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Abstract: As a key technology of 5G, network slicing can meet the diverse needs of users. In this
research, we study network slicing resource allocation in radio access networks (RAN) by case-based
reasoning (CBR). We treat the user distribution scenario as a case and stored a massive number of
cases in the library. CBR is used to match a new case with cases in the case library to find similar
cases and determine the best slice bandwidth ratio of the new case based on these similar cases. In
the matching process, the k-nearest neighbors (KNN) algorithm is used to retrieve similar cases,
the nearest k neighbors being determined by considering sparsity reduction and locality-preserving
projections. Although only an initial study, the results confirm that the proposed architecture is
capable of allocating resources efficiently in terms of prediction error and computational cost.

Keywords: network slicing; radio access network; resource allocation; case-based reasoning; k-nearest
neighbors

1. Introduction

Network slicing, in which the network infrastructure is separated into several virtual
sub-networks, is a critical technology for 5G networks. Each slice can provide a specific slice
service such as end-to-end low latency, high bandwidth, and massive device access [1]. The
spectrum resource can be adjusted and optimized based on different service requirements
by separating it into several slices in RAN. However, there are some challenges to allocate
resource efficiently for limited spectrum resources. Among them, one important issue is
the lack of real-time intelligence agents to effectively deal with unstable resource supply
and demand and lack of real-time technologies to accurately track and analyze resource
allocation and usage. Once slice users cannot obtain the minimum resources they need
due to unreasonable resource allocation, they will not be able to realize the corresponding
services. This is made even more difficult in fifth-generation (5G) cellular networks because
end-users want larger data rates and lower end-to-end latency [2]. In this paper, we research
the inter-slice bandwidth allocation in RAN to maximize the qualified user ratio (QUR),
which obtained enough to meet its quality of service (QoS).

Luis Guijarro et al. [3] allocated a weight to each cell to enable operators to share
resources. The weight denoted the proportion of resources that each network slice user
can obtain in each cell to maximize the number of subscribers. It provided accurate ap-
proximation when the cells were heterogeneous and exact values for the Nash equilibrium.
Liu et al. [4] proposed a two-level allocation to maximize a no close-form utility. They
first learned how many resources were needed by users in each slice to fulfill their QoS
requirements and then optimize the resource allocations. They take inter-slice resource
allocation as the master optimal problem and suggested a convex optimization approach for
it. The deep deterministic policy gradient method (DDPG) for learning the allocation policy
intra-slice as the slave optimal problem. Deep reinforcement learning (DRL) was intro-
duced by Wang et al. [5] to dynamically allocate resources between several slices. The goal
is to maximize resource usage while maintaining a high quality of service. It outperforms
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heuristics, best efforts, and random methods. Sun et al. [6] reserve a portion of the radio
resource in the BS, and then utilize DRL to change the resources in each slice autonomously
in terms of resource consumption and satisfaction of the slices. Akgul et al. [7] proposed
a negotiated spectrum resource sharing agreement between operators and infrastructure
providers to improve spectral efficiency. To allocate resources across eMBB and URLLC
slices, Feng et al. [8] proposed a two-timescale technique based on the Lyapunov optimiza-
tion. It performed similarly to the exhaustive searching algorithm (the optimal solution).
To achieve a trade-off between slice performances, Sun et al. [9] employed the Stackelberg
game to distribute subchannels for local radio resource managers (LRRMs) within slices.
They analyzed the service performance of power consumption and user satisfaction. The
low-complexity methods perform similarly to exhaustive search and greatly outperform
other benchmarks. Yang et al. [10] proposed using a game theoretic approach to allocate
resource. Yang et al. [11] proposed using a genetic algorithm (GA) to determine the most
suitable slice boundary to achieve the optimal inter-slice resource management. To deal
with co-channel interference, Yang et al. [12] proposed a connection admission control
(CAC) mechanism to achieve effective isolation for network slicing.

In conclusion, most optimization algorithms have not maximized the QUR in the case
of a limited spectrum, and only obtained a performance similar to an exhaustive search.
We research the slice bandwidth ratio prediction based on a case library, which stores a
massive number of cases by an exhaustive search method that can find the optimal solution
to maximize the QUR. It can realize very low prediction errors and run costs.

In summary, the key contributions of this paper are summarized as follows:

• To reduce the computational complexity and determine the optimal slice ratio (the
proportion of bandwidth occupied by slices), we built a case library to store the user
distribution scenario and the optimal slice ratio produced by exhaustive searching.

