Body Composition in Karate: A Dual-Energy X-ray Absorptiometry Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Anthropometry and Body Composition Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Karate Federation|WKF. 12 September 2021. Available online: https://www.wkf.net/ (accessed on 17 January 2022).
- Sforza, C.; Turci, M.; Grassi, G.P.; Shirai, Y.F.; Pizzini, G.; Ferrario, V.F. Repeatability of mae-geri-keage in traditional karate: A three-dimensional analysis with black-belt karateka. Percept. Mot. Ski. 2002, 95, 433–444. [Google Scholar] [CrossRef]
- Imamura, H.; Yoshimura, Y.; Uchida, K.; Nishimura, S.; Nakazawa, A.T. Maximal oxygen uptake, body composition and strength of highly competitive and novice karate practitioners. Appl. Human Sci. 1998, 17, 215–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bussweiler, J.; Hartmann, U. Energetics of basic karate kata. Eur. J. Appl. Physiol. 2012, 112, 3991–3996. [Google Scholar] [CrossRef] [PubMed]
- Filingeri, D.; Bianco, A.; Bde, D.; Daniele, Z.; Bd, A.; Paoli, A.; Palma, A. Is karate effective in improving postural control? Arch. Budo 2012, 8, 149–152. [Google Scholar] [CrossRef]
- Origua Rios, S.; Marks, J.; Estevan, I.; Barnett, L.M. Health benefits of hard martial arts in adults: A systematic review. J. Sport. Sci. 2018, 36, 1614–1622. [Google Scholar] [CrossRef]
- Kerr, D.A.; Stewart, A.D. Body Composition in Sport; Human Kinetics: Champaign, IL, USA, 2009; pp. 67–86. [Google Scholar]
- Carter, J.E.L.; Ackland, T. Somatotype in sport. In Applied Anatomy and Biomechanics in Sport; Ackland, T.R., Elliott, B.C., Bloomfield, J., Eds.; Human Kinetics Publishers: Champain, IL, USA, 2009; pp. 47–66. [Google Scholar]
- Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Stachoń, A. Morphological optimization of female combat sports athletes as seen by the anthropologists. Anthropol. Rev. 2016, 79, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Chaabène, H.; Hachana, Y.; Franchini, E.; Mkaouer, B.; Chamari, K. Physical and physiological profile of elite karate athletes. Sport. Med. 2012, 42, 829–843. [Google Scholar] [CrossRef]
- Andreoli, A.; Monteleone, M.; Van Loan, M.; Promenzio, L.; Tarantino, U.; De Lorenzo, A. Effects of different sports on bone density and muscle mass in highly trained athletes. Med. Sci. Sport. Exerc. 2001, 33, 507–511. [Google Scholar] [CrossRef]
- Gligoroska, J.P.; Manchevska, S.; Sivevska, E.; Matveeva, N.; Kostovski, Z. Bioelectrical Impedance Analysis of Body Composition in Karate Athletes Regarding the Preparatory Period//Analiza Telesnog Sastava Karatista Bioelektričnom Impedansom Pre I Posle Pripremnog Perioda. Sport. Sci. Health 2016, 12, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Gligoroska, J.P.; Todorovska, L.; Mancevska, S.; Karagjozova, I.; Petrovska, S. Bioelectrical Impedance Analysis in Karate Athletes: Bia Parameters Obtained with Inbody720 Regarding the Age. Res. Phys. Educ. Sport Health 2016, 5, 117–121. [Google Scholar]
