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Abstract

:

The present study merges the teaching and learning algorithm (TLBO) and turbulent flow of water optimization (TFWO) to propose the hybrid TLTFWO. The main purpose is to provide optimal power flow (OPF) of the power network. To this end, the paper also incorporated photovoltaics (PV) and wind turbine (WT) generating units. The estimated output power of PVs/WTs and voltage magnitudes of PV/WT buses are included, respectively, as dependent and control (decision) variables in the mathematical expression of OPF. Real-time wind speed and irradiance measurements help estimate and predict the power generation by WT/PV units. An IEEE 30-bus system is also used to verify the accuracy and validity of the suggested OPF and the hybrid TLTFWO method. Moreover, a comparison is made between the suggested approach and the competing algorithms in solving the OPF problem to demonstrate the capability of the TLTFWO from robustness and efficiency perspectives.






Keywords:


energy systems; teaching-learning-based turbulent flow of water-based optimization (TLTFWO); optimal power flow (OPF); wind and photovoltaic units












1. Introduction


The OPF aims to optimize various variables and parameters of the power system by optimizing a given objective function subject to different limits and constraints. The literature has greatly addressed this topic as a complex and time-demanding problem with its nonlinear and non-convex nature in most cases [1]. Further, various forms of mathematical expressions have already been introduced for OPFs with one or several objective functions that attempt to minimize/maximize some parameters of the power system. Although the major targets of these problems may be quite similar, they are solved using different algorithms and approaches due to their distinct features and disparities in terms of constraints [2].



Simultaneous with the adoption of distributed generation (DG) throughout the power system, OPF problems have become the center of attention again [2]. On account of widely used PV/WT, besides utilizing DGs and renewables, new issues and topics have emerged in the operation of power systems [3]. To successfully operate renewables with intermittent output to supply the demand, one must consider renewables’ stochastic power generation, particularly PV and WT generating units. The presence of renewables makes solving the OPF problem challenging with quite a few parameters to determine and optimize. This is because renewable resources with their intermittent nature led to the injection of uncertain dynamics into the system [4].



Although popular optimization tools, including nonlinear programming (NLP) [1], quadratic programming (QP) [2], and linear (LP) and Newton’s method [3] may provide promising solutions to the OPF, there are some obstacles when incorporating them for solving real power systems with their complicated non-convex non-differentiable objective functions [4]. Some of the mentioned algorithms are unable to properly model fuel cost due to the presence of other determining parameters like valve points or prohibited operating zones. So, one approach would be trial and error to find the optimal values, which is a time-demanding task when dealing with a large-scale system. One reasonable solution is to adopt faster and more efficient tools. Metaheuristic algorithms have been recently introduced and widely used to address the aforementioned issues [4]. Several unique features of metaheuristic algorithms when dealing with OPF include discarding the Hessian/gradient matrix, and using stochastic elements, to name but a few [5]. Diverse algorithms have been introduced and discussed in the literature regarding the solution to OPFs, as shown in Table 1.



The TFWO algorithm imitates the physical behavior of the turbulent flow of water, in which water follows a circular path with a changing magnitude and speed. In TFWO, a whirlpool represents water’s behavior seen in the ocean, sea, and river. A hole in the center of the whirlpool attracts the particles and elements around it by applying a centripetal force. Such a force pulls the moving object toward the center of the whirlpool while the object’s speed remains unchanged. This algorithm has been adopted in many applications, several of which can be seem in Table 2.



The optimal power flow problem is very complex, nonlinear, and non-convex. Thus, the present study combines the power of TFWO and TLBO algorithms to propose a novel robust algorithm for various OPF problems in integrated systems.



Here are the main contributions of this paper:




	
Hybridizing teaching and learning algorithms with turbulent flow optimizations developed a novel, efficient, and robust optimization algorithm named TLTFWO. This method is used to optimize optimal power flow (OPF) problems involving conventional thermal power plants, solar photovoltaics, and distributed wind power.



	
This work addresses the uncertainties of renewable generation by using the Weibull probability density function to model wind distribution and the lognormal probability density function to model solar radiation.



	
In addition to fuel costs, emissions, power losses, and voltage deviations, OPF also considers fuel costs, emissions, power losses, and voltage deviations. Factors such as economics, technology, and safety limit these functions. Furthermore, this study examined reserve, direct, and penalty costs in addition to thermal power unit production costs.



	
An optimal scheduling of thermal power plants based on renewable energy is determined by the amount of carbon tax associated with the goal function.








In order to demonstrate the validity and effectiveness of the proposed TLTFWO algorithm, it is compared to other recently published algorithms on the IEEE 30-bus test system.



The rest of the study is organized as follows. Section 2 formulates the OPF problem. Section 3 states the optimization steps of the proposed algorithm. Section 4 adopts the method for an IEEE 30-bus network with various power flow functions and provides the implementation results of TFWO. Eventually, conclusions are stated in Section 5 of the article.




2. Description of the Problem


The combined use of WT–PV accounts for the convoluted nature of the OPF as the WT and PV output power is intermittent and time-varying. To consider such uncertain behavior, the OPF problem is expressed in the present study by taking into account some assumptions:




	
The active power output of WT–PV is uncertain and time-varying [50],



	
The OPF is executed ten times in a period of 10 min. So, irradiance and wind speed are sampled periodically at each 1 min.



	
Noting that WT/PV units can also generate reactive power, the voltage magnitudes of WT/PV buses have been assumed to be control parameters [51].








Equation (1) describes the mathematical expression of the OPF problem [52].


  min F   x , y    



(1)







Constrained by:


  g   x , y   = 0  



(2)






  h   x , y   ≤ 0  



(3)






  x ε X  



(4)







F shows the objective function; x is a vector with decision variable elements, active energy of units (PG) except for the slack bus (Bus 1), output voltages of generating units (VG), transformer taps (T), and (QC) denotes the shunt VAR compensations [53]:


  x =        P  G 2   , … ,  P  G N G   ,  V  G 1   , … ,  V  G N G   ,  V  W T   ,  V  P V   ,        T 1  , … ,  T  N T   ,  Q  C 1   , … ,  Q  C N C          



(5)







NG, NT and NC indicate the number of thermal generators, transformers, and VAR compensators, respectively.



In addition, y is the vector of dependent variables, such as power at the slack bus (PG1), the voltage at the load bus (VL), the reactive output power of a generator (QG), and apparent power flow through the transmission line (Sl) [54]:


  y =        P  G 1   ,  V  L 1   , … ,  V  L N L   ,  Q  G 1   , … ,  Q  G N G   ,        Q  W T   ,  V  P V   ,  S  l 1   , … ,  S  l N T L          



(6)







NTL and NL show the size of network lines and load buses.



2.1. Constraints


Equations (2) express the equality constraints represented by conventional OPF equations [53].


   P i  −   ∑   j = 1   N B    V i   V j     G  i j   ∗ cos      δ  i j     +  B  i j   ∗ sin      δ  i j       , i = 1 , … , N B  



(7)






   Q i  −   ∑   j = 1   N B    V i   V j     G  i j   ∗ sin (  δ  i j   ) −  B  i j   ∗ cos (  δ  i j   )   , i = 1 , … , N B    



(8)




where NB is the size of buses; Qi and Pi are reactive and active power injection at bus i;    δ  i j     represents the voltage angle, and Bij and Gij are the imaginary and real terms of the bus admittance matrix.



Inequality constraints are provided by Equation (3). The constraints include functional operating parameters, like magnitudes and limits of the voltage on load buses, limits on the reactive power output of generators, and limits on branch power flow [53].


   V i  m i n   ≤  V i  ≤  V i  m a x   ; i = 1 ,   2 ,   … ,   N L  



(9)






   Q  G i   m i n   ≤  Q  G i   ≤  Q  G i   m a x   ;   i = 1 ,   2 ,   … ,   N G  



(10)






   S  l i   ≤  S  l i   m a x   ; i = 1 ,   2 ,   … ,   N T L  



(11)







The solution space of the OPF problem is described by Equation (4) as follows:


   P  G i   m i n   ≤  P  G i   ≤  P  G i   m a x   ; i = 1 ,   2 ,   … ,   N G  



(12)






   V  G i   m i n   ≤  V  G i   ≤  V  G i   m a x   ; i = 1 ,   2 ,   … ,   N G  



(13)






   T i  m i n   ≤  T i  ≤  T i  m a x   ; i = 1 ,   2 ,   … ,   N T  



(14)






   Q  C i   m i n   ≤  Q  C i   ≤  Q  C i   m a x   ; i 1 = ,   2 ,   … ,   N C  



(15)








2.2. Objective Functions


OPF problems normally include one or several objective functions (F). Function F, in this study, calculates the overall fuel cost of thermal power plants (Fcost) and is formulated in terms of the output power generation (PGi) as follows:


   min    F c o s t   x , y   =   ∑   i = 1   N G      α i  +  b i   P  G i   +  c i   P  G i  2     



(16)







In this equation, ai, bi and ci show the cost coefficients of the ith unit.