• We have considered the QUR, which is to optimize the slice service.
• The CBR framework is proposed to form a complete system. The predicted error is

reduced by revising and retaining consistancy.
• The KNN algorithm is proposed to determine the optimal slice bandwidth ratio for

the new case based on the database. To reduce the prediction error and run cost,
the sparsity reduction method, which joined the least square, spare learning, and
locality-preserving projection, is utilized to optimize the k value. We defined it as
optimizing KNN (O-KNN).

The rest of the paper is structured as follows. Section 2 presents the system model
and details the related components of the system architecture. Section 3 presents related
intelligent techniques required to build the proposed approach. Section 4 presents and
analyzes the results of the O-KNN in predicting the slice ratio for resource allocation.
Section 5 presents the conclusion and scope for future work.

2. System Model
2.1. General Model

The virtualization of the cell from [13,14], is shown in Figure 1. The model used for the
research here considers a single-cell self-organization allocation as a first step. In the single
cell approach, the entire 360° plane is equally divided into a sectors with b bands, yielding
a× b segments.By dividing the entire cell area into different segments, user locations can
be mapped to virtual cells. Different cases are formed according to the distribution of
users in each segment at each different snapshot. The interference from adjacent cells is
considered in the mapping [13]. Initially, a two-slice scenario is considered, where each
segment may contain slice1 users (S1) and slice2 users (S2) at the snapshot; |S1| and |S2|
denote the number of S1 and S2 users, respectively. The slice ratio is defined as ω and
1− ω for S1 and S2, respectively, where ω is the fraction of total resource W, and at the
snapshot, we assume that the ratio will not change [14].

For a user u to be qualified, the bitrate of that slice user ru must be greater or equal to
its minimum requirement ru,min. The rate of slice user u is defined as ru = ∑F

f=1 a f ,ur f ,u >
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ru,min, where f ∈ F = {1, 2 . . . F} is the set of resource block (RB), when the RB f is
assigned to user u, a f ,u = 1, otherwise a f ,u = 0. From the well-known Shannon equation,
the capacity contributed by RB f is

r f ,u = B log2(1 +
Ph

f gh,u
f

σ2 + ∑l∈H,l 6=h Pl
f gl,u

f
) (1)

where h ∈ H = {1, 2 . . . H},H is denoted a set of base station (BS). B is the bandwidth of
RB. σ2 is the noise power; gh,u

f denotes the channel gain between the BS h and user u by

RB f , P f
h is the transmit power of BS h by RB f , l is the surrounding cells. Pl

f is the transmit
power of BS l by RB f , gl,u

f denotes the channel gain between the BS l and user u by RB f .

Figure 1. Schematic of slice user distribution.

A set of UEs is denoted as N = {1, 2 . . .N}. The qualified user ratio over all slices for
each cell is as follows:

QUR =
∑n

u=1 qu

|S1|+ |S1| (2)

where qu is a binary variable that represents the indicator of qualified user u. n ∈ N .
qu ∈ {0, 1}, qu = 1, if ru > δs, otherwise qu = 0. The ru is the data rate of user u. δs is the
rate requirement of slice s ∈ {1, 2}.

The overall approach is to match the query case (a new case) to the values in the case
library by CBR, as shown in Figure 2, by comparing the attributes of the query case to
the cases in the library and determining their degree of match. The best matches are used
to determine the slice ratio to be used for that query case. The advantage of CBR as a
technique is that it can constantly enrich the case library to reduce the prediction error. The
standard work process of CBR is introduced in [15]. The four main processes are retrieve,
reuse, revise, and retain. The matching process described above is the retrieve process and if
a suitable match is found and its corresponding case solution can be used for the reuse by
reasoure allocation (RA). If a suitable solution for the new query cannot be found, a case
revision needs to be carried out, which can be performed by exhaustive search. The revised
case can be retained in the case library to enrich the samples.

The O-KNN is utilized in the retrieve stage. Distance measurement and k value
selection are two key factors of KNN. Distance measurement is determined by Euclidean
distance. The k value is determined by least square, spare learning, and locality preserving
projections. To speed up the retrieval, brute force was applied. Root mean square error
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(RMSE) =
√

1
n ∑n

i=1 (wi − ŵi)
2 was utilized to quantify the difference between the forecast

and actual values. Where wi and ŵi are the i-th test value and prediction value, respectively.
In the reuse stage, the predicted slice ratio is utilized for two slices to measure the QUR by
proportional fair scheduling. In case of the worse prediction, the solution of query case is
revised by exhaustive search, and then retained in the case library.

