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Featured Application: Compact proposal of theoretical model of self-magnetic flux leakage based
on magnetic metal memory for estimating depth direction of a fatigue crack.

Abstract: In this study, theoretical models were proposed to explain the changes in self-magnetic flux
density (SMFD) due to fatigue cracks in the presence and absence of external magnetic fields. Three
theoretical models were proposed: rotation domain model (RDM), concentration domain model
(CDM), and vertical domain model (VDM), considering the deformation and non-deformation possi-
bilities. To prove the theoretical model, fatigue cracks with different depth angles were fabricated
through fatigue testing and EDM processing on the CT specimens. In addition, tunnel magnetoresis-
tance (TMR) sensors were used to evaluate the 3-axis distribution of SMFD. Comparing the simulation
and experimental results, similar tendencies of the occurrence and depth angle of fatigue cracks and
their effect on the distribution of SMFD were observed. According to the RDM, the distribution of
SMFD occurs in the direction of the crack length (y-direction), while the CDM explains that the SMFD
does not occur if the fatigue crack is in a direction perpendicular to the surface. In addition, the
VDM shows that SMFDs occur in a direction perpendicular to the crack length (x-direction) and the
specimen surface (z-direction). Interestingly, these trends agree with the experimental results, which
confirms the validity of the theoretical model and thus can be used to estimate the depth direction of
a fatigue crack.

Keywords: magnetic domain model; self magnetization; magnetic flux density; stress; strain; fatigue
crack; depth direction; nondestructive testing

1. Introduction

Large-scale building infrastructures, such as power generation facilities, railroads,
bridges, and high-rise buildings, require extensive budgets and time investments. There-
fore, social and economic benefits from investments can only be ensured when these
infrastructures are operated with safety measures while maintaining the target perfor-
mance throughout the design life. On the other hand, the damage-tolerant design states
that a structure can be continuously operated even after the design life has elapsed if the
target performance, safety, and economic feasibility are maintained. In this case, non-
destructive (NDT) testing plays an important role to support defect detection. In damage
tolerance engineering [1–5], determining tolerance size and appropriate maintenance and
replacement are crucial factors. However, the stress concentration coefficients depend on
the type of defects, such as voids, corrosion, fatigue cracks, delamination, and shelling, and
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consequently, the allowable tolerance sizes are different [6–8]. Therefore, it is essential to
quantitatively evaluate the size and shape of the defects detected by NDT.

One of the challenges of NDT is detecting fatigue cracks that consist of a very thin crack
layer. The initiation of fatigue crack on the metal and alloy is a convergence phenomenon
that is influenced by many parameter interactions, physically and chemically. Widely
known as damage accumulation, crack nucleation and growth occur when the local stress in
the atomic displacement exceeds the yield strength of the material [9,10]. The accumulation
of this displacement leads to continuous faults, such as deformation, dislocation motions,
and evolution, in each atomic layer and initiates micro voids which transform into micro
defects with high tendencies to grow with the applied loads. The fatigue crack can be
initiated on the material surface or at an internal layer [11]. If fatigue cracks develop in a
direction close to the normal to the surface, the structure will fracture rapidly. Furthermore,
if fatigue cracks develop in a direction inclined parallel to the surface, the probability of
delaminating or shelling increases. Therefore, it is important to evaluate the angle between
the fatigue crack and the surface of the structure because this phenomenon can significantly
reduce the life span of components and increase the probability of unexpected in-service
failures [12]. Many approaches to NDT have been used to detect fatigue defects, one of
which is surface defect detection.

In the case of a surface defect in NDT, large mechanical structures are detected using
several methods such as visual, penetration, and magnetic particle testing, which can effec-
tively determine the presence and length of a defect. However, it is difficult to implement
these methods to evaluate the depth of the material defect [13]. A study on magnetic
metal memory (MMM) has been reported in leakage magnetic flux testing which is able
to detect an internal defect by measuring the self-magnetic flux leakage (SMFL) [14–17].
Many related studies have reported the development of this technology for solid ferro-
magnetic materials and assemblies of ferromagnetic materials, through experimental data
models [18–20], the probability evaluation model [21], and the magnetic theoretical model.
It was found that the SMFD signal around the defect changed depending on the defect
types, defect position, and cross-sectional area [17].

Several studies have presented a theoretical equation for the leakage flux generated
around a crack using a dipole model [22–31]. A formula was presented for the magne-
tization of a specimen by an external magnetic field, assuming that the magnetic dipole
moment per unit area occurs at the crack surface. The formula has been used as a model
that simulates the qualitative (and partially quantitative) change in MFL based on the
presence of defects [22–27] and sensor designs [28,29], and is used for quantitative evalua-
tion [22–27,29–31]. However, it is difficult to apply it to very narrow cracks, such as fatigue
cracks. In addition, the change in the magnetic flux density (MFD) with the change in stress
remains unclear, where conventional studies on MMM states that the magnetic flux density
changes when stress changes or fatigue cracks occur, even when no external magnetic
field is applied [32–36]. Therefore, it is uncoherent to use a magnetic dipole that assumes
that an external magnetic field is applied which make the specimen in a magnetized state.
Therefore, there is a need for a theoretical model to explain the SMFL phenomenon that
plays the same role as the magnetic dipole model introduced in the MFLT and SMFL.