Another optimization function is Ploss so that active power loss of the power system is minimized:


   min    P l o s s   x , y   =   ∑   i = 1   N T L     ∑       j = 1       j ≠ i       N T L    G  i j    V i 2  +  B  i j    V j 2  − 2  V i   V j  cos  δ  i j    



(17)







The third optimization function attempts to minimize voltage deviation (VD) to bring safety to the equipment and provide high-quality services to the customers [55]:


   min    V D   x , y   =   ∑   i = 1   N L      V i  −  V i  r e f      



(18)







Here, Vi is the voltage magnitude of bus i, whereas    V i  r e f     expresses the reference voltage magnitude of bus i, generally set at one p.u.



Traditional power plants generally require fossil fuel to rotate the turbine and generator shaft, thus, producing the output power. In this process, much pollution is emitted, which needs to be addressed. Equation (19) formulates the minimization of nitrogen oxide (NOx) and sulfur oxide (SOx) gases emission levels [56]:


   min    E m i s s i o n   x , y   =   ∑   i = 1   N G      α i  +  β i   P  G i   +  γ i   P  G i  2  +  ξ i  e x p (  θ i   P  G i   )    



(19)




where,    α i    (ton/h),    β i    (ton/h MW),    γ i    (ton/h MW2),    ξ i    (ton/h) and    θ i    (1/MW) are emission coefficients of the ith power plant.



To consider the violation of constraints, a penalty function as follows is added to the main objective function:


    J   =   ∑  i = 1   N G     F i    (    P  G i   )     +    λ P  (    P  G 1   −  P  G 1   lim      ) 2    +    λ V      ∑  i = 1   N L      (   V  L i  − V  L i  lim   )  2        +    λ Q    ∑  i = 1   N G      (    Q  G i   −  Q  G i   lim   )  2    +    λ S    ∑  i = 1   N T L      (    S i  −  S i  lim   )  2       



(20)







Here, λP, λV, λQ and λS denote penalty factors; and xlim represents an auxiliary variable defined as follows:


     x  lim     =     x      x  min     ≤   x   ≤    x  max          x  max   ;   x >  x  max        x  min   ;   x <  x  min               



(21)








2.3. Modelling of WT and PV Generation


2.3.1. Modelling of WT Generation


The following equation formulates the electrical power generation by a wind turbine for different wind speeds [51]:


   P  W T    v  =     0      v ≤  v  c i         v −  v  c i      v n  −  v  c i      P  w t n       v  c i   ≤ v ≤  v n       P  w t n       v n  ≤ v ≤  v  c o       0    v ≥  v  c o        



(22)







In this equation, Pwtn shows the wind turbine’s nominal power, vn denotes the nominal speed of the wind, vci and vco express cut-in and cut-out wind speeds.



The probability density function and cumulative density function (CDF) of wind speed for a given period are generally expressed using a Weibull function [19]:


   f v   v  =  K C       v C      K − 1    e  −      v C     k    , v > 0  



(23)






   F v   v  = 1 −  e  −      v C     k     



(24)







Thus, wind speed can be calculated by inversing the CDF:


  v = C     − l n  r       1 k     



(25)







In the above equations, fv(v) shows the Weibull PDF of v, k and C state the shape and scale variables of the Weibull distribution, and r shows a figure distributed uniformly in the range of [0, 1]. The following equation calculates the estimated output power generation by a given WT [19,53]:


   P  W T   =    ∑  g = 1    N v     P  W T g   .  f v     v g t       ∑  g = 1    N v     f v     v g t       



(26)




here,    v g t    shows the gth state of v at the tth period, PWTg represents the output electrical power found from (22) for v =    v g t   , and    f v     v g t      expresses the probability of v for state g for period t.




2.3.2. Modelling of PV Output Power


The output electrical power of a PV generating unit can be formulated as follows, which depends on irradiance [19]:




    P  P V    S  =        P  p v n        S 2     R C   S  s t c       S ≤  R C         P  p v n      S   S  s t c       S ≥  R C          



(27)





   P  p v n     shows the nominal power generation by the PV unit, S denotes the irradiance or amount of solar power hit on the surface of a PV module (W/m2), Sstc expresses the irradiance at normal conditions (STC), and Rc shows a specific irradiance point.



Intermittent irradiance is generally modeled using the Beta PDF (fs(S)) as follows [53]:


   f s   S  =         Γ   α + β     Γ   α     Γ  β     S  α + 1       1 − S       β − 1     ;     0 ≤ S ≤ 1 , α ≥ 0 , β ≥ 0       0 ;   Otherwise        



(28)




where S is the irradiance (kW/m2), whereas  α  and  β  are the shape variables of the Beta function, also  Γ  is the Gamma function.



The output power generation by a given PV unit can finally be calculated as follows [19,53].


   P  P V   =    ∑  g = 1    N s     P  P V g   .  f s     S g t       ∑  g = 1    N s     f s     S g t       



(29)







In this equation,    S g t    is the gth state of solar irradiance at period t, PPVg gives the output power of the PV unit found from (27) for S =    S g t   .






3. The Proposed Optimization Hybrid Algorithm


3.1. TFWO


In the remainder of the article, the TFWO algorithm is described step by step.



3.1.1. How Are Whirlpools Made?


The algorithm’s initial population (X0) (Np: the number of the initial swarm) is segregated into NWh groups or whirlpools. Next, the strongest member of the population (the population with more suitable values of objective function f ()) or whirlpool (Wh) is determined as the center of the whirlpool and its hole, which attracts objects and the particles (X) around it, Np-NWh is the number of initial objects according to their distances to the center.




3.1.2. How Whirlpools Impact Their Own and other Whirlpools’ Objects and Particles


Every Wh applies a centripetal force and attracts and unifies the objects and particles (X), thus absorbing them into the sink. Hence, jth whirlpool located at Whj makes its position unified with that of the ith particle (Xi), i.e., Xi = Whj. Nonetheless, other whirlpools, according to their distances (Wh-Whj) and objective values (f ()), cause some deviations (∆Xi). Hence, the novel location of the ith particle is equal to Xinew = Whj − ∆Xi. Figure 1 illustrates the effects of these whirlpools on their set’s objects and particles.



According to Figure 1, the objects and particles (X) move around the whirlpool center at a special angle (δ). As a result, the angle varies at each iteration of the algorithm as:    δ i  n e w   =  δ i  + r a n  d 1  ∗ r a n  d 2  ∗ π  .



For ∆Xi, the furthest and nearest whirlpools are calculated according to their objective functions, i.e., the maximum and minimum values of Equation (30), and based on the equation Equations (34) and (35), given below and the value of ith particle’s angle concerning its whirlpool, jth, i.e., δi, variation of the particle’s position subject to a reduction in the objective function (describing the particle’s intelligence) is obtained:


   Δ t  = f   W  h t      ∗     sum   W  h t      − sum    X i          0.5    



(30)






  Δ  X i  =   1 +   cos    δ i  n e w     − sin    δ i  n e w           ∗   cos    δ i  n e w     ∗   W  h f  −  X i    − sin    δ i  n e w     ∗   W  h w  −  X i       



(31)






   X i  n e w   = W  h j  − Δ  X i   



(32)




where   W  h f    is   W h     with a minimum value of    Δ t    and   W  h w    is   W h   with a maximum value of    Δ t   , respectively. The pseudo-code of generating a new position can be summarized given in Algorithm 1.



	
Algorithm 1. Generating the new position (Pseudo-code 1)




	
1:

	
for    t = 1 :   N  W h   −  j   




	
2:

	
  Calculate    Δ t    using Equation (30)




	
3:

	
end




	
4:

	
  W  h f  = W h     with the minimum value of    Δ t   




	
5:

	
  W  h w  = W h     with the maximum value of    Δ t   




	
6:

	
   δ i  n e w   =  δ i  + r a n  d 1  ∗ r a n  d 2  ∗ π  




	
7:

	
Calculate   Δ  X i    using Equation (31)




	
8:

	
   X i  n e w   = W  h j  − Δ  X i   









Then, the new position can be updated using the pseudo-code provided in Algorithm 2.



	
Algorithm 2. Updating the new position (Pseudo-code 2)




	
1:

	
   X i  n e w   = min   max    X i  n e w   ,  X  m i n     ,  X  m a x      




	
2:

	
if   f    X i  n e w     < = f    X i     




	
3:

	
     X i  =  X i  n e w    




	
4:

	
    f    X i    = f    X i  n e w      




	
5:

	
end










3.1.3. Centrifugal Force


Centripetal force drags the moving objects into the center, but centrifugal force acts the opposite. Centrifugal force (or FEi) may be greater than the FEi of Wh and move particles randomly to novel positions. Centrifugal force is modeled in Equation (33). This is performed so that FEi is found according to its angle with the center of the whirlpool. In the case the FEi is greater than a random value of r, the centrifugal attraction and drag apply randomly on the chosen pth dimension as given here:


  F  E i  =         cos    δ i  n e w        2  ∗     sin    δ i  n e w        2     2   



(33)






   x  i , p    t  =  x p  m i n   +  x p  m a x   −  x  i , p     t − 1    



(34)







Algorithm 3 summarized he pseudo-code of this process.