- Gloc, D.; Plewa, M.; Nowak, Z. The effects of kyokushin karate training on the anthropometry and body composition of advanced female and male practitioners. J. Combat. Sport. Martial Arts 2012, 3, 63–71. [Google Scholar] [CrossRef]
- Sterkowicz-Przybycień, K. Body composition and somatotype of the top of polish male karate contestants. Biol. Sport 2010, 27, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Shariat, A.; Shaw, B.; Kargarfard, M.; Shaw, I.; Lam, E. Kinanthropometric attributes of elite male Judo, Karate and Taekwondo athletes. Rev. Bras. Med. Esporte 2017, 23, 260–263. [Google Scholar] [CrossRef] [Green Version]
- Blerim, S.; Zarko, K.; Visar, G.; Agron, A.; Egzon, S. Differences in Anthropometrics Characteristics, Somatotype and Motor Skill in Karate and Non-Athletes//Razlike u antropometrijskim karakteristikama, somatotipu i motoričkim sposobnostima karatista i nesportista. Sport. Sci. Health 2017, 14, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Albanese, C.V.; Diessel, E.; Genant, H.K. Clinical applications of body composition measurements using DXA. J. Clin. Densitom. 2003, 6, 75–85. [Google Scholar] [CrossRef]
- Day, K.; Kwok, A.; Evans, A.; Mata, F.; Verdejo-Garcia, A.; Hart, K.; Ward, L.C.; Truby, H. Comparison of a Bioelectrical Impedance Device against the Reference Method Dual Energy X-Ray Absorptiometry and Anthropometry for the Evaluation of Body Composition in Adults. Nutrients 2018, 10, 1469. [Google Scholar] [CrossRef] [Green Version]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A Critical Overview. Contrast Media Mol. Imaging 2019, 2019, 3548284. [Google Scholar] [CrossRef]
- Beaudart, C.; Bruyère, O.; Geerinck, A.; Hajaoui, M.; Scafoglieri, A.; Perkisas, S.; Bautmans, I.; Gielen, E.; Reginster, J.Y.; Buckinx, F. Equation models developed with bioelectric impedance analysis tools to assess muscle mass: A systematic review. Clin. Nutr. ESPEN 2020, 35, 47–62. [Google Scholar] [CrossRef] [Green Version]
- De Lorenzo, A.; Bertini, I.; Iacopino, L.; Pagliato, E.; Testolin, C.; Testolin, G. Body composition measurement in highly trained male athletes: A comparison of three methods. J. Sport. Med. Phys. Fit. 2000, 40, 178–183. [Google Scholar]
- Nickerson, B.; Snarr, R.; Russel, A.; Bishop, P.; Esco, M. Comparison of Bia and DXA for estimating body composition in collegiate female athletes. J. Sport Hum. Perform. 2014, 2, 29–39. [Google Scholar] [CrossRef]