Retrieve

Query 

Case

O-KNN

Case library

CBR system

CBR techniques

Reuse Revise Retain

RA
Exhaustive 

search
Rule

Figure 2. CBR framework.

2.2. Dataset

The experiments were performed using a dataset comprising of n cases in the case
library plus a second set of test cases. To populate the case library we chose the n combina-
tions to be uniformly distributed across the cell with a mix of different numbers of users in
each slice. For each case, the value of the slice ratio was obtained by exhaustive search with
a step length of 0.01 allocated within the slice to each user chosen using proportional fair
scheduling. The best slice ratio was then linked to that user distribution to create a case
that could be saved in the case library (Table 1).

The pseudocode of the case library build is given in Algorithm 1.

Algorithm 1 Pseudocode of case library build.

Input:
Bandwidth W; Searchstep = 0.01;

Output:
Case library;

1: for each i ∈ [1, n] do
2: ω1 = 0.01, ω2 = 0.99, QURold = 0
3: Insert user randomly,

U = {U11, U12 . . . U(a ∗ b)1, U(a ∗ b)2};
4: for j = 0; j < J; j ++ do
5: B1 = W ∗ω1, B2 = W ∗ω2;
6: Resource allocation for U1 and U2 and caculate QUR by Equation (2).
7: if QUR > QURold then
8: QUR∗ = QUR;
9: else

10: QUR∗ = QURold;
11: end if
12: QURold = QUR;
13: ω1+ = Searchstep, ω2− = Searchstep
14: end for
15: Case library add {i, U, [ω1, ω2], QUR∗};
16: end for
17: return Case library;
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We have d attributes (i.e., one attribute for each segment) and n cases in the library,
where each attribute represents the number of users in each segment. Here, we denote
the query case as a matrix [q1, q2, . . . qm]. Similarly, each case c in the library contains d
attributes Ac1, Ac2, · · · Acd. Note that for simplicity in this feasibility stage, we restrict
the attribute value per segment to one. The ratio of S1 and S2 users in each case remains
unchanged.

Table 1. Case library.

Cases Attributes Solution

Case 1 {A11,A12,. . . A1d} ω1

Case 2 {A21,A22,. . . A2d} ω2

...
...

...

Case n {An1,An2,. . . And} ωn

3. Problem Formulation

O-KNN is used to predict the slice ratio. The similarity between the query case and the
library cases is first calculated, and then a search is made of the nearest k neighbors. The k
value is determined by the reconstruct process between the test sample and training sample.
We use the training sample to reconstruct each test sample by least squares, spare learning,
and locality preserving projections. Finally, the solutions are predicted by weighting the
distance of the k-nearest neighbors. The flowchart of the O-KNN method is shown in
Figure 3.

Optimal K value

Least square

R
ec
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stru
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n

Query case

...

sparse learning

LPP

Case library

...

Case 1

Case 2

Case n-1

Case n

K
N

N

Total bandwidth

Case 1 Case 2 Case m

New 

case 

R
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u
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k1 k2
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Query case

B
e
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a
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km...

Slice ratio 

u1 u2 un-1 un...

Figure 3. Flowchart of the O-KNN method.

To test the CBR approach, we used query cases from the test data where we had
already used an exhaustive search to determine the optimum slice ratios. We compared the
test case with the attributes in the case library using Euclidean distance. To speed up the
retrieval, brute force [16] was applied. Investigating a faster search structure would form
part of future work using the approach here as a benchmark.
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Each case in the library is an d-dimensional space and the Euclidean distance between
the query case (q) and each library case (ci) represents the similarity and can be expressed as:

di =

√√√√ d

∑
j=1

(
qj − ci,j

)2 (3)

By calculating this, we can find the set of k nearest neighbors, i.e., those with the
smallest value of di. Each of those k neighbors has a value for the slice ratio and the KNN
approach [17] takes these k values of distance and output (slice ratio) to predict the value
of w for the query case, which we denote as wq. This prediction is generally conducted
by using a weighted combination [18] of the outputs with the weighting depending on
distance. The α(•) is the weight function and is shown in Table 2.

ωq =
∑k

i=1 α(di)×ωi

∑k
i=1 α(di)

(4)

Table 2. Weight functions.

