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Abstract: COVID-19 has led to a severe impact on the society and healthcare system, with early
diagnosis and effective treatment becoming critical. The Chest X-ray (CXR) is the most time-saving
and cost-effective tool for diagnosing COVID-19. However, manual diagnosis through human eyes is
time-consuming and tends to introduce errors. With the challenge of a large number of infections
and a shortage of medical resources, a fast and accurate diagnosis technique is required. Manual
detection is time-consuming, depends on individual experience, and tends to easily introduce errors.
Deep learning methods can be used to develop automated detection and computer-aided diagnosis.
However, they require a large amount of data, which is not practical due to the limited annotated
CXR images. In this research, SDViT, an approach based on transformers, is proposed for COVID-19
diagnosis through image classification. We propose three innovations, namely, self-supervised
learning, detail correction path (DCP), and domain transfer, then add them to the ViT Transformer
architecture. Based on experimental results, our proposed method achieves an accuracy of 95.2381%,
which is better performance compared to well-established methods on the X-ray Image dataset, along
with the highest precision (0.952310), recall (0.963964), and F1-score (0.958102). Extensive experiments
show that our model achieves the best performance on the synthetic-covid-cxr dataset as well. The
experimental results demonstrate the advantages of our design for the classification task of COVID-19
X-ray images.

Keywords: COVID-19; vision transformer; chest X-ray image; image classification

1. Introduction

During the past several years, COVID-19 has led to severe infections all over the
world and brought tremendous challenges to medical and healthcare services. Vaccines can
effectively prevent the spread of the coronavirus. Meanwhile, early diagnosis and effective
treatment are critical for recovery from COVID-19. The Chest X-ray (CXR) is a reliable
and cost-effective method for diagnosing COVID-19. CXRs of patients with COVID-19
symptoms show a combination of different multifocal lung clouding patterns. In addition,
these patterns tend to spread to other parts of the lung parenchyma during the course
of the disease, though the initial distribution is usually peripheral to the lung. Early and
accurate diagnosis of mild and moderate COVID-19 from CXR can be challenging even for
experienced radiologists. With the challenge of a large number of infections and a shortage
of medical personnel, the need for a fast and accurate diagnosis technique is urgent.

Image classification tasks face many challenges, including human mistake error. A typ-
ical case is the popular ImageNet [1] dataset classification task, where existing models have
outperformed human classification results. COVID-19 threatens people’s physical health
and brings mental illnesses. People’s activity on social media could help to understand
their psychology and mental health status during COVID-19. Mental health complications
related to COVID-19 were studied in [2], with people’s sentiments analyzed based on
classification of tweets collected from Twitter in Nepal. Three different feature extraction
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methods (fastText-based (ft), domain-specific (ds), and domain-agnostic (da)) were used
to the represent these tweets. Three different convolution neural networks (CNNs) were
proposed to implement the proposed features. Then, the ensemble CNN was used to
combine the three CNNs for the end results. In the designed experiments in [2], these
CNN models demonstrated stable and robust performance. The feature extraction methods
proved effective for sentiment classification based on the discriminating characteristics.
The diversity of the dataset, along with greyscale X-ray images with only one informa-
tional difference, presents huge challenges to human classification. Therefore, automated
detection methods such as computer-aided diagnosis techniques have attracted increasing
attention. In particular, deep learning-based detection methods have been used for image
classification in an effort to achieve fast and accurate classification. However, public access
to annotated CXR images is limited, which presents challenges to detection based on deep
learning methods.

Our research proposes a Transformer-based model, SDViT, for COVID-19 diagnosis
through X-ray image classification. Our design has demonstrated its advantage in experiments.

Our SDViT design outperforms the current state-of-the-art models for COVID-19 CXR
image classification. The following are our main contributions:

1. In our model, we propose a self-supervised strategy that allows the model to repair
ambiguous and defective parts using information from other parts. We add this design
to address the issue of the COVID-19 dataset being relatively small, as well as to drive
full learning of intrinsic features instead of focusing only on the final classification
results. This approach can improve understanding of the intrinsic logic and enhance
the robustness of the model.

2. We use the MagNet model to migrate the data distribution, allowing the practice and
training data to be compared more closely.

3. We propose a new structure, the Detail Correction Path, to repair the possible loss
of original key features caused by MagNet. The DCP passes the original details to
the location after MagNet transformation, preserving relevant information for the
classification task.

4. We modify the original ViT structure for data features and combine different strategies
to obtain our SDViT model. We have open-sourced our code at https://github.com/
ankang1115/SDVIT (accessed on 21 December 2022) for public access.

The rest of this paper is organized as follows. Research related to the topic is reviewed
in Section 2. The method we propose is described in Section 3. The proposed method is
evaluated through comprehensive experiments in Section 4. Finally, the paper is concluded
in Section 6.

2. Related Work

The Transformer [3] method was originally designed for natural language processing
(NLP). With the efforts of scientists and researchers from different fields, the Transformer
model has been widely applied to various tasks and produced outstanding results. Multi-
ple variations have been designed to improve performance on different tasks, including
Bert [4], ALBERT [5], and RoBERTa [6].

