the binary names, and the last two columns present the number of TPLs reused by these
binaries and the specific information of TPLs. Dataset II is a TPL dataset, which is used to
build a third-party library database.

Table 1. Nix binary dataset used for evaluating TPL detection.

Dataset Set A Set B Set C Total

File Size (KB) 0–100 100–1000 >1000 16.4–4413.5
Average Size (KB) 61.8 297.8 2210.2 724.8

Number of Binaries 15 66 25 106
Average Number of Functions 159.6 652.1 4224.8 1425

Table 2. Ubuntu datasets used for evaluating TPL detection.

Program Libs Num Libs Linked

ssldump 2 libc.so.6, libpcap.so.0.8
vim 4 libtinfo.so.6, libdl.so.2, libm.so.6, libc.so.6

busybox 3 libresolv.so.2, libm.so.6, libc.so.6
tcpdummp 3 libpcap.so.0.8, libc.so.6, libcap-ng.so.0
openvpn 5 liblzo2.so.2, libssl.so.47, libcrypto.so.45, libpthread.so.0, libc.so.6

sqlite3 3 libdl.so.2, libpthread.so.0, libc.so.6
openssl 5 libssl.so.1.1, libdl.so.2, libcrypto.so.1.1, libpthread.so.0, libc.so.6

4.1.2. Baseline Techniques

To evaluate the effect of TPL detection, the proposed method BBDetector is evaluated
and compared with ModX algorithm [11] and B2SFinder algorithm [7]. ModX is a state-of-
the-art method for binary-to-binary TPL detection. It extracts syntactic features (strings
literal, constant numbers) and semantic features (function call graph, functions accessing
common data) to make the TPL detection. Due to ModX is not open source for the time
being, we only compare it with its results presented in the paper. B2SFinder is a state-of-
the-art method for binary-to-source TPL detection. It extracts seven kinds of code features
(String literal, Switch/Case, If/else, Export function name, String Array, Integer Array,
Enum Array) to make a separate analysis and detection. In process of binary-to-binary
TPL detection, only the first four types are applicable. In our experiment, we consider
three kinds of features (String, Switch/Case, If/else) due to the binaries being stripped of
function names.

4.1.3. Evaluate Metrics

We evaluate and compare BBDetector , B2SFinder and ModX based on three criteria:
effectiveness, efficiency and code obfuscation-resilient capability. Specifically, we compare
the effectiveness and code obfuscation-resilient capability of these TPL methods on the
nix binary dataset or ubuntu binary dataset by using three metrics: precision (P), recall (R)
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and F1-score (F1). The definitions of these metrics are shown as Equation (4), where TP
is the number of TPLs detected by detection methods that are actually in the binaries; FP
is the number of TPLs which do not belong to the binaries, but are wrongly recognized
by detection methods; and FN is the number of TPLs which belong to the binaries, but
are unrecognized by detection methods. For efficiency, we compare the detection time of
each method.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

4.2. Effectiveness

In this section, we use both the nix binary dataset and ubuntu binary dataset to
measure the effectiveness of BBDetector from three metrics: precision (P), recall (R) and
F1-score (F1). For nix binaries; there are a total of 323 real reuses. Based on these reuse
labels, we compare BBDetector with B2SFinder and ModX and summarize the experiment
results of the nix binary dataset in Table 3. Since ModX does not open its source code, we
present the original experiment results in the paper [11].

Table 3. TPL detection on nix binary dataset.

Method TP FP FN Precision Recall F1-Score

BBDetector 162 25 161 86.6% 50.2% 63.5%
B2SFinder 138 22 185 86.3% 42.7% 57.1%

ModX / / / 85.6% 49.6% 62.8%

In Table 3, we can observe that BBDetector outperforms B2SFinder and ModX in terms
of these three metrics. B2SFinder only considers basic syntactic features. To compare with
it, BBDetector obtains an F1-score of 63.5%, 11.21% higher than that of B2SFinder, demon-
strating the necessity and usefulness for also taking into account fine-grained function-level
semantic characteristics. ModX considers the FCG graph and features of functions accessing
the same data, which leads to a huge time consumption when considering the expensive
graph matching process and is also based on syntactic feature when considering function
features. To compare with it, BBDetector obtains a 1.11% higher F1-score than that of ModX,
proving the BBDetector validity of choosing anchor functions for semantic matching in
BBDetector , even without considering the expensive graph matching.