- Ploudre, A.; Arabas, J.L.; Jorn, L.; Mayhew, J.L. Comparison of Techniques for Tracking Body Composition Changes across a Season in College Women Basketball Players. Int. J. Exerc. Sci. 2018, 11, 425–438. [Google Scholar] [PubMed]
- Arias Téllez, M.J.; Carrasco, F.; España Romero, V.; Inostroza, J.; Bustamante, A.; Solar Altamirano, I. A comparison of body composition assessment methods in climbers: Which is better? PLoS ONE 2019, 14, e0224291. [Google Scholar] [CrossRef] [PubMed]
- Mala, L.; Maly, T.; Cabell, L.; Cech, P.; Hank, M.; Coufalova, K.; Zahalka, F. Body Composition and Morphological Limbs Asymmetry in Competitors in Six Martial Arts. Int. J. Morphol. 2019, 37, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Šimenko, J.; Ipavec, M.; Vodicar, J.; Rauter, S. Body symmetry/asymmetry in youth judokas in the under 73 kg category. Ido Mov. Cult. 2017, 17, 51–55. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Nana, A.; Slater, G.J.; Stewart, A.D.; Burke, L.M. Methodology review: Using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 198–215. [Google Scholar] [CrossRef] [Green Version]
- Hangartner, T.N.; Warner, S.; Braillon, P.; Jankowski, L.; Shepherd, J. The Official Positions of the International Society for Clinical Densitometry: Acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J. Clin. Densitom. 2013, 16, 520–536. [Google Scholar] [CrossRef]
- Guss, C.E.; McAllister, A.; Gordon, C.M. DXA in Children and Adolescents. J. Clin. Densitom. 2021, 24, 28–35. [Google Scholar] [CrossRef]
- Taylor, A.; Konrad, P.T.; Norman, M.E.; Harcke, H.T. Total body bone mineral density in young children: Influence of head bone mineral density. J. Bone Miner. Res. 1997, 12, 652–655. [Google Scholar] [CrossRef]
- Prentice, A.; Parsons, T.J.; Cole, T.J. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am. J. Clin. Nutr. 1994, 60, 837–842. [Google Scholar] [CrossRef]
- Wells, J.C.K.; Cole, T.J.; ALSPAC study steam. Adjustment of fat-free mass and fat mass for height in children aged 8 y. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 947–952. [Google Scholar] [CrossRef] [Green Version]
- Katzman, D.K.; Bachrach, L.K.; Carter, D.R.; Marcus, R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J. Clin. Endocrinol. Metab. 1991, 73, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Reale, R.; Slater, G.; Burke, L.M. Acute-Weight-Loss Strategies for Combat Sports and Applications to Olympic Success. Int. J. Sport. Physiol. Perform. 2017, 12, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Wang, Z.