Transformer-based models have also been applied to computer vision tasks, which
require unique designs for specific tasks. By making adjustments to the way in which data are
handled, the Transformer model can be applied to extended fields, for example, DETR [7] for
object identification and SETR [8] for semantic segmentation. The success of the Transformer
model in these tasks demonstrates that it is applicable to image classification tasks. It can
efficiently capture the crucial semantic information in the image and combine it to classify
the target.

With the growing demand for medical care, efforts are being made to effectively di-
agnose issues from medical images by fusing computer vision technologies with medical
services. ViT [9] and DeiT [10] can be used for medical diagnosis to solve the most funda-
mental and pertinent image classification problems in computer vision. In order to further
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improve the accuracy of diagnosis in the medical field, deep learning technologies can be
used for technological innovation in areas such as tumor detection [11], medical image
semantic segmentation [12], and other model tasks [13].

In 2021, MSRA proposed the Swin Transformer [14] model. It significantly improves
the outcomes of the ViT family for classification, segmentation, and detection tasks. How-
ever, due to its arithmetical power limitations, window-based self-attention is used to
reduce computational consumption. This reflects an issue with ViT, which consumes a lot
of computational resources even though the Transformer structure is very efficient. Addi-
tional model optimization is necessary in order to lower the computational consumption.

With the wide spread of COVID-19, it is essential to create an appropriate recognition
model. In [15], a novel attention-based deep learning model was proposed using an
attention module with VGG-16. This approach was able to capture the spatial relationship
between the regions of interest (ROI) in CXR images. A novel deep-learning model was
defined for the classification process to specifically perform fine-tuning. The experimental
results indicated that this method is efficient in both classification accuracy and training
parameters. In [16], CovidDetNet, a novel deep learning-based approach, was proposed
for the automatic and reliable diagnosis of COVID-19 using chest radiographs. It has ten
learnable layers, nine of which are convolutional layers, along with a fully-connected layer.
The novelty of this model is that it uses two activation functions (the ReLu activation
function and the Leaky Relu activation function) and two normalization operations (batch
normalization and cross channel normalization). Through experiments on a standard
COVID-19 radiography database, the model was shown to be superior to existing models,
and outperformed the baseline models. However, in the field of medical imaging there is no
pneumonia classification model specifically created for X-ray images. Because COVID-19 is
a very recent disease, the research on it has not been not systematic. In addition, the related
datasets are limited, which necessitates exploring the intrinsic linkages of the data as much
as possible in order to obtain an accurate diagnosis. Table 1 highlights the contributions
along with the pros and cons of prior studies.
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Table 1. Comparison of our proposed model with previous models.

Model Architecture Contribution Advantages Disadvantages

SETR Semantic segmentation with
transformers

Using semantic segmentation as a sequence-to-
sequence prediction task; using a pure transformer
as an encoder; modeling the global context at each
layer and designing three different decoders for
pixel-level segmentation.

Can learn superior feature representations com-
pared to different FCNs; removes the reliance on
FCNs and addresses the challenge of a limited
receptive field.

Requires huge (300M+) parameters and computation;
does not work well for small objects; increasing the in-
put image reduces the patch size, increasing computation
quadratically.

DETR Object detection with
transformers

Proposes a Deformable Attention Module to re-
place the self-attention module in the encoder,
greatly reducing computations.

Can be extended to complex tasks easily; better
than Fast R-CNN on large objects, and no need
for NMS post-processing. No need for anchor.

Same as SETR

ViT Transformers for image
recognition The first vision model to use Transformer.

The MSA (Multihead Self-Attention) block
complements the generalized spatial smooth-
ing of convolutional networks. MSA inte-
grates feature maps and smoothing loss planes,
which helps neural networks learn more robust
feature representations.

Due to the patch size, an image is cut into many small
images, which disrupts the internal structure information
and may overlook features of the image.

DeiT
A ViT model with a teacher–
student strategy and distilla-
tion token

Better performance than Transformer was
achieved by using Transformer to build a
competitive convolution-free model to solve
image understanding tasks, using Token-based
distillation to outperform traditional distillation,
and using convent as a Teacher.

To achieve the same effect as ViT, DeiT requires
a smaller training dataset and a shorter training
period.

Consistent with ViT’s issues.

Attention VGG-16
An attention-based deep
learning model for image
classification

A branch is added to the convolutional neural
network with a spatial attention module to better
obtain the associations and interactions of differ-
ent spatial regions and to achieve the best model
for the current domain.

It captures the spatial relationship between ROIs
in CXR images, and is efficient in both classifica-
tion accuracy and training parameter.

It does not deal with information such as edges and other
details, and does not consider the difference in distribu-
tion between the training and test sets, which can lead to
a certain degree of degradation in generalization perfor-
mance. It does not consider the use of self-supervision to
further improve accuracy.

CovidDetNet

A deep learning-based ap-
proach for automatic diag-
nosis of COVID-19 using
chest radiographs

Chest radiographs are used for early and accurate
diagnosis of COVID-19 through a model with ten
learnable layers (nine convolutional layers and
one fully-connected layer), obtaining better per-
formance than baseline models.

Automatic detection and early diagnosis of
COVID-19 while reducing diagnosis workload,
reducing the workload of radiologists, and avoid-
ing misdiagnosis

Advantages over other models are unclear, though these
can be obtained through comparative study.