Furthermore, to formulate the theoretical model of MMM, several phenomena are
considered. Wilson et al. [32] reported that, for applied stress measurements in the stress
region of a steel sample, the magnetic field component parallel to the applied stress has
a considerably greater correlation than the normal component. This is because of the
magnetic field distribution in the stress region, which is related to the magnetic field distri-
bution generated in the sample after the stress is released, and the pattern was confirmed
experimentally. On the other hand, Berkache et al. [33] compared the stress analysis using
the finite element method (FEM), measured the 3-axial magnetic flux density distribution,
and examined the correlation. The stress distribution, which uses the parameter of the
3-axial magnetic flux density, was set as a qualitative relationship in the third polynomial
formula. As a result, it was reported that it is possible to examine stress using the MMM.
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However, a quantitative evaluation of stress is accompanied by a large error. Kim et al. [34]
derived a formula in which a change in stress accompanying mechanical deformation
causes a change in SMFD. In addition, it was experimentally verified that a change in the
SMFD distribution occurred owing to the change in the stress in the weld zone. A system
for measuring the residual stress of a wide welding line with a high spatial resolution,
using 64 GMR sensor elements arranged at intervals of 0.6 mm, was proposed. In addition
to the review of stress performance and its effect on the MFD, the residual magnetic fields
have also been considered. Roskosz et al. [35] investigated the residual magnetic field as
a diagnostic signal for the reliable evaluation of the material. Accordingly, the possibility
of defining the plastic deformation region of a component, determining the approximate
distribution of stresses and strains, and defining the remaining lifespan of the component
was presented. Finally, Dubov et al. [36] investigated the applicability of the metal mag-
netic memory (MMM) method for the stress–strain state (SSS) and NDT evaluation of
gas and petroleum pipelines. Using the MMM method, it was suggested that the stress
concentration zone (SCZ), where the development process of fatigue damage is intensively
strengthened, can be detected and used to remove this zone. Unfortunately, despite the
several studies on MMM presented above, it is challenging to develop a theoretical model
to explain fatigue cracking and evaluate the depth direction of fatigue cracks by measuring
the self-magnetization, and deciding whether the edge of the ferromagnetic metal structure
is magnetized or the magnetic flux density shifted near fatigue crack despite the absence of
external magnetic field.

Dealing with this gap, the change in magnetic domain caused by SSS and fatigue
cracking with a narrow width was reviewed and modeled in this study. A valid domain
model was selected to evaluate the depth direction inside fatigue cracks. The depth
direction of the fatigue cracks was evaluated by measuring the MFD distribution based
on the self-magnetization of the subject. Carbon steel specimens (SA 106) were subjected
to fatigue crack tests using a compact tension (CT) specimen, and a small volume of
8 × 16 × 6.4 mm (width × length × height) containing the crack was cut with different
cutting angles of 30, 60, and 90◦. The MFD distribution on the surface of the specimen was
measured using a 3-axis tunnel magneto-resistance (TMR) sensor. An evaluation algorithm
for the depth direction was derived using the 3-axial SMFD distribution.

2. Magnetic Domain Models for Stress and Fatigue Cracks

Definition and statements of magnetic dipole moment (
→
m), magnetization (

→
M), mag-

netic flux density (
→
B), vector magnetic potential (

→
A), and magnetization surface current

density (
→
J ms) are referred to as reference [37] in this paper. A magnetic dipole moment

→
m,

is assumed to be generated by electrons rotating and orbiting around the nucleus of a ferro-
magnetic metal. Regions with magnetic moments in the same direction are called magnetic

domains and the boundaries of these regions are called domain walls. Magnetization
→
M is

defined by Equation (1). Here, ∆v is the micro-volume in the 3-dimensional model, and
can be replaced by the micro-area ∆s in the 2-dimensional model.

→
M = lim

∆v→0

∑∆v
k=1

→
mk

∆v
, (A/m) (1)

Figure 1a,b shows the rotation domain model (RDM) in which the magnetization is
rotated. Figure 1c,d show a concentration domain model (CDM), which is arranged in
the direction in which the magnetization is concentrated at the center. Figure 1e,f show
the vertical domain model (VDM), where the magnetization is arranged in a direction
perpendicular to the surface. RDM, CDM, and VDM are separate concepts from the domain
theory of magnetism [38]. Figure 1a,c), 1e show a two-dimensional magnetic domain model

with magnetizations
→
M1,

→
M2,

→
M3, and

→
M4 in each magnetic domain with areas S1, S2, S3,

and S4 in a state where no external magnetic field
→
H is applied (

→
H = 0). In contrast, the
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equivalent magnetization
→
Meqv can be expressed as weighted average from the total surface

area obtained by multiplying the magnetization by the corresponding area of the magnetic
domain Sk divided by total area of magnetic domain, as shown in Equation (2), when
→
H = 0,

→
Meqv = 0. In Equation (2), n is the number of magnetic domains. In this study, we

specified n = 4 or n = 8 correspond to the number of models arrayed to the system.