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. Am. J. Clin. Nutr. 2002, 76, 378–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reale, R.; Burke, L.M.; Cox, G.R.; Slater, G. Body composition of elite Olympic combat sport athletes. Eur. J. Sport Sci. 2020, 20, 147–156. [Google Scholar] [CrossRef]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference values for body composition and anthropometric measurements in athletes. PLoS ONE 2014, 9, e97846. [Google Scholar] [CrossRef] [Green Version]
- Jackson, K.A.; Sanchez-Santos, M.T.; MacKinnon, A.L.; Turner, A.; Kuznik, K.; Ellis, S.; Box, C.; Hill, J.; Javaid, M.K.; Cooper, C.; et al. Bone density and body composition in newly licenced professional jockeys. Osteoporos. Int. 2017, 28, 2675–2682. [Google Scholar] [CrossRef] [Green Version]
- Maloney, S.J. The Relationship Between Asymmetry and Athletic Performance: A Critical Review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sport. Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Read, P.; Stern, D.; Turner, A. Effects of Soccer Match-Play on Unilateral Jumping and Interlimb Asymmetry: A Repeated-Measures Design. J. Strength Cond. Res. 2022, 36, 193–200. [Google Scholar] [CrossRef]
- Kons, R.L.; Diefenthaeler, F.; Orssatto, L.B.R.; Sakugawa, R.L.; da Silva Junior, J.N.; Detanico, D. Relationship between lower limb asymmetry and judo-specific test performance. Sport Sci. Health 2020, 16, 305–312. [Google Scholar] [CrossRef]
- Frost, H.M.; Schönau, E. The “muscle-bone unit” in children and adolescents: A 2000 overview. J. Pediatr. Endocrinol. Metab. 2000, 13, 571–590. [Google Scholar] [CrossRef] [PubMed]
- Battafarano, G.; Rossi, M.; Marampon, F.; Minisola, S.; Del Fattore, A. Bone Control of Muscle Function. Int. J. Mol. Sci. 2020, 21, 1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliaferri, C.; Wittrant, Y.; Davicco, M.-J.; Walrand, S.; Coxam, V. Muscle and bone, two interconnected tissues. Ageing Res. Rev. 2015, 21, 55–70. [Google Scholar] [CrossRef]
- Brotto, M.; Bonewald, L. Bone and muscle: Interactions beyond mechanical. Bone 2015, 80, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, I.R. Relationships among body mass, its components, and bone. Bone 2002, 31, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, N.J.; Kibirige, M.S.; Fordham, J.N.; Banks, L.M.; Muntoni, F.; Chinn, D.; Boivin, C.M.; Shaw, N.J. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 2004, 35, 965–972. [Google Scholar] [CrossRef]
- Torres-Costoso, A.; López-Muñoz, P.; Martínez-Vizcaíno, V.; Álvarez-Bueno, C.; Cavero-Redondo, I. Association Between Muscular Strength and Bone Health from Children to Young Adults: A Systematic Review and Meta-analysis. Sport. Med. 2020, 50, 1163–1190. [Google Scholar] [CrossRef]