SDViT
A Self-supervised Detail-
sensitive ViT-Based Model
for Medical Diagnosis

A self-supervised strategy that allows the model
to repair ambiguous and defective parts using in-
formation from other parts; a new structure, the
Detail Correction Path, to repair the possible loss
of original key features caused by MagNet

A shorter training period, stronger resistance to
noise, and missing interference on a small num-
ber of sample datasets

Same as ViT
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3. Methods

In this paper, we propose a COVID-19 detection model called SDViT: Self-supervised
Detail-sensitive ViT. As shown in Figure 1, our model is achieved by adding three inno-
vations to ViT: a detail correction path, domain transfer, and a self-supervised learning
method. Our model substantially improves the classification performance.

We adopt the strategy of domain transfer to eliminate the gap between the training
and test data. This helps the model to learn more general features and discriminative
models. Through the Detail Correction Path (DCP) structure, we transfer the critical details
to the later position of the model in order to recover any damage of the original semantic
information caused by domain transfer. To further drive the model towards adapting
to the practical scenario, SVD and salt-and-pepper noise are used to simulate the noise
encountered in practice, which makes the model more robust and helps it to learn how
features are correlated.

The blocks with the same color are the same structure in the actual network, only
appearing several times for the visualization effect.

Figure 1. SDViT: the architecture.

3.1. Transformer

The Transformer architecture was proposed by the Google team in 2017. Originally
applied to natural language processing (NLP) tasks, the Transformer has demonstrated its
effectiveness and significantly improved the metrics of several NLP tasks. Figure 2 shows
the ViT architecture with datasets.

There are two main components of the Transformer architecture, the Encoder and
Decoder, each of which contains six blocks.

Figure 2. ViT architecture with datasets.
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3.1.1. Encoder Module

There are two main steps in the encoder module. Step 1: For each word in the input
sentence, obtain its representation vector x. The vector is obtained by adding the word’s
embedding (an original data feature) and the word’s embedding position. Step 2: Obtain
the encoding information matrix C for all the words in the sentence by passing the word
representation vector matrix through the encoder for six encoder blocks.

3.1.2. Decoder Module

Residual Connectivity: ResNet frequently makes use of a residual connection, which
enables the network to concentrate only on the current aspect of the difference; multi-layer
networks are commonly trained using ResNet.

Feed Forward: Relu serves as the activation function in the first layer of the feed-
forward layer, which is a straightforward two-layer fully-connected layer. In the second
layer, there is no activation function.

3.1.3. Transformer’s Input

In the Transformer model, a word’s input representation x is obtained by adding
both the positional embedding (Positional Encoding) and the word embedding. The input
representation x of a word in the Transformer is obtained by adding the word embedding
and the positional embedding (Positional Encoding).

Word Embedding: Word embedding can be obtained in various ways, e.g., pre-training
by Word2Vec or GloVe. This is a common approach in NLP tasks.

Position Embedding: Positional embedding is required to display a word’s relative
position within the sentence. Compared with RNN [17], Transformer uses all global
information in a different way; it values the word-by-word sequential information, which
is crucial for NLP. Position embedding is used to maintain the relative or absolute position
information of each word in the sequence. The representation vector x of the word is
obtained by adding its word embedding and position embedding together; x is then used
as the Transformer’s input.

3.1.4. Attention Mechanism

The attention mechanism is widely considered as a key contribution to the success
of Transformer, enhancing the system’s feature extraction capability. RNN [14] (LSTM or
GRU)-based Encoder + Decoder models can be made more effective using an attention
mechanism. The attention mechanism can enhance the model’s ability to extract features,
resulting in a more comprehensive understanding of the input data.

The cosine similarity, referred to as the dot product, is adopted to calculate the attention
weights of different features. Input features are ranked according to their relative importance.

At all time steps, there is a similar operation. As shown in Formula (1), we have an
input key, denoted as ki, i = 1, . . . , N, and the corresponding values vi, i = 1, . . . , N, then
we search for a query, denoted as q:

Attention(Q, K, V) =
N

∑
i=1

qTkivi (1)

The longer the length of the vector, the wider the scale range of its dot product. After
the softmax operation, the saturation zone is reached, which reduces the gradient during
backpropagation. This makes optimization of the model more difficult. As a solution to
this problem, the inner product is divided by the square root of its length, denoted as d,
before executing softmax, resulting in Formula (2).

Attention(Q, K, V) = So f tmax(
QKT
√

d
)V (2)
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The special attention structure known as self-attention occurs when all keys, values,
and queries have the same vector value.

Multi-Head Attention

In the attention module, the output can be multiplexed in order to combine the
information in a variety of ways. In this way, the existing features can be described from
various aspects, which helps to fully explore the information required for the model. This
structure is known as Multi-Head Attention.

3.2. ViT

ViT is obtained by applying the Transformer structure to vision tasks.
ViT is composed of the following main components:

1. Image chunking
2. Transformer encoder
3. Classifier

In this section, we explain ViT in terms of these three components.