	
Algorithm 3. Updating pth position using the centrifugal force (Pseudo-code 3)




	
1:

	
Evaluate the centrifugal force (  F  E i  )   using Equation (33)




	
2:

	
   i f    r a n d < F  E i   




	
3:

	
    p = round   1 +  rand ∗    D − 1     ;  




	
4:

	
  Update    x  i , p     using Equation (34)




	
5:

	
    f    X i    = f    X i  n e w      




	
6:

	
end









This is expressed as shown in Figure 2.




3.1.4. Interactions between Whirlpools


To model and calculate ∆Whj, the objective function and minimum value of Equation (35) are used to calculate the nearest whirlpool, and according to the Equations (36) and (37) given in the following and based on the value of the jth whirlpool’s angle, δj, variation of the whirlpool’s position subject to the reduction in its objective function (artificial intelligence) is obtained.


   Δ t  = f   W  h t      ∗   sum   W  h t      − sum   W  h j         



(35)






  Δ W  h j  = r a n d   1 , D   ∗   cos    δ j  n e w     + sin    δ j  n e w         ∗   W  h f  − W  h j     



(36)






  W  h j  n e w   = W  h f  − Δ W  h j   



(37)







Algorithm 4 presents the pseudo-code of this phase.



	
Algorithm 4. Whirlpools’ interaction process (Pseudo-code 4)




	
1:

	
for  t = 1 :   N _ W h −  j   




	
2:

	
  Calculate    Δ t    using Equation (35)




	
3:

	
  end  




	
4:

	
  W  h f  = W h       with the minimum value of    Δ t   




	
5:

	
Evaluate   Δ W  h j    using Equation (36)




	
6:

	
  W  h j  n e w   = W  h f  − Δ W  h j   




	
7:

	
   δ j  n e w   =  δ j  + r a n  d 1  ∗ r a n  d 2  ∗ π  









Updating mechanism whirlpools is illustrated in Algorithm 5.



	
Algorithm 5. Whirlpools’ updating process (Pseudo-code 5)




	
1:

	
  W  h j  n e w   = min   max   W  h j  n e w   ,  X  m i n     ,  X  m a x   ( )    




	
2:

	
   i f    f   W  h j  n e w     < = f   W  h j     




	
3:

	
    W  h j  = W  h j  n e w    




	
4:

	
    f   W  h j    = f   W  h j  n e w      




	
5:

	
   e n d   









Subsequently, provided that the most potent member within new elements of the whirlpool’s set is stronger and/or the objective function is smaller than the center and hole of the whirlpool, it is chosen as the new center and hole of the whirlpool for the next iteration, and the role of this most vital new member is replaced with the previous center and well of the whirlpool, as shown in Algorithm 6.



	
Algorithm 6. Selection mechanism (Pseudo-code 6)




	
1:

	
   i f    f    X  b e s t       < = f   W  h j       




	
2:

	
    W  h j  ↔  X  b e s t      




	
3:

	
    f   W  h j    ↔ f    X  b e s t        




	
4:

	
   e n d   









Figure 3 illustrates the step-by-step procedure of the TFWO algorithm.





3.2. TLBO Algorithm


This method was presented in 2012 by Rao et al., which is similar to other optimization methods derived from nature, is based on population, and refers to the influence of a teacher on student learning in the classroom. The TLBO algorithm takes advantage of the students’ learning ability in the classroom and the teacher’s teaching to improve the class’s academic level. The teacher and the students are the two main elements of the algorithm. In iteration i, the teacher (Ti) attempts to increase the student’s academic level and bring them to their academic level, which can be achieved by improving the students’ average from the value Mi to the value Mi + 1 in the next iteration. Because the students’ level in the first iteration increases with the teacher’s training, a new teacher is selected for the next iteration to provide further training to the students to advance the education process. This new teacher in the new iteration (i + 1) is selected from among the students in the new iteration as a selection among the best member (Ti + 1).



In this algorithm, first, an initial population is determined with the size of swarm Np and the size of design parameters D equal to the number of structural elements. Suppose this population is considered a matrix. In that case, the population of the class is defined according to the Equation (1) of the matrix with Npop rows and D columns.


         X  11   ,  X  12   , … ,  X  1 D          X  21   ,  X  22   , … ,  X  2 D        ⋮       X  N p o p 1   ,  X  N p o p 2   , … ,  X  N p o p D          



(38)







3.2.1. Teaching Phase


In this phase, the member with the best value (minimum response value for weight) is chosen from the population as the teacher. Then, the following equation is applied to each of the students (e.g., to the ith student):


   X i  n e w   =  X i  + Δ  X i   



(39)







Parameter   Δ  X i    is the movement step and the difference between the teacher and class mean. It should be selected, so students’ knowledge is transferred to the teacher. This parameter is calculated as follows:


  Δ  X i  = r a n d ∗   T e a c h e r −  T F  ∗  X  m e a n      



(40)







Here,    X  m e a n     is the mean position of all members up to the current iteration of the algorithm and rand is a random variable between 0 and 1 with dimensions equal to the variables of the problem under study. Moreover,    T F    is the learning rate, which is either 1 or 2, i.e.,    T F  = 1 + r o u n d ( r a n d )  . If, in the above equation,    X i  n e w     has a better position than    X i   , the position of    X i    is equal to    X i  n e w    . Because TLBO is an iteration-based algorithm, the role of the teacher substitutes for that of one of the students at the end of each teaching phase. It is essential to calculate the average to show the search scale. The formulation presented by Rao to calculate the mean value is as follows:


   X  m e a n   =  1  N p o p     ∑   i = 1   N p o p    X i   



(41)








3.2.2. Learning Phase


This step constitutes the second part of the TLBO algorithm, in which the students enhance their knowledge and information. Each of the students communicates with other students randomly, e.g., with the jth member shown by    X j   , and if the level of each one is higher, they teach lessons to the other student to enhance their status. This process is stated as follows. If the jthe member has a better function value than the ith member:


   X i  n e w   =  X i  + r a n d ∗    X j  −  X i     



(42)







Otherwise,


   X i  n e w   =  X i  + r a n d ∗    X i  −  X j     



(43)







If, in the above equation,    X i  n e w     has a better position than    X i   , then the position of    X i    will be equal to    X i  n e w    .





3.3. The Proposed TLTFWO Algorithm


Trapping in the local optima and low accuracy are two major disadvantages of the original TFWO algorithm. The current article presents the TLTFWO algorithm to strengthen the weak points of the TFWO and facilitate information exchange among the population. Each of the members or individuals is constantly communicating with others in other populations. This helps advance the searching step within the search space and prevent trapping in the local optima. Thereby, the performance of the TFWO is remarkably improved, and the TLBO algorithm’s ability to search the decision space is enhanced, as well as its exploitation potential.



Equation (44) describes the modified and improved searching process in the hybrid TLTFWO algorithm. In this equation,   W  h f    and   W  h w    are used in the learning phase of the ith particle and the whirlpool to which ith particle belongs, i.e.,   W  h j   , is adopted for the teaching phase. In this equation, it moves towards the global and local optima and between them based on different movement equations and different accelerations so that the searching range is somehow improved, and this leads to the algorithm effectively avoiding from trapping in the local optima. This new equation helps enhance local and global searching potential and thus reaches the final solution.


      Δ  X i  =   1 +   cos    δ i  n e w     − sin    δ i  n e w               ∗   cos    δ i  n e w     ∗   W  h j  −  T F  ∗  X  m e a n       − sin    δ i  n e w     ∗   W  h f  − W  h w           



(44)






   X i  n e w   =  X i  + Δ  X i   



(45)









4. TLTFWO for Different OPF Problems


The IEEE 30-bus system is used to test TFWO, TLBO, and TLTFWO algorithms by examining eight cases of OPF problems. The maximum number of iterations is set at 600 in all the algorithms, the TFWO with Npop = 45 (population size) and NWh = 3 (number of whirlpools), TLBO with Npop = 30, and TLTFWO with Npop = 45 and NWh = 3. Power systems parameters are given in [56]. MATLAB 8.3 (R2014a) is adopted for simulations in a PC with a Corei7 CPU 3.0 GHz and 8.0 GB RAM configuration.



4.1. OPF Solutions IEEE 30-Bus Network [56]


As demonstrated in Figure 4 [56], the active and reactive demand of the test system are 283.4 MW and 126.2 MVAr, respectively.



The capability of the suggested TLTFWO algorithm is demonstrated by applying six OPF cases to the test system (without WT and PV). The objective functions are the same as in Section 2. Table 3 reports the optimal results found by the algorithm as the best values for thirty runs on each case. The results are compatible with the assumed objective functions, where all limits are observed.