→
Meqv =

1
S ∑n

k=1 Sk
→
Mk, (A/m) (2)

S = ∑n
k=1 Sk, (m2) (3)
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When an external magnetic field
→
H is applied (

→
H 6= 0), as shown in Figure 1d,e, the

magnetic domain wall moves, and the area of the magnetic domain (S2 or S1) with a mag-

netic moment in the same direction as
→
H increases. In addition, the area of magnetization

(S4 or S3) with a magnetic moment opposite to
→
H becomes smaller. Consequently, in the

state where
→
H 6= 0,

→
Meqv 6= 0. However, in the VDM of Figure 1f, even when an external

magnetic field
→
H is applied (

→
H 6= 0),

→
Meqv = 0, so in the two-dimensional magnetic domain

model, the changes of RDM and CDM are justifiable. The equivalent magnetization
→
Meqv

can be expressed as the product of magnetic susceptibility χm, which is an intrinsic property

of a material, and the external magnetic field
→
H, which is expressed in Equation (4).

→
Meqv = χm

→
H, (A/m) (4)

The magnetic susceptibility is not a constant entity, but corresponds to a parameter for
an external magnetic field, which causes magnetic hysteresis. In other words, even after the

external magnetic field is removed, the residual magnetization phenomenon of
→
Meqv 6= 0

appears. In this state, for
→
Meqv = 0, an external magnetic field in the reverse direction, i.e.,

a coercive force, must be applied.
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The MFD
→
B outside the ferromagnetic metal can be expressed as the superposition of

the external magnetic field
→
H and the equivalent magnetization, as in Equation (5). Here,

µ0, µr, and µ are the permeability in free space, relative permeability, and permeability,

respectively. According to Equation (5), when
→
H = 0,

→
Meqv = 0.

→
B = µ0

→
H + µ0

→
Meqv = µ0(1 + χm)

→
H = µ0µr

→
H = µ

→
H, (Wb/m2) (5)

µ0 = 4π× 10−7, (H/m) (6)

Although it is not a magnetic hysteresis phenomenon, as shown in Figure 2, when

a mechanical load is applied and deformation occurs, a phenomenon in which
→
Meqv 6= 0

may occur at
→
H = 0. Figure 2a–c show conceptual diagrams applying RDM, CDM, and

VDM, respectively, with n = 8 to a cantilever beam. Figure 2d–f show the deformation that

occurred when a load
→
F was applied to the tip of the cantilever beam. The area Sk of each

magnetic domain was deformed into Sk
′ by the load

→
F . The strain εαβ in each area can

be expressed using Equation (7). In addition, the stress σαβ in each area can be expressed
using Equation (8). In this study, both the tensile and shear stresses are expressed as σαβ,
(Equation (8)), where E is the elastic modulus and α or β refers to the x or y direction

S′k = εαβ,kSk, (m2) (7)

σαβ,k = E εαβ,k, (N/m2) (8)
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In the state of Figure 2d,e, when
→
H = 0, the equivalent magnetization

→
M′eqv and the

magnetic flux density
→
B ′ can be expressed by Equations (9) and (10), respectively. S is the

sum of the total area. In addition, Equation (10) can be expressed as Equations (11) and (12)
by substituting in Equations (7) and (8). This formula indicates that a change in strain or
stress causes a change in magnetic flux density.

→
M′eqv =

1
S ∑n

k=1 Sk
′→Mk

′, (A/m) (9)

→
B ′ = µ0

→
M′eqv =

µ0
S ∑n

k=1 Sk
′→Mk

′, (Wb/m2) (10)

→
B ′ =

µ0
S ∑n

k=1 εαβ,kSk
′→Mk

′, (Wb/m2) (11)

→
B ′ =

µ0
SE ∑n

k=1 σαβ,kSk
′→Mk

′, (Wb/m2) (12)

Figure 3 shows an example of a 3-dimensional representation of the RDM model
in Figure 2a by extending it in the direction perpendicular to the xy plane, that is, the
z-direction. This gap can be expressed by separating regions S1–S4 and S5–S8 in Figure 2.
Hereafter, the gap is collectively referred to as a crack. Figure 3b shows a magnetic
domain model with cracks in the direction perpendicular to the surface of the specimen,
and Figure 3c shows a magnetic domain model with slanted cracks while maintaining
hexahedronal shape. Figure 3d shows a case in which the top surface of the magnetic
domain is deformed to be horizontal to the xy plane and has an inclined crack. In each
figure,

→
a n denotes the surface unit vector. In addition, the unit vectors in the x, y, and z

directions are expressed as
→
a x,

→
a y, and

→
a z. The magnetization surface current density

(MSCD),
→
J ms, represented by the dotted arrow, is related to the magnetization (

→
Mk),

represented by the solid arrow and Equation (13).