In Table 4, we list the detailed TPL detection results for the ubuntu binary dataset. The
first column presents the specific target binary file name and the second column presents
the number of reused third-party libraries in each of them. The rest columns present the
number of TP (true positives), FP (false positives) and FN for BBDetector , B2SFinder and
ModX, respectively. As shown in Table 4, BBDetector achieves the highest F1-score of 77%,
14.93% higher than that of B2SFinder and 1.32% higher than that of ModX.

Moreover, we analyze and evaluate the effectiveness against some vulnerable version
of libraries. In our TPL database, there are vulnerable vesion of libraries, some of which
is as shown in Table 5. For example, library libbsd.so.0 contains vulnerabilities CVE-
2019-20367 and CVE-2016-2090. Because the detection results of ModX do not give the
contained specific library information, we only briefly analyze the result of BBDetector and
B2SFinder on some vulnerable version of libraries. The target binary program curl reuses
the vulnerable library libcurl.so.4. Since curl only partially reuses this library and the
ratio of the number of reused functions is only 11.28% (number of common functions: 787,
total number of functions in the library: 6975), the number rate of reused synactic features is
small (the common string percent is only 4.3%) and B2SFinder does not identify this reuse
relationship. However, BBDetector also considers function semantic features and measures
the average similarity score (0.83, which is greater than the threshold) of the anchor functions
between them; thus, BBDetector can correctly detect the reuse relationship between them.
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Table 4. TPL Detection on ubuntu binary dataset.

Binary Libs Linked
BBDetector B2SFinder ModX

TP FP FN TP FP FN TP FP FN

busybox 3 2 0 1 2 0 1 1 1 2
openssl 5 4 0 1 3 0 2 2 1 3

openvpn 5 3 1 2 1 2 4 4 0 1
sqlite3 3 1 0 2 1 0 2 3 1 0

ssldump 2 2 1 0 2 1 0 2 0 0
tcpdump 3 3 1 0 3 1 0 3 0 0

vim 4 3 1 1 3 1 1 2 0 2
Total 25 18 4 7 15 5 10 17 3 8

BBDetector B2SFinder ModX

Precisicon Recall F1 Precisicon Recall F1 Precisicon Recall F1

82% 72% 77% 75% 60% 67% 85% 68% 76%

Table 5. Some vulnerable version of libraries and the vulnerabilities they contain.

TPL Vulnerabilities Contained in TPL

libc.so.6 CVE-2022-35023
libpcap.so.0.8 CVE-2019-15165

libbsd.so.0 CVE-2019-20367,CVE-2016-2090
libresolv.so.2 CVE-2015-7547,CVE-2015-5180
libcurl.so.4 CVE-2016-5421,CVE-2016-5420,CVE-2016-5419,CVE-2015-3153,CVE-2013-1944

4.3. Efficiency

In this section, we investigate the detection time of BBDetector and compare it with the
B2SFinder and ModX in terms of the nix binary dataset. We compare the detection time of
BBDetector with existing tools by employing the nix binary dataset. Note that the detection
time does not include the database construction time (Since it is a one-time job, we will not
consider it in the TPL detection process). Table 6 shows the comparison result of detection
time. The first column represents the size (KB) of target binaries and the last three columns
represent the average detection time for each target binary of the corresponding size in
terms of BBDetector , B2SFinder and ModX, respectively. Besides, the last line represents
the average detection time for all target binaries. Since B2SFinder only uses basic syntactic
features, it has better performance than BBDetector and ModX. BBDetector considers func-
tion semantic features that need to perform function embedding, which will also cause time
consumption. When both consider semantic features, the TPLs detection time-consuming of
BBDetector is only 30.02% of ModX, which greatly improves the detection efficiency. ModX
performs expensive graph matching and function semantic matching. When it measures
similarities, which are mainly unstructured data, it must compare these features one by
one in the detection procedure. However, we store these features using quantization-based
indexes and search them efficiently, which greatly improves time efficiency.

Table 6. The average detection time of TPL detection for nix binary dataset(s).