4.1.1. Case 1: Minimization of Fuel Cost


In Case 1, the fuel cost of all generating units is minimized as in Equation (46):


    J   =   ∑  i = 1   N G    (  α i  +  b i   P  G i   +  c i   P  G i  2  )     +    λ P  (    P  G 1   −  P  G 1   lim      ) 2    +    λ V      ∑  i = 1   N L      (   V  L i  − V  L i  lim   )  2        +    λ Q    ∑  i = 1   N G      (    Q  G i   −  Q  G i   lim   )  2    +    λ S    ∑  i = 1   N T L      (    S i  −  S i  lim   )  2       



(46)







Simulation results, shown in Table 3, illustrate that the fuel cost when applying the TLTFWO is 800.4780 (USD/h), which is less compared with those of the results reported in the literature and novel optimization approaches listed in Table 4, such as tabu search (TS) [57], artificial bee colony (ABC) [58], hybrid shuffle frog leaping algorithm (SFLA) and simulated annealing (SFLA-SA) [59], differential evolution (DE) [60], adaptive group search optimization (AGSO) [61], MSA [56], GWO [62], evolutionary programming (EP) [63], modified Gaussian bare-bones imperialist competitive algorithm (MGBICA) [64], Aquila optimizer (AO) [65], hybrid particle swarm optimization (PSO) and GSA (gravitational search algorithm) (PSOGSA) [66], hybrid of imperialist competitive algorithm (ICA) and TLBO (teaching-learning-based optimization) (MICA–TLA) [67], adaptive real coded biogeography-based optimization (ARCBBO) [68], a modified honey bee mating optimization (MHBMO) [9], manta ray foraging optimization (MRFO) [69], flower pollination algorithm (FPA) [56], stud krill herd algorithm (SKH) [70], an improved EP (IEP) [71], hybrid firefly algorithm (FA) and JAYA (HFAJAYA) [72], JAYA [73], firefly algorithm (FA) [72], moth-flame optimization (MFO) [56], hybrid phasor PSO (PPSO) and GSA (PPSOGSA) [55], hybrid modified PSO (MPSO) and SFLA (MPSO-SFLA) [11], teaching-learning-based optimization (TLBO), and TFWO. Figure 5 illustrates the convergence of the objective function.




4.1.2. Case 2: Minimization of Piecewise Quadratic Fuel Cost


Several thermal generating units can utilize fuel sources such as oil, coal or natural gas. The fuel cost coefficients of generators operating with a single fuel type are similar to those of Case 1. The fuel cost characteristics of the units located at buses 1 and 2 are expressed as:


   f i  (  P  G i   ) =   ∑  k = 1    n f      α  i , k   +  b  i , k    P  G i   +  c  i , k    P  G i  2     



(47)




where nf denotes the number of fossil fuel alternatives for the ith generating unit, and ai,k, bi,k, and ci,k are cost coefficients of generating unit i when the kth fuel is the alternative.



The objective function can be described by Equation (42).


     J 2    =   ∑  k = 1   N G     α  i , k   +  b  i , k    P  G i   +  c  i , k    P  G i  2    +    λ P  (    P  G 1   −  P  G 1   lim      ) 2    +    λ V      ∑  i = 1   N L      (   V  L i  − V  L i  lim   )  2        +    λ Q    ∑  i = 1   N G      (    Q  G i   −  Q  G i   lim   )  2    +    λ S    ∑  i = 1   N T L      (    S i  −  S i  lim   )  2       



(48)







According to Table 3, the fuel cost when the suggested algorithm is applied is 646.4715 (USD/h). The best result belongs to the hybrid TLTFWO algorithm when compared with the results of other techniques listed in Table 5, such as MSA [56], gbest guided ABC (GABC) [74], MFO [56], MPSO-SFLA [11], FPA [56], Lévy TLBO (LTLBO) [4], social spider optimization (SSO) [14], a modified DE (MDE) [60], sparrow search algorithm (SSA) [75], an improved EP (IEP) [71], MICA-TLA [67], TLBO, and TFWO, where the TLTFWO provides best fuel cost than the reported results in the literature. Moreover, Figure 6 demonstrates the convergence behavior of the algorithms when applied to the OPF problem with minimum fuel cost (USD/h).




4.1.3. Case 3: Minimization of Fuel Cost Considering VPEs


To consider the impact of loading on the performance of generating units, this part of the article adds a new (sinusoidal) term in the cost functions of generating units so that vale point effects (VPEs) behavior is imitated.



The VPEs are involved in the cost function as Equation (49).


     J 3    =   ∑  i = 1   N G     α i  +  b i   P  G i   +  c i   P  G i  2  +    e i  sin    f i     P  G i   min   −  P  G i           +    λ P  (    P  G 1   −  P  G 1   lim      ) 2    +    λ V      ∑  i = 1   N L      (   V  L i  − V  L i  lim   )  2        +    λ Q    ∑  i = 1   N G      (    Q  G i   −  Q  G i   lim   )  2    +    λ S    ∑  i = 1   N T L      (    S i  −  S i  lim   )  2       



(49)







Here ei and fi show the valve point cost coefficients of the ith unit.



Table 3 and Table 6 tabulate the optimal settings of control variables of the suggested approach, where a comparison is made between the TLTFWO and its counterparts. The suggested method achieves the minimum fuel cost, which is 832.1584 (USD/h). Further, the algorithm helps reach the most suitable OPF solutions as per the obtained results. The convergence curves of the TFWO, TLBO and TLTFWO algorithms in Case 3 are shown in Figure 7.



In cases 4 to 6, the TLTFWO algorithm is applied to find more suitable solutions to multi-objective OPF problems. Moreover, the best simulation solutions found by the TLTFWO in cases 4 to 6 are listed in Table 3.




4.1.4. Case 4: Minimization of Real Power Loss and Fuel Cost


Here, the performance of the TLTFWO algorithm is assessed, where the objective function is formulated such that the quadratic cost function and active power loss are minimized based on Equations (16) and (17). Thirty tests are executed in simulations to solve the OPF problem repetitively using TLTFWO. Equation (50) gives the objective function of OPF:


     J 4    =   ∑  i = 1   N G     α i  +  b i   P  G i   +  c i   P  G i  2    +  ϕ p    ∑  i = 1   N T L      ∑     j = 1       j ≠ i      N T L     G  i j      V i 2    +    B  i j    V j 2    − 2  V i     V j  cos  δ  i j       +    λ P  (    P  G 1   −  P  G 1   lim      ) 2        +    λ V      ∑  i = 1   N L      (   V  L i  − V  L i  lim   )  2    +    λ Q    ∑  i = 1   N G      (    Q  G i   −  Q  G i   lim   )  2    +    λ S    ∑  i = 1   N T L      (    S i  −  S i  lim   )  2       



(50)




here    ϕ p    = 40 is set, similar to [56].



Table 3 shows the optimal settings of control variables. Additionally, the convergence behavior of the best result obtained for fuel cost from the implemented algorithm can be provided in Figure 8. Table 7 compares the performance of the proposed TLTFWO algorithm with some other techniques already mentioned throughout the article. The values of fuel cost and active power loss in the case of utilizing the proposed method are 859.0075 (USD/h) and 4.5295 (MW), respectively.



According to Table 5, one can understand that the overall objective function found by the TLTFWO is significantly smaller than those of the previous research reports.




4.1.5. Case 5: Minimization of Fuel Cost and Voltage Deviation


Among the critical indices of network security and continuation of supply to the customers is the magnitude of voltages of network buses. It is worth noting that adopting only one cost objective function in the OPF problem reaches a solution in which the voltage profile is unsatisfying. To this end, the present problem utilizes two objective functions: the fuel cost is minimized, the voltage profile is enhanced, and the voltage deviation on load buses does not violate one p.u. Equation (51) formulates the objective function of Case 5:


     J 5    =   ∑  i = 1   N G     α i  +  b i   P  G i   +  c i   P  G i  2    +  ϕ v    ∑  i = 1   N L        V  L i  − 1.0       +    λ P  (    P  G 1   −  P  G 1   lim      ) 2        +    λ V      ∑  i = 1   N L      (   V  L i  − V  L i  lim   )  2    +    λ Q    ∑  i = 1   N G      (    Q  G i   −  Q  G i   lim   )  2    +    λ S    ∑  i = 1   N T L      (    S i  −  S i  lim   )  2       



(51)




where,    ϕ v    = 100 [56].



Table 3 provides the results of optimal settings of control variables when the TLTFWO is used for simulations. In addition, Table 8 compares the results of various algorithms. As is observed, TLTFWO has significantly reduced the value of the multi-objective function. The convergence curves of this function obtained by the TFWO, TLBO and TLTFWO algorithms in Case 5 are shown in Figure 9.