In addition, the relationship between the equivalent MSCD (
→
J eqv,mn) and the equiva-

lent magnetization (
→
Meqv,mn) can be expressed by Equation (14). In the case where there

is no external magnetic field (
→
H = 0) and when no deformation occurs (εαβ,k = 0),

→
Meqv,14 =

→
0 and

→
Meqv,58 =

→
0 . This corresponds to the case shown in Figure 3a, where

the equivalent magnetization
→
Meqv,35 by two adjacent magnetizations

→
M3 and

→
M5 is

→
0 .

Moreover, in the case of Figure 3b–d, assuming that there are continuous magnetic domains

in the ±x and ±y directions,
→
Meqv,14 =

→
0 ,
→
Meqv,58 =

→
0 . However, because the equivalent

magnetization expressed in Equation (2) is a model limited to adjacent magnetic domains

bordering the magnetic domain wall, the equivalent magnetization
→
Meqv,35 by

→
M3 and

→
M5

is not
→
0 . At this time, MSCDs

→
J 3 and

→
J 5, are located at the interface of the crack.

→
J ms,k =

→
Mk ×

→
a n,k, (A/m) (13)

→
J eqv,mn =

→
Meqv,mn ×

→
a eqv,mn, (A/m) (14)

Figures 4–6 shows the simplified magnetization surface current densities on the RDM,

CDM, and VDM. Figure 4 shows a schematic of
→
J k,edge and

→
Mk,edge in the xz plane by

RDM at the crack tip. When the width of the crack is w, Equation (13) can be expressed as

Equation (15): Here, the intensity of
→
Mk,edge is assumed to be M0. w and θ represent the

crack width and inclination angle, respectively. P(x, h− z) represents a specific position
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at the top of the magnetic domain model. D is the depth of the crack, and h is the lift-off.
Equation (15) is a general expression expressing all of Figure 3b–d.

→
J RDM,k,edge = M0

(
sin θ

→
a x + cos θ

→
a z

)
, (A/m) (15)
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Figure 5 shows a schematic of
→
J k,edge and

→
Mk,edge in the xz plane by CDM at the crack

tip. According to the CDM domain model in the state in which the domain is not deformed,
as shown in Figure 3c, Equation (13) can be expressed as Equation (16). This is generally
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represented as in Figure 5b,c. According to the CDM in the state in which the domain is
deformed, as shown in Figure 5d, Equation (13) can be expressed as Equation (17).

→
J CDM,k,edge =

→
0 , (A/m) (16)

→
J ′CDM,k,edge = −M0sin θ

→
a y, (A/m) (17)
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Figure 6 is a schematic of
→
J k,edge and

→
Mk,edge in the xz-plane by VDM at the crack tip.

According to the VDM in the state in which the magnetic domain is not deformed, as shown
in Figure 3c, Equation (13) can be expressed as Equation (18). This is generally represented
by Figure 6b,c. According to the VDM in the state in which the magnetic domain is
deformed, as shown in Figure 6d, Equation (13) can be expressed as Equation (19).

→
J VDM,k,edge = M0

→
a y, (A/m) (18)

→
J ′VDM,k,edge = M0cos θ

→
a y, (A/m) (19)

The vector magnetic potential (VMP) (
→
A) and MFD (

→
B) are expressed by Equations (20)

and (21), respectively. In RDM, if the magnetic domain model is not subjected to an external

load,
→
A can be expressed by Equations (22)–(24), where

→
R3 and

→
R5 represent the position

vectors from the crack wall to a specific position, P(x,h).

d
→
A =

µ0
4π

∫
C′

→
J
R

dl′, (Wb/m) (20)

d
→
B = ∇× d

→
A, (Wb/m2) (21)

d
→
ARDM(x, h) =

µ0M0

4π

∫
C′

(
1

R3
+

1
R5

)(
sin θ

→
a x + cos θ

→
a z

)
dy′ (22)
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R3 =

√
(h− z)2 +

(w
2
+ x
)2

(23)

R5 =

√
(h− z)2 +

(w
2
− x
)2

(24)
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The unit area per VMPs,
→
ARDM,a,

→
ARDM,b, and

→
ARDM,c for each case of RDM shown in

Figure 4a, b and c can be expressed by Equations (25)–(27), respectively. In Equation (27),
w = 0 and θ = 0◦ can be expressed by Equations (25) and (26), respectively. Therefore, Equa-
tion (27) is a general formula that includes the cases with and without cracks. In addition,
as shown in Figure 3d, inclined cracks caused by the undeformed and deformed RDMs are
expressed in the same manner as in Equations (27) and (28), respectively. Therefore, MFD

(
→
B) in the RDM can be interpreted using Equations (29) and (30).

d
→
ARDM,a(x, z) =

→
0 (25)

d
→
ARDM,b(x, h) =

µ0M0

4π

(
1

R3
+

1
R5

)
→
a z (26)

d
→
ARDM,c(x, h) =

µ0M0

4π

(
1

R3
+

1
R5

)(
sin θ

→
a x + cos θ

→
a z

)
(27)

d
→
ARDM,d(x, h) =

µ0M0

4π

(
1

R3
+

1
R5

)(
sin θ

→
a x + cos θ

→
a z

)
(28)

d
→
BRDM(x, h) =

µ0M0

4π

{( w
2 + x
R33 −

w
2 − x
R53

)
cos θ+

(
h− z
R33 +

h− z
R53

)
sin θ

}
→
a y (29)