- Barbat-Artigas, S.; Plouffe, S.; Pion, C.H.; Aubertin-Leheudre, M. Toward a sex-specific relationship between muscle strength and appendicular lean body mass index? J. Cachexia Sarcopenia Muscle 2013, 4, 137–144. [Google Scholar] [CrossRef]
Variable | Males (n = 43) | Females (n = 15) | t-Value | p-Value | ES | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Age (years) | 22.3 | 4.1 | 20.0 | 1.8 | 2.065 | 0.044 | 0.722 |
Body mass (kg) | 72.4 | 8.0 | 55.8 | 7.4 | 7.021 | <0.001 | 2.152 |
Stature (cm) | 174.6 | 6.6 | 161.7 | 5.1 | 6.895 | <0.001 | 2.188 |
BMI (kg/m2) | 23.7 | 2.0 | 21.3 | 2.8 | 3.531 | 0.001 | 0.986 |
Karate participation (y) | 14.9 | 4.4 | 13.1 | 2.7 | 1.478 | 0.145 | 0.491 |
Training (h/w) | 8.4 | 4.0 | 6.7 | 3.7 | 1.466 | 0.148 | 0.453 |
Sessions (n/w) | 4.4 | 2.1 | 3.6 | 1.6 | 1.435 | 0.157 | 0.438 |
Variable | Males (n = 43) | Females (n = 15) | t-Value | p-Value | ES | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
WB BMC (g) | 2843.0 | 316.1 | 2265.0 | 332.1 | 5.444 | <0.001 | 1.783 |
WB BMD (g/cm2) | 1.253 | 0.084 | 1.174 | 0.091 | 3.060 | <0.001 | 0.899 |
TBLH BMC (g) | 2298.8 | 323.3 | 1720.1 | 281.9 | 6.156 | <0.001 | 1.878 |
TBLH aBMD (g/cm2) | 1.137 | 0.079 | 1.014 | 0.088 | 5.057 | <0.001 | 1.471 |
Left arm BMC (g) | 207.5 | 30.7 | 140.6 | 21.8 | 7.767 | <0.001 | 2.498 |
Left arm aBMD (g/cm2) | 0.879 | 0.065 | 0.751 | 0.059 | 6.705 | <0.001 | 2.064 |
Right arm BMC (g) | 220.4 | 32.0 | 152.7 | 25.6 | 7.445 | <0.001 | 2.336 |
Right arm aBMD (g/cm2) | 0.904 | 0.068 | 0.781 | 0.071 | 5.959 | <0.001 | 1.767 |
Thoracic spine BMC (g) | 127.7 | 22.6 | 103.8 | 17.1 | 3.725 | <0.001 | 1.194 |
Thoracic spine aBMD (g/cm2) | 0.999 | 0.117 | 0.935 | 0.104 | 1.877 | 0.066 | 0.577 |
Lumbar spine BMC (g) | 68.7 | 13.1 | 59.3 | 12.2 | 2.442 | 0.018 | 0.741 |
Lumbar spine aBMD (g/cm2) | 1.198 | 0.144 | 1.192 | 0.144 | 0.138 | 0.891 | 0.041 |
Pelvis BMC (g) | 370.9 | 72.9 | 276.7 | 68.9 | 4.322 | <0.001 | 1.328 |
Pelvic aBMD (g/cm2) | 1.346 | 0.143 | 1.212 | 0.155 | 3.058 | 0.003 | 0.898 |
Left leg BMC (g) | 539.2 | 71.6 | 400.5 | 61.6 | 6.676 | <0.001 | 2.076 |
Left leg aBMD (g/cm2) | 1.356 | 0.084 | 1.203 | 0.090 | 5.969 | <0.001 | 1.751 |
Right leg BMC (g) | 547.7 | 72.6 | 408.1 | 64.5 | 5.378 | <0.001 | 2.033 |
Right leg aBMD (g/cm2) | 1.367 | 0.090 | 1.202 | 0.092 | 6.068 | <0.001 | 1.812 |
Trunk BMC (g) | 787.9 | 128.5 | 618.1 | 122.2 | 4.459 | <0.001 | 1.354 |
Trunk aBMD (g/cm2) | 1.056 | 0.105 | 0.965 | 0.111 | 2.859 | 0.006 | 0.842 |
Left arm FM (g) | 609.3 | 221.3 | 696.3 | 250.0 | 1.269 | 0.210 | 0.368 |
Left arm FFSTM (g) | 3650.7 | 542.6 | 2052.3 | 379.2 | 10.520 | <0.001 | 3.415 |
Left arm %FM | 13.7 | 4.8 | 23.9 | 7.0 | 6.306 | <0.001 | 1.609 |
