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Abstract: In network edge computing scenarios, close monitoring of network data and anomaly
detection is critical for Internet services. Although a variety of anomaly detectors have been proposed
by many scholars, few of these take into account the anomalies of the data in business logic. Expert
labeling of business logic exceptions is also very important for detection. Most exception detection
algorithms focus on problems, such as numerical exceptions, missed exceptions and false exceptions,
but they ignore the existence of business logic exceptions, which brings a whole new challenge to
exception detection. Moreover, anomaly detection in the context of big data is limited to the need
to manually adjust detector parameters and thresholds, which is constrained by the physiological
limits of operators. In this paper, a neural network algorithm based on the combination of Labeling
Neural Network and Relevant Long Short-Term Memory Neural Network is proposed. This is a
semi-supervised exception detection algorithm that can be readily extended with business logic
exception types. The self-learning performance of this multi-network is better adapted to the big
data anomaly detection scenario, which further improves the efficiency and accuracy of network data
anomaly detection and considers business scenario-based anomaly data detection. The results show
that the algorithm achieves 96% detection accuracy and 97% recall rate, which are consistent with
the business logic anomaly fragments marked by experts. Both theoretical analysis and simulation
experiments verify its effectiveness.

Keywords: anomaly detection; labeling neural network; relevant long short-term memory; compressing
window; quartile method; KPI; deep learning

1. Introduction

Anomaly detection is an important task in wireless network data analysis and man-
agement, aiming to discover abnormal behavior or abnormal states in the data. Real-time
anomaly detection of network data helps to improve the intelligent operation and mainte-
nance of the network and achieve optimal allocation and on-demand scheduling of network
resources. Accurate anomaly detection can trigger timely troubleshooting and help avoid
revenue loss, thus, maintaining the company’s reputation and brand. For this reason, large
network companies have built their own anomaly detection services to monitor the health
of their business, products and services.

Currently, most researchers focus on studying network attack anomalies and industrial
data anomaly attacks. However, few researchers have conducted research on non-intrusive
network data anomalies. This paper focuses on anomaly detection of user behavior indices
in the process of network monitoring, which belongs to a different field from network attack
anomaly detection, such as Dos attack detection. KPI means “Key Performance Indictor”. The
network KPIs discussed in this paper are, specifically: the average number of users, PDCP
(Packet Data Convergence Protocol) traffic and the average number of activated users. In
network KPI monitoring scenarios, anomaly detection tasks are calculated at the closest location
to the data source to reduce end-to-end latency in mobile service delivery and improve the
inherent capabilities of the wireless network [1]. When anomalies are detected, the monitoring
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software will send the network alert data to the operator for timely incident-related decisions [2].
However, anomaly detection for KPI is a typical big data environment where anomaly detection
is generally inefficient due to the constraints of operators’ physiological limits. Moreover, KPIs
are presented in the form of time-series data, which makes them different from detection
in non-time-series data and images [3]. It should be emphasized that the detection method
proposed in this paper is mainly used to identify routine data anomalies, and network attack
anomalies are not in the scope of this paper.

In general, there are many challenges in designing services for time-series anomaly detection.

1.1. Challenge 1: Lack of Labeling

When providing anomaly detection services for a single business scenario, the anomaly
detection system will be faced with handling millions of time series. At this point, it is not
possible for operators to manually tag each time series, and if all of them are manually
tagged, they will also be affected by the efficiency and will not be applicable to the big
data operation and maintenance environment. In addition, an effective anomaly detection
system not only needs to be able to accurately identify known types of anomalies, but also
needs to have the ability to detect anomalies in unknown situations. Currently, although
supervised anomaly detection methods based on deep learning have emerged, they are
unable to effectively detect and cope with the ever-changing and complex forms of the
current network environment because they are trained with training datasets of already-
labeled anomaly types [4]. In summary, in the face of anomaly detection in the current
network environment, traditional supervisory methods not only fail to obtain sufficient
labels to ensure accuracy, but also fail to address the challenges of new types of anomalies.

1.2. Challenge 2: Lack of Professionalism

There are many anomalies in the network anomaly detection process that cannot be
identified by purely mathematical algorithms (e.g., isolated forests), as shown in Figure 1b.
This is because the predefined anomalies or anomaly cycles in anomaly detection are
difficult to describe accurately by exact mathematical formulas [5]. Operators usually
identify anomalies based on expertise with their own understanding of KPIs. Most of
the current unsupervised anomaly detection (e.g., isolated forest, LOF, etc.) perform
anomaly detection from a statistical perspective, ignoring the hidden features in the network
data, which leads to unsupervised detection of anomalies only at a simple numerical
level, ignoring the actual meaning of the anomalies themselves. At the same time, the
unsupervised anomaly detection method must satisfy two conditions: (1) most data in the
dataset must be normal data; (2) the anomalous data must be significantly different from
the normal data. Due to these two constraints, unsupervised anomaly detection is not only
ineffective in detecting anomalies for anomalous cycles with many outliers, but also causes
misjudgment of normal values due to the bias caused by it.
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1.3. Challenge 3: Lack of Efficiency

During network monitoring, the monitoring system must process millions or even
billions of time series in real time. Especially for minute time series, the process of anomaly
detection needs to be completed in a limited amount of time. Therefore, efficiency is one
of the necessary prerequisites for online anomaly detection services. However, current
anomaly detection methods are often computationally huge, and for supervised types
of anomaly detection methods based on Bayes networks, neural networks for network
intrusion detection require many samples [6]; support vector machine-based network
detection has a high correct rate, but the time taken for anomaly detection is long and
the real-time performance of network anomaly detection cannot be guaranteed [7]. These
imply that supervised anomaly detection models, even though they can do well in terms of
accuracy, have poor timeliness in online scenarios due to their large time complexity and
space complexity.