→
BRDM(x, h) =

∫ D

0
d
→
BRDMdz (30)
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In CDM,
→
A is interpreted using Equations (31)–(34). The

→
BCDM,c by inclined cracks in

the non-deformed CDM, is expressed by Equation (35). The
→
BCDM,d for cracks analyzed

using the deformed CDM is interpreted as Equation (36) and (37).

d
→
ACDM,a(x, z) =

→
0 (31)

d
→
ACDM,b(x, z) =

→
0 (32)

d
→
ACDM,c(x, z) =

→
0 (33)

d
→
ACDM,d(x, z) = −µ0M0

4π

(
1

R3
+

1
R5

)
sin θ

→
a y (34)

d
→
BCDM,c(x, z) =

→
0 (35)

d
→
BCDM,d(x, z) =

µ0M0

4π

{(
h− z
R33 +

h− z
R53

)
sin θ

→
a x +

( w
2 + x
R33 −

w
2 − x
R53

)
sin θ

→
a z

}
(36)

→
BCDM,d(x, h) =

∫ D

0
d
→
BCDM,ddz (37)

Equations (38)–(41) show
→
A in VDM. The MFDs (

→
BVDM,c,

→
BVDM,d) generated around

the slanted crack caused by the non-deformed and deformed VDM are interpreted by
Equations (42) and (43), and Equations (44) and (45), respectively.

d
→
AVDM,a(x, z) =

→
0 (38)

d
→
AVDM,b(x, z) =

µ0M0

4π

(
1

R3
+

1
R5

)
→
a y (39)

d
→
AVDM,c(x, z) =

µ0M0

4π

(
1

R3
+

1
R5

)
→
a y (40)

d
→
AVDM,d(x, z) =

µ0M0

4π

(
1

R3
+

1
R5

)
cos θ

→
a y (41)

d
→
BVDM,c(x, z) = −µ0M0

4π

{(
h− z
R33 +

h− z
R53

)
→
a x +

( w
2 + x
R33 −

w
2 − x
R53

)
→
a z

}
(42)

→
BVDM,c(x, h) =

∫ D

0
d
→
BVDM,cdz (43)

d
→
BVDM,d(x, z) = −µ0M0

4π

{(
h− z
R33 +

h− z
R53

)
cos θ

→
a x +

( w
2 + x
R33 −

w
2 − x
R53

)
cos θ

→
a z

}
(44)

→
BVDM,d(x, h) =

∫ D

0
d
→
BVDM,ddz (45)

In the RDM by Equation (29), when cracks occur, only the MFD of the y-component
exists regardless of the deformation of the magnetic domain. In the undeformed CDM
model, Equation (35), the MFD does not change, even if cracks occur. However, in the
deformed CDM model according to Equation (36), when an inclined crack occurs, the MFDs
in the x- and z-components change. In the undeformed VDM model using Equation (42),
the MFD of the x- and z-components changes regardless of the inclination direction of
the crack. In addition, in the deformed VDM model in the inclined crack according to
Equation (44), the MFDs in the x- and z-components change. Moreover, the intensity of the
MFD increases as the inclination angle θ of the crack approaches 0◦.
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Figure 7 shows a graph expressing the components in each direction expressed by
Equation (29) according to the depth direction of the crack. To understand the qualitative
trend, it was assumed that M0 = −4π/µ0, h = 0.2 mm, w = 0.01 mm, and D = 5 mm.

The y-component of
→
BRDM,c according to Figure 7 has a positive sign on the left and a

negative sign on the right, near the crack center. As the angle of the crack increases, the

negative maximum value on the right-side increases. In
→
BCDM,d, according to Figure 8,

only the x- and z-components appear, and when θ = 0
◦
, the magnetic flux density is 0.

In addition, in
→
BCDM,c by Equation (35), the magnetic flux density does not change. In

→
BVDM,c according to Figure 9, only the x- and z-components appear, and the magnitude
of the absolute value increases with the angle. Because the length in the oblique direction
increases for the same depth, a larger value appears as the inclination angle increases.
However, the x-component indicates the maximum value in the vicinity of the crack and
shows a symmetrical distribution. Further, the z-component has a negative maximum value
on the left, centered on the maximum value of the x-component, indicating a distribution

opposite to the y-component of
→
BRDM,c (Figure 7). In

→
BVDM,d shown in Figure 10, only

the x- and z-components appear, and the x- and z-components that decrease in inverse
proportion to the size of the angle can be observed. Furthermore, these results will form
the theoretical model for estimating the depth direction of a fatigue crack. This trend is
compared to the experimental results mentioned in the next section.
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3. Materials and Methods
3.1. Specimen with Fatigue Crack