Right arm FM (g) | 547.3 | 221.0 | 643.2 | 218.9 | 1.450 | 0.153 | 0.436 |
Right arm FFSTM (g) | 3865.0 | 543.8 | 2179.1 | 407.8 | 10.956 | <0.001 | 3.508 |
Right arm %FM | 11.8 | 4.5 | 21.5 | 6.0 | 6.590 | <0.001 | 1.820 |
Trunk FM (g) | 4779.7 | 1662.6 | 4769.6 | 1310.2 | 0.021 | 0.983 | 0.007 |
Trunk FFSTM (g) | 27,172.0 | 2917.4 | 19,495.5 | 2148.9 | 9.312 | <0.001 | 2.996 |
Trunk %FM | 14.5 | 4.2 | 19.0 | 3.9 | 3.644 | 0.001 | 0.863 |
Left leg FM (g) | 2123.2 | 799.3 | 2905.4 | 982.7 | 3.073 | 0.003 | 0.873 |
Left leg FFSTM (g) | 9643.5 | 1147.7 | 6639.5 | 907.4 | 9.169 | <0.001 | 2.904 |
Left leg %FM | 17.0 | 5.1 | 28.6 | 6.7 | 7.066 | <0.001 | 1.961 |
Right leg FM (g) | 2141.4 | 843.3 | 2967.5 | 1003.9 | 3.108 | 0.003 | 0.891 |
Right leg FFSTM (g) | 9837.9 | 1225.1 | 6805.7 | 945.0 | 8.707 | <0.001 | 2.729 |
Right leg %FM | 16.8 | 5.4 | 28.6 | 6.4 | 6.940 | <0.001 | 1.995 |
TBLH FM (g) | 10,201.0 | 3644.8 | 11,982.1 | 3574.2 | 1.637 | 0.107 | 0.493 |
TBLH FFSTM (g) | 54,159.2 | 6065.1 | 37,172.2 | 4658.5 | 9.859 | <0.001 | 3.141 |
TBLH %FM | 15.1 | 4.5 | 23.2 | 5.0 | 5.859 | <0.001 | 1.704 |
WB FM | 11,099.8 | 3674.3 | 12,766.6 | 3601.2 | 1.520 | 0.137 | 0.006 |
WB FFSTM | 57,427.8 | 6183.3 | 40,007.2 | 4739.3 | 9.921 | <0.001 | 3.162 |
WB %FM | 15.4 | 4.2 | 22.9 | 4.6 | 5.827 | <0.001 | 1.700 |
Variable | Males (n = 43) | Females (n = 15) | t-Value | p-Value | ES | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
WB FMI (kg/m2) | 3.6 | 1.2 | 4.9 | 1.4 | 3.324 | 0.002 | 1.004 |
WB FFMI (kg/m2) | 19.7 | 1.6 | 16.2 | 1.8 | 7.362 | <0.001 | 2.078 |
TBLH FMI (kg/m2) | 3.3 | 1.2 | 4.6 | 1.4 | 3.336 | 0.002 | 1.012 |
TBLH FFMI (kg/m2) | 18.5 | 1.5 | 14.9 | 1.7 | 7.669 | <0.001 | 2.210 |
Left arm FMI (kg/m2) | 0.20 | 0.071 | 0.26 | 0.09 | 2.768 | 0.008 | 0.701 |
Left arm FFMI (kg/m2) | 1.26 | 0.16 | 0.83 | 0.15 | 9.068 | <0.001 | 2.774 |
Right arm FMI (kg/m2) | 0.18 | 0.07 | 0.24 | 0.09 | 2.875 | 0.006 | 0.747 |
Right arm FFMI (kg/m2) | 1.34 | 0.15 | 0.89 | 0.16 | 9.632 | <0.001 | 2.874 |
Trunk FMI (kg/m2) | 1.56 | 0.53 | 1.82 | 0.50 | 1.627 | 0.109 | 0.504 |
Trunk FFMI (kg/m2) | 9.15 | 0.73 | 7.69 | 0.80 | 6.541 | <0.001 | 2.039 |
Left leg FMI (kg/m2) | 0.70 | 0.26 | 1.11 | 0.38 | 3.889 | 0.001 | 1.260 |
Left leg FFMI (kg/m2) | 3.33 | 0.30 | 2.69 | 0.33 | 6.954 | <0.001 | 2.027 |
Right leg FMI (kg/m2) | 0.70 | 0.27 | 1.13 | 0.38 | 4.691 | <0.001 | 1.288 |
Right leg FFMI (kg/m2) | 3.40 | 0.31 | 2.75 | 0.34 | 6.651 | <0.001 | 1.974 |
Variable | Males (n = 43) | Females (n = 15) | t-Value | p-Value | ES | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
TBLH BMAD (g/cm3) | 0.0988 | 0.0049 | 0.0974 | 0.0058 | 0.930 | 0.356 | 0.261 |