3.2.1. Image Chunking (Making Patches)

This step can be considered the pre-processing of an image. In a CNN, the images are
convolved in two dimensions, height and width, and no further pre-processing is required.
However, the Transformer structure requires the images to be chunked. Assuming that
an input image of size x ∈ H ×W × C is divided into patches of size P × P × C, the
total number of patches is N = HW/P2. Each patch can be described as N × P× P× C
with an additional dimension. Here, N stands for the sequence’s length from the input
to the Transformer, C stands for the image’s channel count, and P stands for the image
patches’ size.

Image chunking is only a pre-processing step. A block embedding operation on an
image is required to convert the vector dimension of N × (P2 × C) into a two-dimensional
input of size N × D. This works in a similar way to how word2vec transforms a high-
dimensional vector into a low-dimensional one in NLP. A unique code, similar to ‘CLS’ in
BERT, is added to the embedding as the outcome of the category prediction.

In the image block embedding, a vector for position encoding must be included;
spatial location information is then maintained between input image patches. ViT’s position
encoding utilizes a direct 1D learnable position embedding variable rather than the updated
2D position embedding method, as the experimental results of using 2D and 1D embedding
methods are comparable.

3.2.2. Transformer

To obtain the desired classification outcomes, the Transformer module is used for
feature extraction, which is then input to the final classifier. The Transformer architecture
significantly enhances the fusion of higher-order information and combined features.
However, various experiments have demonstrated that it disrupts many tasks due to
its structure.

3.2.3. Classifier

A shallow network such as MLP can achieve extremely high performance when suffi-
cient features have been extracted. It requires only a simple network structure to produce
accurate classification results. The images can be converted into sequence information,
which is more conducive to extracting their relationships. By chunking the images and
separating the features, the classification effect can be further improved.

3.3. Self-Supervised Learning

When using a Chest X-ray (CXR) to scan a patient’s chest cavity, imaging noise is
inevitable, and may impact the recognition capability of the model to an extent. The noise
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includes blurring in images due to unconscious movement or change of body posture
of the patient. In practice this is extremely evident, especially when there is a certain
degree of difference in the distribution of the testing data and training data. Moreover, our
experiments have demonstrated that using fixed datasets can lead to a model learning the
discriminative pattern along with the dataset itself, which is caused by the distribution
characteristics of the dataset. The model may mistakenly believe that the key feature
for discriminating patterns is a piece of the necessary information. This is referred to as
overfitting in the field of artificial intelligence and data science. It often happens when
there is a large effect gap between the training set and the real dataset.

The dropout strategy is used to address this issue. This is an essential way of using
all the data, which randomly selects features and then trains a series of models. The final
output is the combined effect of all the models, and the learning capability is not very
strong. Furthermore, it has the same processing mode for different datasets, and is not
adaptive in terms of correspondingly adjusting the learning focus.

As a solution, we propose a new supervised learning strategy that simulates the noise
and blur in the images. This forces the model to learn the correlations between different
regions and extract more globally consistent features. Classification is essentially a high-
level task that requires a holistic understanding of an image rather than focusing on the
details. In this strategy, we use salt-and-pepper noise and singular value decomposition to
simulate noise in the generation of CXR images. The model is trained to learn the capability
to accurately restore its original features in the presence of noise and generate an output
similar to the noise-free image. The signal-to-noise ratio(SNR) of salt-and-pepper noise is
set to be 0.99, which means that only 99% of all the pixel points remain at their origin value.

To further improve the raw turnover, we add a singular value decomposition version
of the image by keeping the same 90% singular value component. We add more randomness
to the image, and the content changes in a way with a statistically stronger correlation
compared to adding salt-and-pepper noise.

Figures 3 and 4 demonstrate the effect of the transformation architecture, showing a
comparison of a sample image before and after using the Transformer.

Figure 3. Original sample.
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Figure 4. Enhanced sample.

To measure the difference between output feature maps, we use MMD loss instead of
L2 loss. The L2 loss only calculates the cumulative difference between points instead of
using the idea of distribution to see the whole output. This introduces bias and loses key
information during numerical calculation.

MMD is a typical loss function in transfer learning, and is frequently used to calculate
the separation between two distributions. The core idea of MMD is that two distributions
are identical if and only if two random variables of any order are identical. The instant
that produces the largest difference between the two distributions should be utilized as
the standard deviation of the two distributions in cases for which the two distributions are
not equal.

With two distributions, x ∼ p and y ∼ q, their MMD loss is calculated using Formula (3).

MMD(F, p, q) = sup
| f |<1

Ep[ f (x)]− Eq[ f (y)] (3)

We treat the output of the fourth and fifth encoder blocks in the ViT structure as a data
distribution. We denote the original input as imageIori and its enhanced version as Ien.

In Formula (3), sup is used to find the upper bound that is the maximum value, E
indicates the expectation, and f indicates the mapping function, for which the parametric
number in the regenerated Hilbert space should be less than or equal to 1.

We use the reconstruction loss as provided in Fomula (4) for self-supervised training.

Lrecons = ∑
i

MMD(Ii
ori, Ii

en) (4)

3.4. Detail Correction Path (DCP)

In the ViT structure, we use a serially connected Encoder Block to process the input
raw image and gradually obtain features with higher semantic levels. One problem with
this process is that we tend to lose part of the critical details. Even though classification
is more of a global examination of the input, it is difficult to obtain robustness against
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minor perturbations and attain sufficient generalization without a deeper understanding
of the details.