Size BBDetector B2SFinder ModX

Set (0 100 KB) 46.1 49.8 255
Set (100–1000 KB) 251.6 157.3 915.3

Set (>1000 KB) 1141.4 245.5 3538.8

Average 432.4 162.9 1440.6

Next, we analyze the time complexity of the third-party libraries detection based
on function features. Assuming the target binary is represented as B = vb1, vb2, . . . , vbm,
where m is the number of functions in B. The third-party libraries are represented as
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L = L1, L2, . . . , Lk, where k is the number of libraries in the TPL database, and a library
Li in L is represented as Li = vl1, vl2, . . . , vln, where n is the average number of functions
in Li. If we perform a one-to-one search and matching, the time complexity of the whole
detection process based on function features is O(m ∗ k ∗ n), which is very time-consuming
because k ∗ n is the total number of functions in libraries. However, in BBDetector we use
quantization-based indexes to divide the function vector into nlist clusters and we just need
to compare the vector vbi ∈ B with nlist clustering centroids, whose time complexity is
O(nlist) and select the nearest nprobe (which is very little) clusters to compare with, whose
time complexity is O(nprobe ∗ sc), where sc is the average size (i.e., k ∗ n/nlist) of a cluster.
Thus, the time complexity of BBDetector is O(m ∗ (nlist + nprobe ∗ sc)), which is much
smaller than O(m ∗ k ∗ n), which greatly improves the search efficiency.

4.4. Obfuscation-Resilient Capability

In this section, we evaluate the obfuscation-resilient capability of TPL detection meth-
ods. The obfuscation-resilient capability is an important metric to measure the performance
of a TPL detection tool since obfuscation techniques can discount the detection performance.
We select the seven ubuntu binary program dataset and use a popular obfuscation tool,
Armariris [25], to obfuscate these programs. Armariris is an obfuscator based on the LLVM
project for multiple languages and platforms, currently supporting string obfuscation,
control flow flatten and instruction substitutions.

Based on these obfuscated target binary problems, we only compare BBDetector with
B2SFinder, since ModX has no experiment in designing obfuscations and is not open source
for the time being, at present. The specific detection results are presented in Table 7. From
the table, we can observe that B2SFinder only achieves an F1-score of 28%, much lower
than that of 67% achieved by it with the non-obfuscated binary programs. This is because
the obfuscation technique alters the syntactic information of a program, leading to the
syntactic features being different from the original TPLs and without a doubt, affecting the
detection performance of TPL detection methods based on syntactic features. However,
we can see BBDetector achieves an F1-score of 71%, slightly lower than the F1-score of
77% achieved with the non-obfuscated binary programs, which indicates BBDetector is
less affected by the code obfuscation technique due to we consider the function semantic
features, demonstrating the obfuscation-resilient capability of BBDetector towards code
obfuscation technique.

Table 7. TPL detection on obfuscation ubuntu binary dataset.

Binary Libs Linked
BBDetector B2SFinder

TP FP FN TP FP FN

busybox 3 2 0 1 2 0 1
openssl 5 3 0 2 1 0 4

openvpn 5 3 1 2 0 0 5
sqlite3 3 1 0 2 0 0 3

ssldump 2 2 1 0 0 0 2
tcpdump 3 2 1 1 1 0 2

vim 4 3 1 1 0 0 4
Total 25 16 4 9 4 0 21

BBDetector B2SFinder

Precisicon Recall F1 Precisicon Recall F1

80% 64% 71% 100% 16% 28%

5. Conclusions

In this paper, we propose BBDetector , a more precise and scalable TPL detection
method for target binary executables with fine-grained function-level features. There are
a lot of works related to TPL detection. Most existing methods only consider syntactic
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features, and a few rely on expensive graph matching and function semantic features that
access the same data. Compared to these TPL detection methods, the innovation points of
our work is embodied in two aspects: more precise and scalable. On one hand, in addition
to syntactic features, we also consider fine-grained function-level semantic features, which
can more accurately represent a target binary program or a TPL. On the other hand,
to make TPL detection based on semantic features more scalable, we design a function
vector similarity search method to seek anchors functions (each pair of anchor functions
are considered as matched functions) and the candidate TPLs. Then, we carry out TPL
detection based on these candidate libraries and anchor functions. The experiment results
demonstrated that BBDetector outperforms the existing optimal TPL detection methods
B2SFinder and ModX in effectiveness, efficiency and obfuscation-resilient capability.
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