Left arm BMAD (g/cm3) | 0.655 | 0.042 | 0.654 | 0.050 | 0.059 | 0.953 | 0.022 |
Right arm BMAD (g/cm3) | 0.652 | 0.038 | 0.651 | 0.053 | 0.044 | 0.965 | 0.022 |
Thoracic spine BMAD (g/cm3) | 1.380 | 0.201 | 1.369 | 0.152 | 0.201 | 0.842 | 0.062 |
Lumbar spine BMAD (g/cm3) | 3.693 | 0.539 | 3.909 | 0.345 | 1.450 | 0.082 | 0.478 |
Pelvis BMAD (g/cm3) | 0.866 | 0.097 | 0.877 | 0.122 | 0.354 | 0.725 | 0.010 |
Left leg BMAD (g/cm3) | 0.599 | 0.036 | 0.589 | 0.044 | 0.936 | 0.353 | 0.247 |
Right leg BMAD (g/cm3) | 0.605 | 0.036 | 0.577 | 0.047 | 2.318 | 0.024 | 0.667 |
Variable | Quartile | ||
---|---|---|---|
25 | 50 | 75 | |
Body mass (kg) | 65.5 | 73.2 | 79.0 |
Stature (cm) | 169.4 | 175.5 | 179.9 |
BMI (kg/m2) | 22.28 | 23.56 | 25.23 |
WB bone area (cm2) | 2155.7 | 2259.2 | 2386.0 |
WB BMC (g) | 2646.6 | 2793.3 | 3010.2 |
WB aBMD (g/cm2) | 1.200 | 1.255 | 1.3024 |
TBLH BMC (g) | 2152.1 | 2252.0 | 2474.5 |
TBLH aBMD (g/cm2) | 1.085 | 1.130 | 1.177 |
Left arm BMC (g) | 186.9 | 206.2 | 223.7 |
Left arm aBMD (g/cm2) | 0.836 | 0.885 | 0.918 |
Right arm BMC (g) | 200.4 | 221.5 | 237.0 |
Right arm aBMD (g/cm2) | 0.872 | 0.912 | 0.932 |
Thoracic spine BMC (g) | 108.5 | 127.0 | 140.2 |
Thoracic spine aBMD (g/cm2) | 0.915 | 0.970 | 1.103 |
Lumbar spine BMC (g) | 59.5 | 65.4 | 78.6 |
Lumbar spine aBMD (g/cm2) | 1.092 | 1.196 | 1.276 |
Pelvis BMC (g) | 327.3 | 371.7 | 407.4 |
Pelvis aBMD (g/cm2) | 1.267 | 1.337 | 1.433 |
Left leg BMC (g) | 491.5 | 530.6 | 585.2 |
Left leg aBMD (g/cm2) | 1.284 | 1.334 | 1.414 |
Right leg BMC (g) | 501.4 | 540.9 | 586.0 |
Right leg aBMD (g/cm2) | 1.308 | 1.363 | 1.424 |
Trunk BMC (g) | 695.7 | 758.3 | 873.5 |
Trunk aBMD (g/cm2) | 0.999 | 1.047 | 1.118 |
Left arm FM (g) | 452.0 | 564.3 | 715.3 |
Left arm FFSTM (g) | 3209.6 | 3782.9 | 4019.3 |
Left arm %FM | 9.7 | 12.8 | 15.2 |
Right arm FM (g) | 382.3 | 467.6 | 626.1 |
Right arm FFSTM (g) | 3453.0 | 3933.4 | 4286.6 |
Right arm %FM | 8.3 | 10.7 | 13.9 |
Trunk FM (g) | 3352.7 | 4411.5 | 5585.5 |
Trunk FFSTM (g) | 24,709.3 | 27,755.5 | 29,957.5 |
Trunk %FM | 10.4 | 14.0 | 16.8 |
Left leg FM (g) | 1450.4 | 1957.9 | 2627.5 |
Left leg FFSTM (g) | 8687.7 | 9670.4 | 10,368.6 |
Left leg %FM | 12.7 | 16.4 | 20.6 |
Right leg FM (g) | 1392.9 | 1998.0 | 2657.9 |
Right leg FFSTM (g) | 8711.3 | 9879.6 | 10,625.4 |
Right leg %FM | 12.2 | 16.5 | 19.8 |
TBLH FM (g) | 7015.6 | 9508.2 | 12,947.3 |
TBLH FFSTM (g) | 49,302.2 | 54,771.1 | 58,453.1 |
TBLH %FM | 11.2 | 14.9 | 17.0 |
Variable | Males (n = 43) | Females (n = 15) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Left | Right | t-Value | p-Value | ES | Left | Right | t-Value | p-Value | ES | |||||
mean | SD | mean | SD | |||||||||||