In order to address this issue, a new structure is proposed that can better transfer the
features of the original data to deeper locations of the network. With the above inputs
concatenated, the features are further extracted by the SE Fusion Block to fully explore the
detailed information, as shown in Figure 5. We call this path the Detail Correction Path, as
shown in Figure 6.

Figure 5. SE Fusion Block.

Figure 6. Detail Correction Path.

By performing the pixel-by-pixel subtraction of adjacent positions, an approximation
of the gradient information in both the x-axis and y-axis directions can be obtained, which
describes the trend of the image to an extent. In addition, we add mean and maximum
pooling as inputs to obtain pixel features at different angles.

The above inputs being concatenated, the features are further extracted by the SE
Fusion Block, while the original input is further restored using a shortcut. In the SE Fusion
Block, squeeze and excitation is used to extract the most important information between
channels and suppress irrelevant content. We call this path the Detail Correction Path;
the final location of the connection is explained further below. This design is used in
conjunction with the other innovations in this paper.

3.5. Domain Transfer Methods

MagNet [18] is commonly utilized in the realm of adversarial sample defense. An
AutoEncoder [19] is first taught to reconstruct the input data, and after training, this model
learns the properties of the normal model’s data distribution.

Here, we aim to minimize the reconstruction loss, which is defined in Formula (5):

L = |x− AE(x)|2 (5)

where x is the input of our model, e.g., images or audio information. With the AutoEncoder
(AE) model, we obtain the output AE(x). The difference between the input and output is
used to measure the AutoEncoder’s performance.

In practice, all data first pass through a trained AE. If the reconstruction loss is
above a predetermined level, the training data and current input can be considered as
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adversarial created samples. We employ metrics, such as Kullback–Leibler divergence and
the Euclidean distance, to identify these anomalous samples.

The Kullback-Leibler divergence of the various distributions P and Q is defined in
Formula (6).

KL(P, Q) =
∫ +∞

x=−∞
P(x)

P(x)
Q(x)

dx (6)

Because this indicator is asymmetric, as described by the fact that KL(P, Q) 6= KL(Q, P),
it indicates certain optimization challenges. As a result, the Jensen–Shannon divergence is
defined as Formula (7).

JS(P, Q) =
1
2
(KL(P, Q) + KL(Q, P)) (7)

As a symmetric indicator, the Jensen–Shannon divergence more accurately gauges the
gap between the two distributions. In our study, we train an AutoEncoder that reconstructs
the data from the test set and prevents degrading of metrics due to the disparity in the
distribution of the training and test sets.

The MagNet workflow is illustrated in Figure 7 below.

Figure 7. MagNet workflow.

There are inevitable differences between the distribution of test sets and training sets.
Models trained on the distribution characteristics of the training dataset are bound to
produce a degree of metric degradation when migrated to the test set for testing.

In order to eliminate the impact of distribution differences, we reform the data distri-
bution using the Reformer part of the MagNet structure. Although it does not match the
features exactly, it can reduce the gap between the two.

The data distributions of the test set and training set are represented by the green and
red distribution curves in Figure 8, respectively. While these curves are similar in form,
they have a minor difference in scale. The blue curve results from a reformation to the test
set, which transfers the distribution to the training set. There could be information loss,
leading to more discrepancies in the distribution, in turn causing the metrics to decline.

To address the above issue, we connect the output of the Detail Correction Path to the
result of the Reform operation. This corrects the reform output using the original detailed
information, and adds missing content. Furthermore, it enables the system to learn model
features from different perspectives to achieve more robustness and learning ability. This
reformer structure is added between the third and fourth encoder blocks, providing it with
supervision over the intermediate positions.
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Figure 8. Domain transfer via Reform.

4. Experiment
4.1. Dataset

There have been prior research efforts dedicated to classification based on chest X-ray
images. The outbreak of COVID-19 has pushed forward the progress of research in this
field, and many studies have been developed. However, the lack of publicly available chest
X-ray datasets of COVID-19-positive patients is a significant challenge.

In this research, we use the COVID-19 CXR scan dataset, called the X-ray Image [20],
which is used for machine learning (ML) and deep learning studies. In particular, the
X-ray Image dataset consists of 125 confirmed COVID-19-positive cases collected from
23 February 2020 to 21 April 2020, 500 normal cases collected from 21 January 2019 to
29 May 2020, and 500 community-acquired pneumonia (CAP) cases collected from 3 April
2018 to 24 November 2019.

For a more intuitive understanding, we visualize a sample of each category in
Figures 9–11.

Figure 9. Covid sample: X-ray Image dataset.
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Figure 10. Pneumonia sample: X-ray Image dataset.

Figure 11. Normal sample: X-ray Image dataset.

For balance purposes, the X-ray Image dataset is divided into a training set and
a validation (or testing) set at a ratio of 957:168. As shown in Table 2, the training set
contains 105 CXR images of COVID-19 positive patients, 426 healthy CXR images, and
426 non-COVID-19 CXR pneumonia images, while the testing set contains 20 CXR images of
COVID-19-positive patients, 74 healthy CXR images, and 74 CXR images of non-COVID-19
pneumonia patients.
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Table 2. Arrangement of the X-ray Image dataset.