4.1.6. Case 6: Minimization of Fuel Cost, Emissions, Voltage Deviation and Losses


This study deals with two types of pollutant gases emitted from generating units, SOx and NOx. By assigning appropriate coefficients for their price, attempts to minimize the tota amoutn of emission as given in Equation (25). This equations attempts to find minimum values of fuel cost, votage deviation, pollutant level, and power loss at the same time:




          J 6   =  ∑  i = 1   N G     α i  +  b i   P  G i   +  c i   P  G i  2   +  ϕ p   ∑  i = 1   N T L     ∑      j = 1       j ≠ i       N T L     G  i j     V  i  2   +   B  i j    V  j  2   − 2  V i    V j  cos  δ  i j     +  ϕ v   ∑  i = 1   N L     V  L i  − 1.0            +  ϕ e  min  ∑  i = 1   N G     α i  +  β i   P  G i   +  γ i   P  G i  2  +  ξ i  exp  (  θ i   P  G i   )   +   λ P    (   P  G 1   −  P  G 1  lim   )  2            +    λ V    ∑  i = 1   N L     (  V  L i  − V  L  i  lim  )  2  +   λ Q   ∑  i = 1   N G     (   Q  G i   −  Q  G i  lim  )  2  +   λ S   ∑  i = 1   N T L     (   S i  −  S  i  lim  )  2       



(52)





The present paper adopts    ϕ v    = 21,    ϕ p    = 22 and    ϕ e    = 19 [56] as the weight coefficients.



Once again, the TLTFWO algorithm demonstrates its potential to deal with the formulated optimization problem. Table 9 lists the results of different algorithms when applied to the problem.



As per this table, the minimum value of the objective function is 964.2506, which is smaller than its counterparts. The convergence curve of the total objective function in Case 6 by the TFWO, TLBO, and TLTFWO algorithms is displayed in Figure 10.





4.2. OPF Problem Solution in the Presence of WT and PV Units


4.2.1. Case 7: Minimizing the Generation Cost When Incorporating WT and PV Generation


In this case, the TLTFWO helps find the minimum fuel, wind, and PV costs defined by Equation (53) for a system with WT and PV units.


     J 7    =   ∑  i = 1   N G     α i  +  b i   P  G i   +  c i   P  G i  2    +     ∑  i = 1   N W    F cos t   W  T i        +     ∑  i = 1   N V    F cos t   P  V i               λ P  (    P  G 1   −  P  G 1   lim      ) 2    +    λ V      ∑  i = 1   N L      (   V  L i  − V  L i  lim   )  2    +    λ Q    ∑  i = 1   N G      (    Q  G i   −  Q  G i   lim   )  2    +    λ S    ∑  i = 1   N T L      (    S i  −  S i  lim   )  2       



(53)







NW and NV are the number of WT and PV units in this equation. Further,   F cos t   W  T i      and   F cos t   P  V i      express the output power generation cost of the ith WT and PV units, respectively.



Cost coefficients, in this case, are similar to Case 1, and PDF parameters are given in Table 10. Table 11 provides the optimal solutions of TLTFWO obtained for more than thirty runs. As observed, incorporating the optimal parameters helps decrease the objective function significantly compared to TFWO and TLBO. Moreover, Figure 11 compares convergence behavior in Case 7 between TFWO, TLBO and TLTFWO algorithms.




4.2.2. Case 8: Minimizing Generation Cost in the Presence of WT and PV Units with the Carbon Tax


Carbon tax (Ctax) is assumed on emissions, so the application of clean energy like WT and PV units is encouraged. The emission cost can be mathematically expressed as follows [19]:


   C E  =  C  t a x   E  



(54)






   J 8  =  J 7  +  C  t a x   E  



(55)







Ctax is estimated to be USD 20 per tonne [19].



Table 12 lists the OPF results obtained by estimating the output power of WT and PV units while considering a carbon tax. As one can be observed, the suggested TLTFWO gives more suitable solutions and results than both TFWO and TLBO. In the case of applying the carbon tax, both WT and PV units produce higher amounts of output power.



Moreover, Figure 12 illustrates the convergence characteristics of the discussed methods. As is seen, the suggested TLTFWO is superior to other algorithms in terms of convergence to the global optima with less number of iterations than TFWO and TLBO. So, one can choose TLTFWO for more complicated OPF problems when stochastic variables like intermittent output power of WT and PV generating units are considered.





4.3. Discussions


Table 13 lists the results related to the cost’s minimum, maximum, standard deviation, and mean values. According to this table, the TLTFWO provides more suitable solutions than its counterparts, i.e., PSO [87] (population size = 60), GA [88] (population size= 80), TFWO, and TLBO. Furthermore, even the worst solution of the proposed TLTFWO is more desirable than the best solutions of the PSO, GA, TFWO, and TLBO algorithms. So, TLTFWO is preferred when dealing with OPF problems in reality. Additionally, there is a small difference between the worst, average, and best solutions of the TLTFWO, showing its stability and reliability. The time required to converge to the optimal solution is also acceptable regarding the TLTFWO algorithm.



Moreover, the first benefit of using renewable energy sources can be understood by comparing the fuel cost calculated in the two studied cases, 1 and 7. The optimized calculation cost in case 1 for the proposed algorithm equals 800.4780 USD/h. In contrast, the value of the fuel cost calculated in case 7 of the article for the same system with renewable energy is equal to 781.9791 USD/h, which has a significant reduction. On the other hand, with the optimal use of renewable energy sources in the energy system, pollution can be effectively reduced. For example, by comparing cases 7 and 8, it can be seen that by considering the amount of production pollution as an objective function, the amount of pollution has been reduced effectively. For the proposed algorithm, it has decreased from the value of 1.76245 t/h to a much lower value and almost half equal to 0.88144 t/h. If we had used fossil fuel sources instead of these renewable energy production units, we would never have been able to reduce the amount of production pollution to this extent.





5. Conclusions


The current article combined TFWO and TLBO algorithms to introduce a novel optimization algorithm named TLTFWO. The OPF problem was then formulated as a nonlinear optimization problem with some constraints and limits. To improve voltage profile and reduce the fuel cost as much as possible, various objective functions are expressed while considering the impact of the valve point and the presence of PV and WT generating units. The simulations are implemented on the IEEE 30-bus network. According to the findings, the TLTFWO algorithm shows promising performance by successfully solving the multi-objective OPF problem. Simulations prove the robustness of TLTFWO in reaching the optimum global point with optimal adjustments of control variables. The suggested approach can be adopted as the desired tool to address complex power systems and experience more updates and improvements in the upcoming years.
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Figure 1. The model by whirlpool for optimization purposes. 
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Figure 2. Acting forces in whirlpools. 
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Figure 3. Flowchart of the original TFWO. 






Figure 3. Flowchart of the original TFWO.



[image: Applsci 13 00527 g003]







[image: Applsci 13 00527 g004 550] 





Figure 4. The layout of the IEEE 30-bus system. 
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Figure 5. Convergence trends for Case 1. 
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Figure 6. Convergence trends for Case 2. 
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Figure 7. Convergence trends in Case 3. 
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Figure 8. Convergence trends for Case 4. 
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Figure 9. Convergence trends in Case 5. 
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Figure 10. Convergence trends for Case 6. 
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Figure 11. Convergence trends for Case 7. 
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Figure 12. Convergence trends for Case 8. 
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Table 1. Summary of the proposed methods for solving the OPF problems in the recent literature.
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	Reference
	The proposed Methods
	Studied Power Systems
	Objectives





	[4]
	Teaching-learning-based optimization (TLBO) and Lévy TLBO (LTLBO)
	IEEE 30-bus and IEEE 57-bus
	Minimization of fuel cost without and with valve point loadings, improvement of voltage profile, piecewise quadratic fuel cost functions, and emission.



	[5]
	Sine cosine algorithm (SCA)
	Standard 9-bus system
	Hydrothermal scheduling (HTS) problem for optimizing fuel cost, emission and combined cost emission



	[6]
	A modified sine cosine algorithm (MSCA)
	IEEE-30 bus and IEEE 118-bus systems
	Minimizing the overall fuel cost, the active power transmission losses, and improving the voltage profile at load buses by reducing the voltage deviation



	[7]
	TLBO and genetic algorithm (GA)
	19 bus 7336 MW Turkish-wind-thermal power system
	Fuel costs for three different loading situations.