Weight Functions Formula

inverse distance α(d) = 1/d

quadratic kernel α(d) =

{(
1− d2), i f |d| < 1

0, otherwise

tricube kernel α(d) =


(

1− |d|3
)3

, i f |d| < 1

0, otherwise

variant of the triangular kernel α(d) =

{
1−|d|
|d| , i f |d| < 1

0, otherwise

The k value metrics and distance metrics used in KNN algorithms have an impact on
their performance. Using a set k value for all query cases is not feasible [19] as is using the
time-consuming cross-validation approach [13] to obtain the k value for each query case.
The k value should be different and should be learned from the data. The selection of an
optimal k value for each query case as the nearest neighbor to conduct KNN by sparse
learning, and locality preserving projections have shown to be highly effective [20,21].

The case library is denoted as a matrix X ∈ Rn×d, where n and d, respectively, denote
the quantity of practice samples and attributes. X = [xij], its i-th row and j- th column are
denoted as xi and xj, respectively. Y ∈ Rd×m denotes the transpose matrix of the query
cases, where m denotes the number of query case. In this paper, we propose to reconstructed
query case Y using case library X, with the purpose of minimizing the distance between
XTwi and yi. The reconstruction coefficient or correlation between the case library and
query cases is denoted by W ∈ Rn×m. To get the smallest reconstruction error, we use a
least square loss function [22] as follows:

min
W

m

∑
i=1
||XTwi − yi||22 = min

W
||XTW− Y||2F (5)

||X||2F =
(

∑i ‖xi‖2
2

)1/2
is the Frobenius norms of X. In this paper, we employ the

following sparse objective function:

min
W
||XTW− Y||2F + ρ1||W||1W < 0 (6)



Appl. Sci. 2023, 13, 448 7 of 14

where ||W||1 is an l1–norm regularization term [23] to generate the sparse reconstruction
coefficient, and W < 0 means that each element of W is nonnegative. The larger the value
of ρ1, the more sparse is W.

To make sure that the k-closest neighbors of the original data are kept in the new
space after dimensional reduction, we impose the locality preserving projections (LPP)
regularization term between the case library and themselves [24]. The case library X ∈ Rn×d

is mapped to Y ∈ Rd×m, a projection matrix is W ∈ Rn×m, and yj = XTwj. As a result,
LPP’s objective function is as follows:

min
Y=XTW

1
2

d

∑
i,j

sij||yi − yj||22 = min
W

tr
(

WTXLXTW
)

(7)

Let sij denote the attribute similarity matrix. S = [sij] ∈ Rd×d, which encodes the
relationships between attributes. Let G denote a graph with d attributes. If nodes i and j are

connected, we put sij = e−
||xi−xj ||2

2σ , (σ is a tuning parameter constant). We use an adjacency
matrix S to denote the attribute correlations graph. D is a diagonal matrix whose entries
are column (or row, since S is symmetric) sums of S, Di i = ∑d

j=1 sij. L ∈ Rd×d, L = D− S
is the Laplacian matrix [25]. The proof is shown in Appendix A.

Finally, the objective function for the reconstruction process can be defined as follows:

f (W) = min
W

(||XTW− Y||2F + ρ1||W||1 + ρ2tr
(

WTXLXTW
)

, W < 0 (8)

tr(•) is the trace operator. We let Equation (8) take the first derivative with respect to
Wk, and then make it equal to 0 using the accelerated proximal gradient approach. The
min f (W) = s(W) + r(W). s(W) is convex and differentiable as follows:

s(W) = min
W

(||XTW− Y||2F + ρ2tr
(

WTXLXTW
)

(9)

r(W) = ρ1||W||1 is an l1-norm regularization term [26]. Further let S(W) = s(W)1 +
ρ2s(W)2.

s(W)1 =‖ XTW− Y ‖2
F

= (XTW− Y)T(XTW− Y)

= WTXXTW−WTXY− YTXTW + YTY

(10)

According to the Derivative properties of matrices
∂(XTAX)

∂X =
(
A + AT)X, ∂ATX

∂X =
∂XTA

∂X = A, we set A = XXT, and X = W. So we can obtained the following:

∂(WTXXTW)

∂W
= (XXT + XXT)W = 2XXTW (11)

set A = XY and X = W

∂(WTXY)
∂W

=
∂(YTXTW)

∂W
= XY (12)

So
∂s(W)1

∂W
= 2XXTW− 2XY (13)

As s(W)2 = min
W

tr(WTXLXTW), according to the derivative formula of matrix trace

∂tr(WTAW)
∂W =

(
A + AT)W let A = XLXT. Therefore,

∂s(W)2
∂W

=
(

XLXT + XLTXT
)

W = 2XLXTW (14)
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wherein, L is a symmetric matrix, so L = LT.