Arm BMC (g) | 207.5 | 30.7 | 220.4 | 32.0 | −8.166 | <0.001 | 0.41 | 140.6 | 21.8 | 152.6 | 24.6 | −5.703 | <0.001 | 0.51 |
Arm aBMD (g/cm2) | 0.879 | 0.065 | 0.904 | 0.068 | −6.114 | <0.001 | 0.10 | 0.751 | 0.059 | 0.781 | 0.071 | −3.659 | 0.003 | 0.46 |
Leg BMC (g) | 539.2 | 71.6 | 543.7 | 77.6 | −1.342 | 0.187 | 0.06 | 400.5 | 61.6 | 408.1 | 64.5 | −2.572 | 0.022 | 0.12 |
Leg aBMD (g/cm2) | 1.356 | 0.084 | 1.367 | 0.090 | −1.777 | 0.083 | 0.12 | 1.203 | 0.090 | 1.201 | 0.092 | 0.129 | 0.900 | 0.02 |
Arm FM (g) | 609.3 | 221.3 | 547.3 | 221.0 | 6.988 | <0.001 | 0.28 | 696.3 | 250.0 | 643.2 | 218.9 | 3.509 | 0.003 | 0.22 |
Arm FFSTM (g) | 3650.7 | 542.6 | 3865.0 | 543.8 | −8.376 | <0.001 | 0.39 | 2052.3 | 379.2 | 2179.1 | 407.8 | −5.776 | <0.001 | 0.32 |
Leg FM (g) | 2123.2 | 843.3 | 2141.4 | 1147.7 | −0.919 | 0.363 | 0.018 | 2905.4 | 982.7 | 2967.5 | 1003.9 | −1.555 | 0.101 | |
Leg FFSTM (g) | 9643.5 | 1147.7 | 9837.9 | 1225.1 | −3.654 | 0.001 | 0.16 | 6639.5 | 907.4 | 6805.7 | 945.0 | −3.425 | 0.004 | 0.28 |
Dependent Variable | Predictor Variable | Adjusted R2 | SEE | Constant | Beta Coefficient (95% CI) | Beta Coefficient | p-Value |
---|---|---|---|---|---|---|---|
Arms BMC (g) | Arms FFSTM (g) | 0.827 | 34.4 | 107.3 | 0.043 (0.038–0.048) | 0.911 | <0.001 |
Arms aBMD (g/cm2) | Arms FFSTM (g) | 0.707 | 0.0459 | 0.589 | 4.06 × 10−5 (3.4 × 10−5–4.8 × 10−5) | 0.844 | <0.001 |
Legs BMC (g) | Legs FFSTM (g) | 0.768 | 89.7 | 166.34 | 0.047 (0.040–0.054) | 0.879 | <0.001 |
Legs aBMD (g/cm2) | Legs FFSTM (g) | 0.616 | 0.0697 | 0.868 | 2.523 × 10−5 (2.0 × 10−5–3.0 × 10−5) | 0.789 | <0.001 |
TBLH BMC (g) | Appendicular FFSTM (g) | 0.745 | 203.2 | 483.4 | 0.068 (0.057–0.078) | 0.866 | <0.001 |
TBLH aBMD (g/cm2) | Appendicular FFSTM (g) | 0.542 | 0.0656 | 0.761 | 1.400 × 10−5 (1.1 × 10−5–1.7 × 10−5 | 0.742 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavedon, V.; Milanese, C.; Sacristani, F.; Zancanaro, C. Body Composition in Karate: A Dual-Energy X-ray Absorptiometry Study. Appl. Sci. 2023, 13, 559. https://doi.org/10.3390/app13010559
Cavedon V, Milanese C, Sacristani F, Zancanaro C. Body Composition in Karate: A Dual-Energy X-ray Absorptiometry Study. Applied Sciences. 2023; 13(1):559. https://doi.org/10.3390/app13010559
Chicago/Turabian StyleCavedon, Valentina, Chiara Milanese, Franco Sacristani, and Carlo Zancanaro. 2023. "Body Composition in Karate: A Dual-Energy X-ray Absorptiometry Study" Applied Sciences 13, no. 1: 559. https://doi.org/10.3390/app13010559
APA StyleCavedon, V., Milanese, C., Sacristani, F., & Zancanaro, C. (2023). Body Composition in Karate: A Dual-Energy X-ray Absorptiometry Study. Applied Sciences, 13(1), 559. https://doi.org/10.3390/app13010559