Class COVID-19 Health Pneumonia Total

Train 105 426 426 957
Validation 20 74 74 168

Total 125 500 500 1125

In addition, we use another dataset, the synthetic_covid_cxr dataset (https://github.
com/hasibzunair/synthetic-covid-cxr-dataset, accessed on 9 August 2022), to ensure a
more comprehensive study. This dataset is a similar binary medical dataset consisting of
many more samples (21,295 samples in total): 16,537 normal and 4758 pneumonia. We
divide the dataset into a training set and a validation (testing) set at a ratio of 6:1. As shown
in Table 3, The training set consists of 4158 CXR images of positive COVID-19 patients
and 14,137 healthy CXR images. The testing set consists of 600 CXR images of positive
COVID-19 patients and 2400 health CXR images.

Table 3. Arrangements of the synthetic-covid-cxr dataset.

Class COVID-19 Health Total

Train 4158 14,137 18,295
Validation 600 2400 3000

Total 4758 16,537 21,295

Figures 12 and 13 demonstrate a pneumonia sample and a normal sample from the
synthetic-covid-cxr dataset.

Figure 12. Pneumonia sample: synthetic-covid-cxr.

https://github.com/hasibzunair/synthetic-covid-cxr-dataset
https://github.com/hasibzunair/synthetic-covid-cxr-dataset
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Figure 13. Normal sample: synthetic-covid-cxr.

Figure 14 shows an example of typical chest X-ray images used for diagnosis. It can be
observed that there are ground-glass opacities in the lungs of certain patients, which are
identified using green rectangles. Pulmonary lobes and patchy consolidations are identified
using blue ovals, indicating the presence of fibrosis or nodules. Doctors often use these
features to determine whether patients are in a state of pneumonia, as well as its severity.
Our model is designed to learn these features in order to achieve correct classification.

Figure 14. Analysis and diagnosis using patient CXR images.
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We select the classical network ResNet101 [21] as the baseline for our experiments.
This network structure is widely used in a variety of computer vision tasks, including object
detection, semantic segmentation, tracking, and classification, demonstrating excellent
performance. It has a distinct structure that can successfully extract features from images
to carry out the corresponding tasks. Comparative experiments are conducted to verify the
effectiveness of our proposed method.

In addition, we introduce the current best model in the domain, Attention-Based
VGG16 [15], for comparative study. The Attention-based VGG-16 model adds an additional
branch to the convolutional neural network and adds a Spatial Attention module to better
obtain different spatial region associations and interactions, obtaining the best results in
the current field. However, it does not deal with information such as edges and other
details, and does not consider the difference in distribution between the training and test
sets, which can lead to a certain degree of degradation in generalization performance.
Furthermore, it does not consider the use of self-supervision to further improve accuracy.

4.2. Training Details
4.2.1. Software and Hardware Configurations

For the experiments, we use Python and Pytorch version 1.8.0 as a deep learning
framework. We use an i7-10875h CPU and GTX2080TI GPU as the hardware in order to
speed up training. Tables 4 and 5 list the hardware and software configurations used in
this research.

Table 4. Hardware Configuration.

Hardware Configuration

CPU i7-10875h
GPU GTX2080TI 16 GB
RAM DDR5 32 GB

Storage Micorn M2 256 GB

Table 5. Software configuration.

Software Version

Operating System Ubuntu 20.04
Python 3.8.3

Pytorch-GPU 1.8.0
OpenCV 2.1.3

4.2.2. Training Configurations

Adam [22] is chosen as our optimizer. The beta1 and beta2 parameters for the op-
timizer are set to 0.9 and 0.999, respectively, and the learning rate is set to 0.0001. With
eps = 1 × 10−8, we try to avoid having a zero denominator. The batch size is 8 and the
weight decay is 0. The cross-entropy is selected as the loss function. The total number of
training epochs is 2500.

4.3. Data Augmentation

We randomly crop the input images for the training set and flip them horizontally
with a probability of 0.5, then resize them to a fixed size of 224× 224. We do not perform
data augmentation on the test dataset.

4.4. Metrics
4.4.1. Accuracy

We choose accuracy as the metric for evaluation, as it is the most popular metric used
in classification tasks and reflects the effectiveness of the suggested model.
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The accuracy is calculated as in Formula (8). We denote the total number of samples
as N and the number of correct classifications as Nc.

Acc =
Nc

N
(8)

4.4.2. Other Statistical Metrics

We use several additional statistical metrics for evaluation, including precision, recall,
and the harmonic average of these two, that is, the F1-score. These metrics allow for a more
thorough and holistic analysis of our model. Formulas (9)–(11) define the calculation of
precision, recall, and the F1-score. We note the number of positive samples classified by the
model as N̂+ and the number of correctly classified ones as Nc+.

Precision =
Nc+

N̂+
(9)

Recall =
ˆNc+

N+
(10)

F1_score = 2× Precision ∗ Recall
Precision + Recall

(11)

4.5. Results

The performance of different model configurations is shown in Tables 6–9. The best
performance in each column is marked in bold. To further compare the model effects and
reduce bias for the data, we use k-Fold cross validation, with k = 7.