∂s(W)

∂W
= 2XXTW− 2XY + 2ρ2XLXTW = 2

(
XXT + ρ2XLXT

)
W− 2XY (15)

Gradient descent is performed on the smooth term to obtain an intermediate result.

Wk+ 1
2 = Wk − α ∗ ∇s(Wk) (16)

where α is the learning rate. So

Wk+ 1
2 = Wk − 2α

(
XTX + p2XLXT

)
Wk + 2αXY (17)

Then the intermediate result is substituted into the non-smooth term to obtain the
projection of its adjacent points, that is, to complete an iteration.

Wk+1 = argminW{ρ1||W||1 +
1

2α
||W−Wk+ 1

2 ||2} (18)

Let

v(W) =

{
p1‖W‖1 +

1
2α

∥∥∥W−Wk+ 1
2

∥∥∥2
}

(19)

∂v(W)

∂(W)
=

1
α

(
W−Wk+ 1

2

)
+ p1sgn(W) (20)

For the derivatives of the ρ1||W||1, soft thresholding [27] is used. Then, we update the
W as follows:

Wk+1 = so f t
(

Wk+ 1
2 , αp1

)
= sign

(
Wk+ 1

2

)
max

{∣∣∣Wk+ 1
2

∣∣∣− αp1, 0
}

(21)

Wk+1 =


Wk+ 1

2 + αp1, Wk+ 1
2 < −αp1

0,
∣∣∣Wk+ 1

2

∣∣∣ 6 αp1

Wk+ 1
2 − αp1, Wk+ 1

2 > αp1

(22)

By the convergence theorem [28],

f (W(tk))− f (W∗) 6
2γL‖W(1)−W∗‖2

F

(t + 1)2 (23)

where γ is a positive predefined constant, L is a gradual Lipschitz constant. In combination
with Equation (22), the Wk+1 is as Equation (24)

Wk+1 =


Wk − 2α

(
XXT + p2XLXT

)
Wk + 2αXY + αp1, Wk+ 1

2 < −αp1

0, ,
∣∣∣Wk+ 1

2

∣∣∣ < αp1

Wk − 2α
(

XXT + p2XLXT
)

Wk + 2αXY− αp1, Wk+ 1
2 > αp1

(24)

The pseudocode of O-KNN is given in Algorithm 2.
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Algorithm 2 Pseudocode of O-KNN.

Input: X, Y(X ∈ Rn×d, Y ∈ Rd×m);
Output: predict solution ŷ;

1: Initialize y0 = W0 ∈ Rn×m, t0 = 1.
2: Calculate the Laplace matrix L ∈ Rd×d;
3: k = 0
4: while (1) do
5: Update Wk+ 1

2 = yk − α×∇s(yk) by Equation (17)
6: Update Wk+1 by Equation (24)
7: Update step length α

8: Update tk+1 = 1
2 + 1

2

√
1 + 4tk

2

9: Update yk+1 = Wk +
(

tk−1
tk+1

)
(Wk+1 −Wk )

10: k+ = 1
11: If condition Equation (23) is satisfied Break;
12: end while
13: print W∗ ∈ Rn×m

14: for each i ∈ m do
15: ki = 0
16: for each j ∈ n do
17: if W∗ij 6= 0 then
18: ki+ = 1;
19: end if
20: end for
21: end for
22: Print k∗ = [k1, k2, . . . km]
23: Similar calculate by Euclidean distance Equation (3)
24: The most similar k cases with its corresponding solution is searched by brute-force.
25: Predicted the slice ratio by Equation (4)

4. Numerical Results
4.1. Experimental Settings

The purpose of this research is to propose a reliable scheme for estimating the slice
ratio for a query case. The scenario parameter settings are shown in Table 3. We consider an
RAN with seven cell wrap-arounds (matching the user distribution of the center cell only,
other cells acting as interference sources). The hardware used to carry out this experiment
is a processor Core Intel(R) Core(TM) i5-8250U.