Fatigue crack specimens were prepared to investigate the validity of the proposed
magnetic domain model and the change in MFD distribution according to the crack in-
clination angle. Figure 11 shows a schematic of the extraction of fatigue specimens from
compact test (CT) specimens with fatigue cracks. A fatigue crack with a depth of 3–7 mm
was created by applying a repeated load of 350–3500 N, 630,000–1,080,000 times to a CT
specimen made of SS400 carbon steel with the dimensions 32× 30.72× 12.8 mm. As shown
in Figure 12, small specimens of 6.4 × 16 × 8 mm were machined at different cutting angles
by electric discharge machining (EDM). Consequently, each specimen contained fatigue
cracks inclined at 0, 30, and 60◦. Figure 13 shows the micrographs of the surface and side of
each specimen. Each specimen was polished using 200, 400, 800, 1200, and 2000 grades SiC
pads. Finally, fine polishing was performed for 20 s using polycrystalline diamond paste
with a lattice size of 1 µm and a polishing cloth. After micro-polishing was completed,
an etching solution prepared by diluting 3 g of nitric acid in 65 g of ethanol was applied
to the observation surface for 5 s, followed by ultrasonic cleaning with distilled water for
15 s and washing with ethanol for 10 s. After repeating this chemical etching thrice, it was
photographed with an optical microscope, and the 3-axial MFD was measured at a lift-off
of 0.2 mm.
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3.2. Measurement of Magnetic Flux Density with 3-Axis TMR Sensor Scanning

Figure 14a shows the experimental setup for measuring the MFD distribution on the
upper part of each specimen using a 3-axis TMR sensor. A microscope and a 3-axis TMR
sensor were installed on an optical board. Figure 14b shows an enlarged photograph of
the red square in Figure 14a. The specimen was fixed with a key to reproduce the absolute
positions of the optical images and TMR scanning before and after polishing. In addition,
the specimen fixed by the key measured the MFD distribution with a spatial resolution of
4 µm and acquired an optical microscope image using a motorized XY stage. The MFD
distribution was measured using a 3-axis TMR sensor (TMR2305, Multidimension Co.,
Paris, France). The sensitivity of each sensor was 25 mV/V/Oe, and the saturation magnetic
field was ±10 Oe. As a result of amplification by 46 dB (200 times) by the signal processing
circuit, 1 V is the output for an MFD of 0.2 G. The distance between the surface of the
specimen and the sensor surface and the lift-off was maintained at approximately 0.2 mm.
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4. Experimental Results

Training, testing, and analysis processes were performed using MATLAB R2021a
software on a Dell ALIENWARE PC with an Intel®Core™ i9-9900HQ 3.6 GHz of CPU and
32 GB of RAM. Several positive results were achieved in this study and a theoretical model
of magnetic metal memory was proposed to estimate the depth direction of a fatigue crack
(see Figures 7–9). To provide a comparison, an experiment was conducted using a 3-axis
TMR sensor on CT scan specimens with fatigue cracks on three variations of depth angle:
0o, 30o, and 60o. In addition, to maintain the validity of the measurement, the experiment
was conducted on a wide demagnetized aluminum plate to reduce the probability of an
external magnetic field disturbing the recorded dataset.

Figure 15 shows the raw output signal of the 3-axis TMR sensor in the x- (Vraw,X),
y- (Vraw,Y), and z- (Vraw,Z) directions. To map the distribution of the magnetic fields, the
contour lines are added to all of the variations. In addition, the coordination of the specimen
boundaries and the centerline line of the fatigue cracks are represented by the brown box
and thick pink line on the vertical axis. The upper part of the rectangle is the surface side
of the CT specimen, and the lower part is the center surface which is cut by EDM processes.
To provide clear data for supporting the analysis, signal processing was conducted. The
idea is to delete the background distribution of SMFD data by subtracting the raw data

(
→
Vraw(x, y)) from the background distribution (

→
Vback(x, y)). The

→
Vback(x, y) was gathered
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by measuring the distribution of SMFD in the air by removing the specimen from the setup.
The signal processing processes can be described mathematically as follow:

∆
→
V1(x, y) =

→
Vraw(x, y)−

→
Vback(x, y) (46)

→
Vraw(x, y) = Vraw,X(x, y)

→
a x + Vraw,Y(x, y)

→
a y + Vraw,Z(x, y)

→
a Z (47)

→
Vback(x, y) = Vback,X(x, y)

→
a x + Vback,Y(x, y)

→
a y + Vback,Z(x, y)