Table 6 provides the accuracy of different model configurations on the X-ray Image
dataset. The current SOTA, Attention-VGG-16, is assessed as well. We start with the
ViT structure alone, which is used as a comparative classifier in our study. Compared
to ResNet101, ViT obtains a similar, though slightly better, performance in accuracy of
88.0952% (ResNet101) and 88.6905% (ViT). When we add our proposed self-supervised
learning strategy and Detail Correction Path (DCP) to the ViT structure, the classification
effect of the model is substantially improved. The improvement is further extended when
adding both, which fully demonstrates the effectiveness of our proposed method. The best
performance is achieved after the domain transfer strategy is added, with an accuracy of
95.2381%. We call this model SDViT. The current SOTA model, Attention-VGG16, achieves
higher accuracy than native ViT. With our proposed innovations added to native ViT one by
one, however, the new models outperform the Attention-VGG16 model. SDViT achieves the
best performance among all the models. When examining the sevenfold K-Fold accuracy,
we observe similar patterns of improvement among the models.

Tables 7 provide the same set of the accuracy of different model configurations on
the synthetic-covid-cxr dataset. We continue to conduct sevenfold cross-validation. ViT
has better performance in terms of accuracy (test set accuracy: 81.2667% and K-Fold
accuracy: 81.3333%) compared to ResNet101 (test set accuracy: 80.4333% and K-Fold
accuracy: 80.4733%). With either one of our proposed self-supervised learning strategy and
Detail Correction Path (DCP) additions to the ViT structure, the classification effect of the
model is substantially improved. The improvement is further extended when adding both,
which fully demonstrates the effectiveness of our proposed method. The best performance
is achieved with all three innovations added, that is, the proposed SDViT model. It achieves
a test set accuracy of 86.9% and K-Fold accuracy of 86.93333%. The current SOTA model,
Attention-VGG16, is outperformed by the models with our innovations added.

Tables 8 and 9 list the statistical metrics (precision, recall, and F1-score) for the models.
Table 8 shows the results on the X-ray Image dataset, while Table 9 shows the results on
the synthetic-covid-cxr dataset. On both datasets, the SOTA model is outperformed by the
models with our innovations added, and our proposed model, SDViT, achieves the best
performance for all metrics.
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Table 6. Accuracy of different model configurations on X-ray Image dataset.

Model Attention Self-Supervised Learning DCP Domain Transfer Test Set Accuracy K-Fold Accuracy

ResNet101(Baseline) × × × × 88.0952% 87.0833%
Attention-VGG (SOTA) × × × × 90.4761% 89.9404%

ViT X × × × 88.6905% 89.4048%
ViT + Self-supervised learning X X × × 93.4524% 93.9286%

ViT + DCP X X X × 94.0476% 95.3571%
DCP + Self-supervised learning + ViT X X X × 94.6428% 95.7143%

SDViT(Our Model) X X X X 95.2381% 96.13095%

Table 7. Accuracy of different model configurations on synthetic-covid-cxr dataset.

Model Attention Self-Supervised Learning DCP Domain Transfer Test Set Accuracy K-Fold Accuracy

ResNet101(Baseline) × × × × 80.4333% 80.4733%
Attention-VGG (SOTA) × × × × 82.5% 82.5733%

ViT X × × × 81.2667% 81.3333%
ViT + Self-supervised learning X X × × 82.9667% 82.9333%

ViT + DCP X X X × 83.0333% 83%
DCP + Self-supervised learning + ViT X X X × 85.5333% 85.4933%

SDViT(Our Model) X X X X 86.9% 86.93333%

Table 8. Statistical metrics of different model configurations on X-ray Image dataset.

Model Precision Recall F1-Score

ResNet101(Baseline) 0.856295 0.873423 0.870293
Attention-VGG(SOTA) 0.882063 0.891441 0.886727

ViT 0.869061 0.877928 0.873472
ViT + Self-supervised learning 0.916367 0.926126 0.921220

ViT + DCP 0.920714 0.930631 0.925645
ViT + Self-supervised learning + DCP 0.935190 0.935135 0.935162

SDViT(Our Model) 0.952310 0.963964 0.958102

Table 9. Statistical metrics of different model configurations on synthetic-covid-cxr dataset.

Model Precision Recall F1-Score

ResNet101(Baseline) 0.726307 0.808958 0.765408
Attention-VGG(SOTA) 0.750712 0.84375 0.794517

ViT 0.739040 0.831667 0.782621
ViT + Self-supervised learning 0.758279 0.858542 0.805302

ViT + DCP 0.758839 0.858958 0.805801
ViT + Self-supervised learning + DCP 0.784603 0.888333 0.833252

SDViT(Our Model) 0.799044 0.90375 0.848178

Comparing the number of parameters, the inference speed, and the required computa-
tion, we find that SDViT is able to improve the classification effect while greatly reducing
both the computation and time complexity, as shown in Table 10.

Table 10. Computational and time complexity of different models.