	[8]
	An effective cuckoo search algorithm (ECSA)
	IEEE-30 bus system
	Minimizing the overall fuel cost, the active power transmission losses, and improving the voltage profile at load buses by reducing the voltage deviation



	[9]
	Grey wolf optimizer (GWO) and differential evolution (DE)
	IEEE-30 bus and IEEE 118-bus systems
	Minimizing the overall fuel cost, the active and reactive power transmission losses, and the voltage security index



	[10]
	Ant lion optimization (ALO)
	IEEE 30 and IEEE 57-bus systems
	Operating cost, voltage profile, and transmission power losses



	[11]
	Particle Swarm Optimization (PSO) and Shuffle Frog Leaping algorithms (SFLA)
	IEEE 30, IEEE 57 and IEEE 118-bus systems
	Power generation involving the prohibited zones, valve point effect and multi-fuel type of generation units, voltage profile, voltage security index, and transmission power losses



	[12]
	Moth Swarm Algorithm (MSA)
	IEEE 30-bus test system
	Operating cost with and without the consideration of prohibited operating zones



	[13]
	Multi-objective ant lion algorithm (MOALA)
	IEEE 30-bus, IEEE 57-bus, IEEE 118-bus, IEEE 300-bus systems and on practical Algerian DZ114-bus system
	Generation cost, environmental pollution emission, active power losses, and voltage deviation



	[14]
	Social spider optimization (SSO) algorithms
	IEEE 30, IEEE 57 and IEEE 118-bus systems
	Fuel cost, power loss, polluted emission, voltage deviation and voltage security index



	[15]
	A hybridization of PSO with GWO
	Modified IEEE 30 bus test system
	Generation costs without and with considering valve point effects, and carbon tax



	[16]
	Cross entropy-cuckoo search algorithm (CE-CSA)
	Modified IEEE 57 bus system
	Generation costs with wind energy and solar PV generators and controllable loads



	[17]
	Turbulent flow of water-based optimization (TFWO)
	IEEE 30-, 57-bus test system and four large-scale power systems called IEEE, 300-bus, 1354pegase, 3012wp, and IEEE 9241pegase power systems.
	Minimize the fuel cost, emission, active power loss, voltage deviation at the load buses, and voltage stability index (VSI)



	[18]
	Grey wolf optimizer (GWO)
	Modified IEEE-30 and IEEE-57 bus test systems
	Generation cost considering renewable energy sources (RES)



	[19]
	Success history-based adaptive differential evolution (SADE)
	Modified IEEE 30 bus system
	Generation cost considering renewable energy sources (RES)



	[20]
	Coronavirus herd immunity optimizer (CHIO), salp swarm algorithm (SSA), and ant lion optimizer (ALO)
	IEEE 30-bus and IEEE 57-bus systems
	Total fuel costs, emissions level, power losses, voltage deviation, and voltage stability



	[21]
	Chaotic invasive weed optimization algorithms (CIWOs)
	IEEE 30 bus test system
	Power generation involving the prohibited zones, valve point effect and multi-fuel type of generation units



	[22]
	Modified moth swarm algorithm (MMSA)
	Modified IEEE-30 and IEEE-118 bus test systems
	Total fuel costs considering renewable energy sources (RES), power losses, voltage deviation



	[23]
	A hybrid of a non-dominated sorting genetic algorithm-II (NSGA-II) and fuzzy satisfaction-maximizing method
	IEEE 6-units\30-nodes system
	Multi-objective dynamic OPF (MDOPF) considering wind generation (WG) and demand response (DR) with fuel cost, carbon emission and active power losses



	[24]
	Multi-objective glowworm swarm optimization (MOGSO)
	Modified IEEE 30 and 300 bus systems
	Total generation cost, transmission losses, and voltage stability enhancement index



	[25]
	Bird swarm algorithm (BSA)
	IEEE 30 bus system
	Total fuel costs and emissions



	[26]
	Multi-objective PSO (MOPSO)
	IEEE 30-bus and IEEE 57-bus systems
	Generation cost, transmission loss, and the maximum voltage collapse proximity index (VCPI)



	[27]
	Modified strength Pareto evolutionary algorithm
	IEEE 30-bus and IEEE 57-bus systems
	Fuel cost and emission



	[28]
	Ant lion optimization (ALO)
	Modified IEEE 30 bus system
	Operational costs, voltage profile, and system-wide transmission power losses



	[29]
	Modified Jaya
	IEEE 30-bus and IEEE 118-bus systems
	Operational costs, emission, power loss and voltage profile improvement



	[30]
	Improved salp swarm algorithm (ISSA) in compared with moth-flame optimization (MFO), improved harmony search (IHS), genetic algorithm (GA)
	IEEE 30-bus, IEEE 57-bus and IEEE 118-bus systems
	Minimize quadratic fuel cost, piecewise and quadratic fuel cost, considering the valve-point effect and prohibited zones.



	[31]
	Developed GWO (DGWO)
	IEEE 30 bus system
	Quadratic fuel cost minimization, piecewise quadratic cost minimization, and quadratic fuel cost minimization considering the valve point effect.



	[32]
	Slime mould algorithm (SMA) in compared with gorilla troops optimizer (GTO), orca predation algorithm (OPA), artificial ecosystem optimizer (AEO), hunger games search (HGS), jellyfish search (JS) optimizer, and success-history-based parameter adaptation for DE.
	IEEE 30-bus test system and Algerian power system, DZA 114-bus
	The overall cost of the system, including reserve cost for over-estimation and penalty cost for under-estimation of both PV-solar and wind energy.



	[33]
	A novel hybrid firefly-bat algorithm with constraints-prior object-fuzzy sorting strategy (HFBA-COFS)
	IEEE 30-bus, IEEE 57-bus and IEEE 118-bus systems
	Active power loss, total emission and fuel cost
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Table 2. Summary of some applications of the TFWO algorithm in the recent literature.
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	Reference
	Year
	Contribution
	Area of the Application





	[34]
	2021
	θ-turbulent flow of water-based optimization (θ-TFWO)
	Reactive power control of a power system



	[35]
	2022
	TFWO
	Slope reliability evaluation, estimate the correlation parameter of Kriging method



	[36]
	2022
	TFWO
	Optimal sizing of different energy sources in an isolated hybrid micro-grid



	[37]
	2020
	TFWO
	Optimal placement of parallel compensators at the distribution level



	[38]
	2022
	Chaotic TFWO
	Optimal reactive power dispatch (ORPD) problems in the power systems



	[39,40,41]
	2021
	TFWO
	Estimating parameters of photovoltaic models



	[42]
	2021
	TFWO
	Finding optimal parameters of the back-to-back voltage source converters (BTB-VSC)



	[43]
	2021
	TFWO
	Color aerial image multilevel thresholding



	[44]
	2022
	Quasi-oppositional TFWO
	Short-term hydrothermal scheduling (SHTS)



	[45]
	2021
	A hybrid of TFWO and battle royale optimization (BRO), called TFW-BRO
	Power flow in smart grids using renewables



	[46]
	2021
	TFWO
	Economic load dispatch (ELD) problems in the power systems



	[47]
	2022
	A combined of multi-fidelity meta-optimization (MFM) and TFWO (MFM-TFWO)
	Unit commitment (UC) in the power systems



	[48]
	2022
	Quasi-oppositional TFWO
	Short term planning of hydrothermal power systems with PVs and pumped-storage plants



	[49]
	2022
	TFWO
	Selecting the parameters of a proportional-integral-derivative (PID) controller
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Table 3. Optimal values of the OPF problem variables without stochastic renewable energy, obtained by TLTFWO.
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Parameters

	
Cases:




	
1

	
2

	
3

	
4

	
5

	
6






	
PG1

	
177.1398

	
139.9991

	
198.7424

	
102.6131

	
176.2434

	
122.1760




	
PG2

	
48.7069

	
55.0000

	
44.8704

	
55.5533

	
48.8509

	
52.5571




	
PG5

	
21.3886

	
24.0889

	
18.4725

	
38.1107

	
21.6373

	
31.4806




	
PG8

	
21.2540

	
34.9994

	
10.0001

	
35.0000

	
22.2667

	
35.0000




	
PG11

	
11.9311

	
18.3672

	
10.0000

	
30.0000

	
12.2386

	
26.7497




	
PG13

	
12.0000

	
17.6834

	
12.0002

	
26.6524

	
12.0008

	
21.0234




	
VG1

	
1.0839

	
1.0744

	
1.0816

	
1.0698

	
1.0421

	
1.0731




	
VG2

	
1.0607

	
1.0572

	
1.0581

	
1.0576

	
1.0226

	
1.0574




	
VG5

	
1.0340

	
1.0312

	
1.0309

	
1.0359

	
1.0137

	
1.0327




	
VG8

	
1.0383

	
1.0392

	
1.0372

	
1.0438

	
1.0057

	
1.0409




	
VG11

	
1.0996

	
1.0869

	
1.0986

	
1.0835

	
1.0732

	
1.0402




	
VG13

	
1.0513

	
1.0666

	
1.0629

	
1.0573

	
0.9875

	
1.0244




	
T6–9

	
1.0707

	
1.0249

	
1.0412

	
1.0857

	
1.0998

	
1.0999




	
T6–10

	
0.9183

	
0.9590

	
0.9730

	
0.9000

	
0.9001

	
0.9512




	
T4–12

	
0.9762

	
1.0015

	
0.9952

	
0.9901

	
0.9385

	
1.0326




	
T28–27

	
0.9737

	
0.9731

	
0.9782

	
0.9750

	
0.9711

	
1.0047




	
QC10

	
2.4939

	
3.6587

	
4.5988

	
4.5252

	
4.9938

	
3.1650




	
QC12

	
1.0909

	
0.0003

	
1.9342

	
0.1672

	
0.0542

	
0.0312




	
QC15

	
4.4547

	
3.9139

	
4.3825

	
4.4646

	
4.9993

	
3.8300




	
QC17

	
5.0000

	
5.0000

	
4.9907

	
5.0000

	
0

	
4.9997




	
QC20

	
4.2352

	
4.2499

	
4.3793

	
4.2524

	
5.0000

	
4.9999




	
QC21

	
5.0000

	
5.0000

	
4.9994

	
5.0000

	
4.9981

	
5.0000




	
QC23

	
3.2543

	
3.3075

	
3.1515

	
3.2616

	
4.9980

	
4.2227




	
QC24

	
5.0000

	
5.0000

	
4.9987

	
5.0000

	
4.9999

	
5.0000




	
QC29

	
2.6470

	
2.6285

	
2.6856

	
2.5559

	
2.6457

	
2.6067




	
Cost (USD/h)

	
800.4780

	
646.4715

	
832.1584

	
859.0075

	
803.6829

	
830.2863




	
Emission (t/h)

	
0.3663

	
0.2835

	
0.4378

	
0.2289

	
0.3636

	
0.2529




	
Power losses (MW)

	
9.0204

	
6.7380

	
10.6856

	
4.5295

	
9.8377

	
5.5868




	
V.D. (p.u.)