→
a Z (48)

where, Figure 16 shows the distribution of Equation (46) and corresponds to the background
signal in the x- (Vback,x), y- (Vback,Y), and z- (Vback,Z) directions. Interestingly, the overall
trends in each case in Figures 15 and 16 are very similar, indicating that the external
magnetic field has negligible effect on the experimental values. As shown in Figure 16a,d,g,
the X-component, ∆V1,X, has a maximum value near the center of the crack, regardless of
the depth angle of the crack, and has a symmetrical shape. As shown in Figure 16c,f,i, the
Z-component, ∆V1,Z, represents the distribution of the different signs on the left and right
sides around the crack. This phenomenon can be explained by the VDM in Figures 9 and 10.
Moreover, as shown in Figure 16b,e,h, the Y-component, ∆V1,Y, does not differ significantly
along the center line of the crack, indicating that the VDM model is valid.
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Figure 15. Distribution of 3-axial TMR signals. (a) X-, (b) Y-, (c) Z-directional component on the
0◦ specimen; (d) X-, (e) Y-, (f) Z-directional component on the 30◦ specimen; and (g) X-, (h) Y-,
(i) Z-directional component on the 60◦ specimen.
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To investigate the quantitative trend of MFD based on the angle direction to the depth
of cracks, Figures 17–19 show the MFD distribution along a line passing through the center

of the specimen (y = 5.1 mm) in Figures 15 and 16. In each graph, ∆
→
V2(x, y) is the value

expressed by Equation (49). ∆
→
V1, avr(x, y) is the average value expressed by Equation (50).

This variable was introduced to observe the correlation between the position of x and the

crack inclination angle when ∆
→
V2(x, y) = 0. In addition, M, N, and r are the number of

data points in the x-axis direction (M = 5000), number of data points in the y-axis direction
(N = 2500), and spatial resolution (r = 0.004 mm), respectively. The thick solid line near the
center of the longitudinal axis (x = 9.3–9.5 mm) is the central position of the crack observed
under the microscope. The solid vertical lines at x = 1.4 mm and x = 15.9 mm indicate the
positions of both corners of the specimen.

∆
→
V2(x, y) = ∆

→
V1(x, y)− ∆

→
V1, avr(x, y) (49)

∆
→
V1,avr(x, y) =

1
MN

(
M

∑
i=1

N

∑
j=1

V1,X(ir, jr)
→
a x +

M

∑
i=1

N

∑
j=1

V1,Y(ir, jr)
→
a y +

M

∑
i=1

N

∑
j=1

V1,Z(ir, jr)
→
a Z

)
(50)

Comparing Vraw,x(x, 5.1) in Figure 17a and ∆V1,x(x, 5.1) in Figure 17b, the background
signal of about −0.9 V (approximately −0.18 G) is applied uniformly. As the overall depth

angle increased, the peak value also increased. This means that
→
BCDM,c(x, z) in Figure 9

exhibits a more accurate trend than
→
BCDM,d(x, z) in Figure 10, i.e., for the same depth, the

area of magnetization widens according to the inclination angle, which means that a larger
MFD distribution is obtained as a result.
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In contrast, the position of the peak was deflected to the right (direction with an acute
angle) according to the depth angle. Therefore, if the central position of the crack can be
specified by penetrant inspection, the crack direction to depth based on the correlation with
the peak position can be estimated. However, it is difficult to estimate the crack direction
if only the MFD distribution is provided without knowing the exact location of the crack.
Furthermore, according to ∆V2,x(x, 5.1) in Figure 17c, the left–right symmetry collapses
with respect to the peak according to the depth direction. To understand the left-right
symmetry of ∆V2,x, an angle estimation function defined by Equation (51), ∆x2,x, was
proposed. ∆x2,x is defined as the distance between xL{∆V2,x; 0}, the left peak position, and
xR{∆V2,x; 0}, the right peak position close to the x position of the peak, xC{∆V2,x; peak}.
The relationship between ∆x2,x and the crack angle is discussed in Figure 20, along with
another angle estimation function, ΣV2,z.

∆x2,x = |xC{∆V2,x; peak} − xL{∆V2,x; 0}| − |xC{∆V2,x; peak} − xR{∆V2,x; 0}| (51)
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Figure 17. MFD distribution in the X direction on a line passing through the center of the specimen
(y = 5.1 mm): (a) raw data; with (b) background data subtracted; and (c) average value subtracted.
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Figure 18. MFD distribution in the Y direction on a line passing through the center of the specimen
(y = 5.1 mm): (a) raw data; with (b) background data subtracted and (c) average value subtracted.
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Figure 19. MFD distribution in the Z direction on a line passing through the center of the specimen
(y = 5.1 mm): (a) raw data; with (b) background data subtracted and (c) subtracted by average value.

Comparing Vraw,y(x, 5.1) in Figure 18a and ∆V1,y(x, 5.1) in Figure 18b, the background
signal of approximately −0.5 V (at approximately −0.1 G) is applied uniformly. An MFD
with different signs to the left and right around the crack occurred, and the overall absolute
value increased as the crack direction to depth increased. This can be explained by the

trend of the y-component of
→
BRDM(x, z) in Figure 7.

Comparing Vraw,Z(x, 5.1) in Figure 19a and ∆V1,z(x, 5.1) in Figure 19b, a background
signal of about 0.05 V (corresponding to about 0.01 G) is applied uniformly. MFDs with
different signs are observed on the left and right sides of the cracks. At this time, the left and
right signs are opposite to those shown in Figure 18. This is consistent with the theoretical
consideration of RDM shown in Figure 9. The overall absolute values of ∆V1,z(x, 5.1)
increased as the overall inclination angle increased. This can be explained by the tendency

of the z-component of
→
BRDM(x, z), as shown in Figure 9. From the above results, the domain

model for evaluating fatigue cracks is validated as a model in which the RDM where the
y-component occurs and the VDM where the x- and z-components overlap. In addition,
a model in which magnetic domains are not deformed when cracks occur is appropriate
because the change in the MFD increases based on the depth direction of fatigue cracks at
the same depth. When stress is generated, it can be expressed as Equation (52). Here, C1,
C2, and C3 are constants that represent the respective ratios when the stress change, RDM,
and VDM overlap.