Table 3. Simulation configuration.

Parameter Value

Cell radius 1 km

Cell number 7

Modulation format OFDM

Number of slices 2

Cell bandwidth 10 MHZ

Number of users 200

Antenna height 75 m

Carrier frequency 2 GHz
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Table 3. Cont.

Parameter Value

Subcarrier spacing 15 kHz

Transmit power 23 dBm

Shadow fading log-normal

Path loss COST231-Hata

Required bitrate of S1 users 1 Mbps

Required bitrate of S2 users 2 Mbps

User distribution Uniform

No. of cases in library Up to 10,000

No. of test (query) cases 300

4.2. Choice of Weight Function

We tested the distance with different weight functions from Table 2, and the k value
were determined by cross-validation with 300 query cases. The result is shown in Figure 4
and shows that the inverse distance has the minimum RMSE of the slice ratio. Hence, the
inverse distance is used for all subsequent tests.

 inverse distance  quadratic
 tricube  vtriangular

0 1 2 3 4
0.00

0.01

0.02

0.03

0.04

0.05

RM
SE

Iterations

Figure 4. Prediction error with different weight functions.

4.3. Determination of k

For choosing the best value of k, we compared three different k value determination
methods, fixed value k (1,3,5,7), the K value determined by cross-validation as CV-KNN [13],
and the proposed O-KNN. The prediction error for these different approaches over different
numbers of query cases is shown in Figure 5. Obviously, the O-KNN and CV-KNN
outperform the fixed k value with the O-KNN being slightly better.
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100 200 300
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RM
SE

Query case size

 k=1  k=3  k=5
 k=7  CVKNN  OKNN

Figure 5. Prediction error for different methods.

The other factor to consider is the search time to find the best k value. This is illustrated
in Figure 6. The search time is averaged over 300 query cases. The result show that O-KNN
has a search time that is approximately one-tenth of that of CV-KNN because the search
space is reduced by spare learning.
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Figure 6. K-value search time.

4.4. Slice Bandwidth Ratio Prediction

The test result above shows that the O-KNN is suitable for slice ratio prediction in
terms of running cost and RMSE. Therefore, the O-KNN can be used to test the slice ratio
prediction. The slice ratio distribution of the test and prediction is shown in Figure 7.
The test the prediction of two slices represented on the horizontal axis, the slice ratio is
represented on the vertical axis. From Figure 7, we see that the slice ratio of slice1 median
is around 0.55, the slice ratio of slice2 median is around 0.45, and their sum is 1. However,
both the slice ratio distribution of the test and prediction have almost the same distribution;
thus, the prediction is good. The RMSE of all the 300 query cases is 0.01986 by O-KNN.
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Figure 7. The slice ratio distribution of test and prediction.

4.5. Qualified User Ratio

QUR is the ultimate measure of performance. We tested the QUR of an additional 20
query cases with a different number of users and the results are shown in Figure 8. PQUR
is the predicted QUR using the O-KNN. TQUR is the QUR from exhaustive search for those
cases. HQUR denotes the QUR by the hard slicing. Hard slicing means that each service is
always allocated with 1

2 of the whole bandwidth (because there two types of services in
total).

Obviously, the PQUR by the O-KNN approach has a very low prediction error with
the TQUR, and is outperformed by HQUR. Therefore, the O-KNN approach is effective.
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Figure 8. QUR test.

5. Conclusions

In this paper, we investigated the feasibility of using the spare learning and locality-
preserving projections approach in the CBR framework for the problem of finding the
best match to determine the slice ratio of network slicing in RAN. We first tested the error
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in determining the ratio using different weighting functions. The best weight function
was found to be the inverse distance function. When comparing the KNN methods, we
showed that O-KNN outperforms other approaches to determine the k value, although only
marginally better than CV-KNN. However, the k value search time of O-KNN was much
better than that of CV-KNN because of the reduction in the search space. The outcome was
that the proposed algorithm can perform effective resource allocation for S1 and S2 hybrid
services and is worth pursuing in a more complex scenario.

Overall, therefore, O-KNN is very effective for resource allocation in network slicing.
In the future, we will simulate a more practical environment with multiple attributes to
increase the matching with fewer cases and to allow for different values for S1 and S2. We
will investigate a more general optimization framework that can cope with more than two
slices.
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Appendix A

As shown in Equation (A1), where, Dii = ∑j sij. L and D are real symmetric matrices.
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