	
0.9084

	
0.9152

	
0.8618

	
0.9279

	
0.0950

	
0.2976
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Table 4. Optimal results of the current research in Case 1.
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	Optimizer
	Fuel cost (USD/h)
	Emission (t/h)
	Power Losses (MW)
	V.D. (p.u.)





	TS [57]
	802.29
	-
	-
	-



	ABC [58]
	800.660
	0.365141
	9.0328
	0.9209



	SFLA-SA [59]
	801.79
	-
	-
	-



	DE [60]
	802.39
	-
	9.466
	-



	AGSO [61]
	801.75
	0.3703
	-
	-



	MSA [56]
	800.5099
	0.36645
	9.0345
	0.90357



	GWO [62]
	801.41
	-
	9.30
	-



	EP [63]
	803.57
	-
	-
	-



	MGBICA [64]
	801.1409
	0.3296
	-
	-



	AO [65]
	801.83
	-
	-
	-



	PSOGSA [66]
	800.49859
	-
	9.0339
	0.12674



	MICA-TLA [67]
	801.0488
	-
	9.1895
	-



	ARCBBO [68]
	800.5159
	0.3663
	9.0255
	0.8867



	MHBMO [9]
	801.985
	-
	9.49
	-



	MRFO [69]
	800.7680
	-
	9.1150
	-



	FPA [56]
	802.7983
	0.35959
	9.5406
	0.36788



	SKH [70]
	800.5141
	0.3662
	9.0282
	-



	IEP [71]
	802.46
	-
	-
	-



	HFAJAYA [72]
	800.4800
	0.3659
	9.0134
	0.9047



	JAYA [73]
	800.4794
	-
	9.06481
	0.1273



	FA [72]
	800.7502
	0.36532
	9.0219
	0.9205



	MFO [56]
	800.6863
	0.36849
	9.1492
	0.75768



	PPSOGSA [55]
	800.528
	-
	9.02665
	0.91136



	MPSO-SFLA [11]
	801.75
	-
	9.54
	-



	TFWO
	800.8426
	0.3668
	9.3207
	0.9044



	TLBO
	800.9923
	0.3369
	9.4892
	0.9026



	TLTFWO
	800.4780
	0.3663
	9.0204
	0.9084
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Table 5. The optimal results found by different algorithms in Case 2.






Table 5. The optimal results found by different algorithms in Case 2.





	Optimizer
	Fuel cost (USD/h)
	Emission (t/h)
	Power Losses (MW)
	V.D. (p.u.)





	MSA [56]
	646.8364
	0.28352
	6.8001
	0.84479



	GABC [74]
	647.03
	-
	6.8160
	0.8010



	MFO [56]
	649.2727
	0.28336
	7.2293
	0.47024



	MPSO-SFLA [11]
	647.55
	-
	-
	-



	FPA [56]
	651.3768
	0.28083
	7.2355
	0.31259



	LTLBO [4]
	647.4315
	0.2835
	6.9347
	0.8896



	SSO [14]
	663.3518
	-
	-
	-



	MDE [60]
	647.846
	-
	7.095
	-



	SSA [75]
	646.7796
	0.2836
	6.5599
	0.5320



	IEP [71]
	649.312
	-
	-
	-



	MICA-TLA [67]
	647.1002
	-
	6.8945
	-



	TFWO
	646.9425
	0.2840
	6.8026
	0.9136



	TLBO
	647.5263
	0.2838
	6.8375
	0.9102



	TLTFWO
	646.4715
	0.2835
	6.7380
	0.9152
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Table 6. Optimal results found by the TLTFWO in Case 3.
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	Optimizer
	Fuel Cost (USD/h)
	Emission (t/h)
	Power Losses (MW)
	V.D. (p.u.)





	HFAJAYA [72]
	832.1798
	0.4378
	10.6897
	0.8578



	FA [72]
	832.5596
	0.4372
	10.6823
	0.8539



	SP-DE [76]
	832.4813
	0.43651
	10.6762
	0.75042



	PSO [77]
	832.6871
	-
	-
	-



	TFWO
	832.6598
	0.4382
	10.9105
	0.8410



	TLBO
	832.7624
	0.4380
	10.9397
	0.8322



	TLTFWO
	832.1584
	0.4378
	10.6856
	0.8618
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Table 7. Optimal results of the present study in Case 4.
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	Optimizer
	Fuel Cost (USD/h)
	Emission (t/h)
	Power Losses (MW)
	V.D. (p.u.)
	     J 4     





	EMSA [78]
	859.9514
	0.2278
	4.6071
	0.7758
	1044.2354



	MOALO [13]
	826.4556
	0.2642
	5.7727
	1.2560
	1057.3636



	MJaya [79]
	827.9124
	-
	5.7960
	-
	1059.7524



	MSA [56]
	859.1915
	0.2289
	4.5404
	0.92852
	1040.8075



	SpDEA [80]
	837.8510
	-
	5.6093
	0.8106
	1062.223



	QOMJaya [79]
	826.9651
	-
	5.7596
	-
	1402.9251



	TFWO
	860.1514
	0.2292
	4.5335
	0.9145
	1041.4914



	TLBO
	860.2684
	0.2295
	4.6002
	0.9096
	1044.2764



	TLTFWO
	859.0075
	0.2289
	4.5295
	0.9279
	1040.1875
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Table 8. Optimal results of the present study in Case 5.
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	Optimizer
	Fuel Cost (USD/h)
	Emission (t/h)
	Power Losses (MW)
	V.D. (p.u.)
	     J 5     





	PSO [81]
	804.477
	0.368
	10.129
	0.126
	817.0770



	PSO-SSO [81]
	803.9899
	0.367
	9.961
	0.0940
	813.3899



	BB-MOPSO [82]
	804.9639
	-
	-
	0.1021
	815.1739



	EMSA [78]
	803.4286
	0.3643
	9.7894
	0.1073
	814.1586



	TFWO [17]
	803.416
	0.365
	9.795
	0.101
	813.5160



	SpDEA [80]
	803.0290
	-
	9.0949
	0.2799
	831.0190



	MFO [56]
	803.7911
	0.36355
	9.8685
	0.10563
	814.3541



	DA-APSO [83]
	802.63
	-
	-
	0.1164
	814.2700



	SSO [81]
	803.73
	0.365
	9.841
	0.1044
	814.1700



	MOMICA [82]
	804.9611
	0.3552
	9.8212
	0.0952
	814.4811



	MPSO [56]
	803.9787
	0.3636
	9.9242
	0.1202
	815.9987



	MNSGA-II [82]
	805.0076
	-
	-
	0.0989
	814.8976



	TFWO
	804.2510
	0.3639
	10.1563
	0.0998
	814.2310



	TLBO
	804.7380
	0.3671
	9.9995
	0.1065
	815.3880



	TLTFWO
	803.6829
	0.3636
	9.8377
	0.09450
	813.1829
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Table 9. Optimal results of the present study in Case 6.
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	Algorithm
	Fuel Cost (USD/h)
	Emission (t/h)
	Power Losses (MW)
	V.D. (p.u.)
	     J 6     





	SSO [81]
	829.978
	0.25
	5.426
	0.516
	964.9360



	MODA [84]
	828.49
	0.265
	5.912
	0.585
	975.8740



	MNSGA-II [82]
	834.5616
	0.2527
	5.6606
	0.4308
	972.9429



	PSO [81]
	828.2904
	0.261
	5.644
	0.55
	968.9674



	J-PPS3 [85]
	830.3088
	0.2363
	5.6377
	0.2949
	965.0228



	I-NSGA-III [86]
	881.9395
	0.2209
	4.7449
	0.1754
	994.2078



	MFO [56]
	830.9135
	0.25231
	5.5971
	0.33164
	965.8080



	J-PPS2 [85]
	830.8672
	0.2357
	5.6175
	0.2948
	965.1201



	MOALO [13]
	826.2676
	0.2730
	7.2073
	0.7160
	1005.0512



	MSA [56]
	830.639
	0.25258
	5.6219
	0.29385
	965.2907



	BB-MOPSO [82]
	833.0345
	0.2479
	5.6504
	0.3945
	970.3379



	J-PPS1 [85]
	830.9938
	0.2355
	5.6120
	0.2990
	965.2159



	TFWO
	831.7219
	0.2540
	5.6523
	0.2981
	967.1586



	TLBO
	831.2634
	0.2602
	5.8517
	0.3111
	971.4777



	TLTFWO
	830.2863
	0.2529
	5.5868
	0.2976
	964.2506
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Table 10. PDF parameters of WT and PV units [19].
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Wind Power Generating Plants