→
B = C1

µ0
SE ∑n

k=1 σαβ,kSk
→
Mk
′ + C2

→
BRDM,c + C3

→
BVDM,c, (Wb/m2) (52)

However, according to ∆V2,z(x, 5.1)) in Figure 19c, the position and area of the positive
peak on the right and the negative peak on the left with respect to the zero point vary
according to the inclination angle. To understand the left-right symmetry of ∆V2,z, an angle
estimation function defined by Equation (53)–(55), ΣV2,z, is proposed.

ΣV2,z is defined as the difference between the integral up to the negative peak
(ΣVL{∆V2,z; negative peak}) and the integral up to the positive peak (∆V2,z; positive peak)
from the x position on ∆V2,z = 0.

ΣV2,z = ΣVR − ΣVL (53)

ΣVR =
∫ x(∆V2,z=positive peak)

x(∆V2,z=0)
∆V2,zdV (54)

ΣVL =
∫ x(∆V2,z=0)

x(∆V2,z=negative peak)
∆V2,zdV (55)
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Figure 20 shows the relationship between ∆x2,x and ΣV2,z expressed by Equations (51)
and (53)–(55), and the crack angle. In the case of ∆x2,x, the lowest value appears when
θ = 30◦, making it difficult to evaluate the crack angle quantitatively. However, according
to ΣV2,z reflecting the peak position (xC) in the distribution of ∆V2,x, the depth direction of
fatigue crack can be quantitatively evaluated using empirical Formula (57).

ΣVL = 0.1778θ2 + 2.781θ+ 209 (56)

θ = −8.671× 10−5ΣVL
2 + 0.1806ΣVL − 33.96 (57)
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5. Conclusions

In this study, theoretical models of magnetic metal memory (MMM) have been pro-
posed. The idea was to utilize these models to estimate the depth direction of a fatigue crack.
Three models were used: the rotation domain model (RDM), concentration domain model
(CDM), and vertical domain model (VDM). In addition, case studies on the deformation
and non-deformation conditions when cracks occur were also studied theoretically. In
general, the results found that using the magnetic domain model, the self-magnetic flux
density (SMFD) changes owing to the stress–strain state (SSS) and fatigue cracking, even
when no external magnetic field is applied to the ferromagnetic specimen. This indicates
that MMM can be used to detect internal defects by measuring the self-magnetic flux
leakage (SMFL) on the specimen. This result was observed on both the theoretical and
experimental approaches, which supports the model validity.

In the theoretical model, if the magnetic domain is not deformed when the fatigue
cracking occurs, RDM explains that the SMFL will appear on the longitudinal component of
the crack (y-direction). Meanwhile, the SMFL of the longitudinal component (y-direction) of
the crack occurs according to the deformed RDM, accompanied by fatigue cracking. On the
other hand, CDM explains that if the magnetic domain is not deformed when fatigue cracks
occur, the SMFL components perpendicular to the crack length (x-and z-directions) will
exist, while the longitudinal component of the crack (y-direction) does not occur. Compared
to the CDM, VDM pursues a similar tendency on each SMFL component. However, VDM
found that the larger the depth direction of crack angle, the larger the SMFD intensity of
each component.
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Furthermore, to reinforce the results from theoretical models, the magnetic flux density
was measured using a 3-axis TMR sensor in a state where no external magnetic field was
applied to the specimen with fatigue cracks. It was found that although no external mag-
netic field was applied, the SMFD of the x-, y-, and z-components changed. Furthermore,
in the identical tendency with the VDM, as the inclination angle of the crack increased,
the magnitude of the magnetic flux density of each component increased. Therefore, it is
justifiable to explain the change in the self-magnetic flux density due to the occurrence
of fatigue cracks using a magnetic domain model in which the undeformed RDM and
VDM are superimposed. Therefore, by using the integral value of the z-component
reflecting the peak position of the x-component, the depth angle of the cracks can be
quantitatively evaluated.

Finally, it can be concluded that both the theoretical models and experimental results
have similar trends. This supports the model validity, and therefore, the model can be used
to estimate the depth direction of a fatigue crack.
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Abbreviations

MFD Magnetic flux density
SMFD Self-magnetic flux density
SMFL Self-magnetic flux leakage
FEM Finite element method
RDM Rotation domain model
CDM Concentration domain model
VDM Vertical domain model
CT Compact tension
MMM Magnetic metal memory
TMR Tunnel magneto-resistance
NDT Non-destructive testing
SSS Stress–strain state
SCZ Stress concentration zone
MSCD Magnetization surface current density
VMP Vector magnetic potential
EDM Electric discharge machining
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