Model Model Size (MB) Infer Speed (FPS) Infer Computation (GFLOP)

ResNet101(Baseline) 170 192 7.6
Attention-VGG(SOTA) 528 94 15.5

SDViT(Our Model) 88 684 2.4

In addition, we build up confusion matrices for ViT, VGG-16, and SDViT on both
the X-ray Image and synthetic-covid-cxr datasets. Tables 11–13 list the confusion matrices
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for the X-ray Image dataset. It can be observed that SDViT greatly improves the effect of
native ViT. After adding the three innovations proposed in this research, the classification
results are significantly improved, with only one associated correlation error. SDViT again
outperforms VGG-16.

Table 11. Confusion matrix of native ViT on the X-ray Image dataset.

Real COVID-19 Real Normal Real CAP

Predict COVID-19 69 8 1
Predict Normal 4 63 2

Predict CAP 1 3 17

Table 12. Confusion matrix of Attention VGG16 on the X-ray Image dataset.

Real COVID-19 Real Normal Real CAP

Predict COVID-19 69 5 1
Predict Normal 4 66 2

Predict CAP 1 3 17

Table 13. Confusion matrix of SDViT on the X-ray Image dataset.

Real COVID-19 Real Normal Real CAP

Predict COVID-19 70 3 0
Predict Normal 4 70 0

Predict CAP 0 1 20

Tables 14–16 provide the confusion matrices for the synthetic-covid-cxr dataset. SDViT
again greatly improves the prediction effect of native ViT, increasing the correct prediction of
normal cases from 1920 to 2030 and increasing the number of correct predictions of pneumonia
from 518 to 577. Again, SDViT outperforms VGG-16 on the synthetic-covid-cxr dataset.

Table 14. Confusion matrix of native ViT on the synthetic-covid-cxr dataset.

Real Normal Real Pneumonia

Predict Normal 1920 82
Predict Pneumonia 480 518

Table 15. Confusion matrix of Attention VGG16 on the synthetic-covid-cxr dataset.

Real Normal Real Pneumonia

Predict Normal 1950 75
Predict Pneumonia 450 525

Table 16. Confusion matrix of SDViT on the synthetic-covid-cxr dataset.

Real Normal Real Pneumonia

Predict Normal 2030 23
Predict Pneumonia 370 577

From the above confusion matrices, it can be seen that SDViT greatly improves the
effect of native ViT after adding our three proposed innovations. It is important to note
that the classification results for the category of COVID-19 are most significantly improved
here, with only one correlation error ultimtely associated with it, which shows that our
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proposed model can better extract the features of COVID-19 and fit its corresponding data
distribution, which is extremely promising for future medical applications.

5. Discussion

In general, prediction accuracy is used to determine the performance of different
algorithms. The recent SOTA model for medical image classification, ViT, was proposed by
A. Dosovitskiy et al. in 2020. It is based on the Transformer architecture. The Transformer
architecture consists of attention, cross-links, and block processing. ViT focuses on image
feature extraction. Even though it achieves much better performance than traditional
convolutional neural networks such as ResNet (Tables 6–9), ViT is not perfect. The patch
process leads to a loss of semantic information during feature extraction, which makes
it challenging to perform feature extraction on fine or small subjects. SDViT has finer
feature extraction capabilities than ViT. It has the advantages of both ViT and traditional
convolutional neural networks. It eliminates the gap between training data and test data
by domain transfer. It adopts the Detail Correction Path (DCP) structure to migrate critical
details to the model’s theater location in order to restore the damage to the original semantic
information caused by domain transfer. Finally, to make the model more robust, it uses
singular value decomposition and salt-and-pepper noise to simulate actual noise. Overall,
SDViT can better extract the features of COVID-19 from CXR images, which is extremely
promising for future medical applications.

6. Conclusions

Manual diagnosis using CXR images inevitably involves human errors that impact
accuracy and reliability over time. With the outbreak of COVID-19, automatic diagnosis
through CXR images has become necessary for improving accuracy and efficiency. In this
paper, we propose a Transformer-based architecture called SDViT to conduct automatic
diagnosis of COVID-19 based on patient CXR images. Based on three proposed innovations
added to the ViT Transformer structure, SDViT can significantly improve the classification
performance, as well as the training efficiency and training process oscillation.

Because the X-ray Image dataset is limited and small, we propose a self-supervised
strategy to drive full learning of its intrinsic features instead of focusing only on the final
classification results. This allows the model to repair ambiguous and defective parts using
information from other parts, improves understanding of the intrinsic logic, and enhances
the robustness of the model. To eliminate the differences between the training data and
the data found in practice, we use the MagNet model to migrate the data distribution in
order to reduce the gap. To repair possible loss of the original key information which may
be caused by MagNet, we propose a Detail Correction Path structure. The DCP passes
the original details to the location immediately after the MagNet transformation, which
preserves original information that may be relevant for classification. Our experimental
results demonstrate that the proposed method achieves the best classification performance.

However, there are a number of aspects that need to be further investigated in future
research. The data augmentation approach in the current design mainly relies on the
observation of images and knowledge in the field. In the future, this could be extended to
use parametric methods for domain-specific expression. Furthermore, specific architectures
could be used to extract other high-frequency information that is crucial for classification.
Finally, the datasets we use in our research have relatively balanced numbers of of positive
and negative samples. This is somewhat different from the real data. Thus, it is necessary
to further test our model as more COVID-19 data become available.
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