	
Solar PV Plant




	
Wind Farm

	
No. of

Turbines

	
Rated Power, Pwr (MW)

	
Weibull PDF

Parameters

	
Weibull Mean,

Mwbl

	
Rated Power, Psr

(MW)

	
Lognormal PDF

Parameters

	
Lognormal Mean,

Mlgn






	
1 (bus 5)

	
25

	
75

	
c = 9, k = 2

	
v = 7.976 m/s

	
50 (bus 13)

	
σ = 0.6, µ = 6

	
G = 483 W/m2




	
2 (bus 11)

	
20

	
60

	
c = 10, k = 2

	
v = 8.862 m/s
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Table 11. Optimal variables in Case 7.
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	Variables
	TFWO
	TLBO
	TLTFWO





	PG1 (MW)
	134.90791
	134.90791
	134.90793



	PG2 (MW)
	29.0275
	28.2868
	27.0466



	Pws1 (MW)
	44.0282
	43.6213
	42.9326



	PG3 (MW)
	10
	10
	10



	Pws2 (MW)
	37.1649
	36.8238
	36.2236



	Pss (MW)
	34.0406
	35.5344
	38.0833



	VG1 (p.u.)
	1.0718
	1.0723
	1.072



	VG2 (p.u.)
	1.0568
	1.0573
	1.057



	VG5 (p.u.)
	1.0349
	1.0352
	1.0348



	VG8 (p.u.)
	1.0702
	1.0398
	1.0395



	VG11 (p.u.)
	1.0981
	1.0996
	1.0999



	VG13 (p.u.)
	1.0489
	1.0548
	1.0559



	QG1 (MVAR)
	−2.31923
	−1.91971
	−1.91987



	QG2 (MVAR)
	11.8198
	13.2443
	13.2115



	Qws1 (MVAR)
	22.4185
	23.1879
	23.2748



	QG3(MVAR)
	40
	35.0704
	34.6188



	Qws2 (MVAR)
	30
	30
	30



	Qss (MVAR)
	15.0849
	17.4102
	17.8624



	Fuelvlvcost (USD/h)
	442.3257
	439.8602
	435.7669



	Wind gen cost (USD/h)
	247.9662
	245.3840
	240.9739



	Solar gen cost (USD/h)
	92.0150
	97.2115
	105.2384



	Total Cost (USD/h)
	782.3068
	782.4558
	781.9791



	Emission (t/h)
	1.76196
	1.76213
	1.76245



	Power losses (MW)
	5.7692
	5.7741
	5.7941



	V.D. (p.u.)
	0.45405
	0.46348
	0.46546
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Table 12. The variables’ optimal values obtained for Case 8.
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	Variables
	TFWO
	TLBO
	TLTFWO





	PG1 (MW)
	123.11028
	123.50416
	123.32853



	PG2 (MW)
	31.9607
	33.0291
	32.5297



	Pws1 (MW)
	45.4523
	46.0158
	45.7041



	PG3 (MW)
	10
	10
	10



	Pws2 (MW)
	38.2959
	38.7483
	38.5267



	Pss (MW)
	39.8618
	37.4806
	38.629



	VG1 (p.u.)
	1.0696
	1.071
	1.0697



	VG2 (p.u.)
	1.0561
	1.0514
	1.0561



	VG5 (p.u.)
	1.035
	1.1
	1.0954



	VG8 (p.u.)
	1.0686
	1.1
	1.0402



	VG11 (p.u.)
	1.1
	1.1
	1.0985



	VG13 (p.u.)
	1.0514
	1.0594
	1.054



	QG1 (MVAR)
	−3.21843
	12.1278
	−2.96534



	QG2 (MVAR)
	10.7334
	−20
	4.09265



	Qws1 (MVAR)
	22.2319
	35
	35



	QG3(MVAR)
	40
	40
	32.6276



	Qws2 (MVAR)
	30
	30
	30



	Qss (MVAR)
	15.9599
	18.8826
	16.9538



	Fuelvlvcost (USD/h)
	424.8316
	429.4076
	427.2849



	Wind gen cost (USD/h)
	256.9048
	260.5086
	258.6126



	Solar gen cost (USD/h)
	112.2470
	103.7997
	107.3181



	Total Cost (USD/h)
	793.9835
	793.7159
	793.2156



	Emission (t/h)
	0.87057
	0.89030
	0.88144



	J8
	811.3949
	811.5219
	810.8444



	Power losses (MW)
	5.2809
	5.3780
	5.3180



	V.D. (p.u.)
	0.46214
	0.49157
	0.47299



	Carbon tax (USD/h)
	17.4114
	17.806
	17.6288
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Table 13. Results of various parameters obtained by TTFWO, TFWO, and TLBO algorithms.
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Method

	
Min

	
Mean

	
Max

	
Std.

	
Time (s)






	
Case 1




	
PSO

	
801.1419

	
801.8326

	
802.9401

	
1.03

	
28




	
GA

	
801.6345

	
802.5472

	
803.2009

	
1.48

	
36




	
TFWO

	
800.8426

	
801.2513

	
801.5878

	
0.56

	
30




	
TLBO

	
800.9923

	
801.2958

	
801.6004

	
0.45

	
33




	
TLTFWO

	
800.4780

	
800.6012

	
800.7639

	
0.14

	
30




	
Case 2




	
PSO

	
647.5328

	
647.9796

	
648.6117

	
0.74

	
31




	
GA

	
647.9935

	
648.7213

	
649.5020

	
1.21

	
35




	
TFWO

	
646.9425

	
647.3011

	
647.7208

	
0.42

	
30




	
TLBO

	
647.5263

	
647.8730

	
648.4102

	
0.38

	
33




	
TLTFWO

	
646.4715

	
646.5819

	
646.7009

	
0.17

	
30




	
Case 3




	
PSO

	
832.9628

	
833.4139

	
833.8996

	
1.01

	
32




	
GA

	
833.6085

	
834.8323

	
836.0047

	
1.95

	
38




	
TFWO

	
832.6598

	
832.9418

	
833.3994

	
0.61

	
29




	
TLBO

	
832.7624

	
832.9771

	
833.4825

	
0.72

	
34




	
TLTFWO

	
832.1584

	
832.2837

	
832.4035

	
0.19

	
30




	
Case 4




	
PSO

	
1045.3157

	
1046.7329

	
1047.3214

	
1.61

	
33




	
GA

	
1045.9559

	
1047.1046

	
1048.3610

	
1.14

	
40




	
TFWO

	
1041.4914

	
1042.5326

	
1043.4218

	
1.52

	
31




	
TLBO

	
1044.2764

	
1045.4579

	
1046.8018

	
1.49

	
35




	
TLTFWO

	
1040.1875

	
1040.3267

	
1040.4793

	
0.23

	
29




	
Case 5




	
PSO

	
815.3592

	
816.5410

	
817.7862

	
1.75

	
32




	
GA

	
816.6919

	
817.7764

	
819.2102

	
2.32

	
35




	
TFWO

	
814.2310

	
815.6249

	
816.5998

	
1.40

	
30




	
TLBO

	
815.3880

	
816.4528

	
817.6781

	
1.44

	
34




	
TLTFWO

	
813.1829

	
813.3613

	
813.4817

	
0.15

	
30




	
Case 6




	
PSO

	
970.9024

	
973.1466

	
974.1565

	
1.39

	
36




	
GA

	
973.4101

	
975.6303

	
976.8919

	
2.16

	
40




	
TFWO

	
967.1586

	
967.8543

	
968.4628

	
0.55

	
30




	
TLBO

	
971.4777

	
972.0647

	
972.9847

	
0.81

	
33




	
TLTFWO

	
964.2506

	
964.3928

	
964.5224

	
0.15

	
32




	
Case 7




	
PSO

	
782.7100

	
783.2148

	
783.7969

	
0.89

	
33




	
GA

	
783.2565

	
784.6206

	
786.7536

	
1.37

	
41




	
TFWO

	
782.3068

	
782.6754

	
783.2645

	
0.63

	
35




	
TLBO

	
782.4558

	
782.9740

	
783.8231

	
0.94

	
38




	
TLTFWO

	
781.9791

	
782.2216

	
782.4136

	
0.20

	
35




	
Case 8




	
PSO

	
811.4062

	
812.5325

	
813.5510

	
0.57

	
33




	
GA

	
812.6163

	
813.7541

	
815.4792

	
2.25

	
40




	
TFWO

	
811.3949

	
812.3127

	
813.1720

	
1.16

	
35




	
TLBO

	
811.5219

	
812.3812

	
813.2546

	
1.43

	
39




	
TLTFWO

	
810.8444

	
810.9632

	
811.2148

	
0.18

	
35
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