Based on the three types of problems presented above, a novel hybrid anomaly
detection network structure is designed, LNN-RLSTM, which is a semi-supervised anomaly
detection method. The reason to design semi-supervised is to adapt to the real-time
monitoring application scenario where new anomaly types are constantly emerging. To
address the issue of business logic exceptions, this article divides the categories of detection
encountered in the business domain into anomaly isolated points and exception cycles. This
algorithm solves the problem of few initial labels by combining the compressed window
with the quadrature method. In terms of lack of specialization, artificial labels are added
in the second-generation training set of the network, and by introducing artificial label
data, LNN-RLSTM further solves the anomaly detection problem at the business level.
Finally, to solve the problem of detection training time, artificial labels pre-training on the
LNN-RLSTM network are pre-trained, so that the frequency of manual intervention for
anomaly detection is continuously reduced and converges to a tiny value, thus, reducing
the amount of model post-tuning, which, in turn, reduces the detection time and improves
the detection in real time.

The main contributions of this paper are as follows:

(1) A semi-supervised dual (LNN and RLSTM) neural network for detecting an anomaly
in the time-series data. LNN was devised to train a neural network that can identify
and label outliers in a “sliding window” and label individual data points according to
the data distribution in a local range, while RLSTM can combine test results and solve
“detect local fragmentation problems”.

(2) The concept of “compression window” is proposed to solve the problem of “anomaly
clustering”. The time complexity and space complexity of this algorithm are effectively
reduced to O (length of window).

(3) An improved LSTM model by adding a “correlation gate” as RLSTM to obtain the
final outcome, which is adaptable to anomaly detection in a long time span.

(4) The experiments were conducted on two separate sets of data. Network traffic
detection data are extracted from Kaggle and China Big Data Challenge datasets
to verify the effectiveness and hardness of the algorithms. The effectiveness and
sensitivity of the detector are verified in terms of accuracy and false-positive rate.

(5) The algorithm incorporates the process of manual tag input, effectively solving the
problem of lack of business logic in detection.

The rest of this article is organized as follows. Section 2 introduces the literature
review and related work in anomaly detection. Section 3 describes drawbacks of the
existing method and our research goals are proposed in the meantime. Section 4 describes
the LNN-RLSTM method. Section 5 introduces the labeling neural network (LNN) in
detail. Section 6 introduces relevant long short-term memory (RLSTM) in detail. Section 7
describes the data flow of LNN-RLSTM globally. Results and discussion are given in
Section 8. Section 9 provides the conclusion and directions for future work.
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2. Literature Review

Threats to validity: In this literature review, we include studies that (1) address algo-
rithmic research in three areas of anomaly detection; (2) anomaly detection research for
cyber threats, including intrusion detection, spam detection and malware detection; and
(3) discuss performance evaluation for accuracy, recall, etc. We used various string combi-
nations, such as “anomaly detection” and “machine learning and network intrusion” [8],
“business data anomalies” and “network traffic”, to retrieve peer-reviewed articles in
journals, conference proceedings, book chapters and reports. We targeted five databases,
namely ACM Digital Library, IEEE Xplore, ScienceDirect, SpringerLink and Web of Science.
Google Scholar was also used for forward and backward searches. We focused on the latest
advances in the last decade. A total of 154 papers was retrieved, and titles and abstracts
were screened to identify potential articles. The full texts of 56 studies were evaluated for
relevance to the inclusion criteria. We excluded articles that discussed (1) cyber threats,
such as image-mapping-based intrusion detection and spam detection, (2) threats to cyber-
physical systems, and (3) threats to IoT devices, smart grids, and smart cities, by searching
before and after. Finally, a total of 50 studies was selected for data extraction.

There are many different machine learning techniques used to improve anomaly
detection performance, which can be generally classified as supervised, unsupervised,
semi-supervised and statistical-based models. Supervised methods require extremely
high quality of data labels, such as K-nearest neighbors, neural networks and support
vector machines. However, during the real-time monitoring of the network, new types of
anomalies often appear frequently, which are not present in the training set, which causes
anomaly detection failure. Unsupervised learning uses numerical analysis of data attributes
alone for detection, for example, by filtering outliers through clustering methods. Since
this detection method is limited to anomalies from a statistical perspective only, it often
does not meet the detection requirements of the business environment. Semi-supervised
learning methods are more efficient than supervised learning through semi-learning and
can outperform unsupervised learning in the business detection perspective. Statistical
models were the first algorithms to be used for anomaly detection. They are mostly based
on the comparison of some statistical properties to determine the outliers.

To solve the three types of problems in Section 1, an accurate, efficient and versatile
anomaly detection system needs to be developed. Traditional network anomaly detection
has been concluded below. Some details of related work are summarized in Table 1.

Table 1. Anomaly detection-related work summary.

Categories Technique Year Domain Ref Time
Complexity Recall Accuracy

Supervised SVM 1963 Cybersecurity [9] O
(
n2)1 - -

Supervised Naive Bayes 1960 Cybersecurity [10] O(mn)2 - -

Supervised Random
forest 2001 Cybersecurity [11] O(O(Mmlogn))3 - -

Supervised ANN 2000 Cybersecurity [12] O(emnk)4 - -
Supervised Decision Tree 1979 Cybersecurity [13] O

(
mn2)5 - -

Supervised SVM 2011 Email Spam [14] O
(
n2)1 95.00% 96.90%

Unsupervised DBN 2016 Email Spam [15] O((n + N)k)7 95.61% 95.86%
Supervised Decision Tree 2016 Email Spam [16] O

(
mn2)5 94.00% 96.00%

Supervised Decision Tree 2014 Email Spam [17] O
(
mn2)5 88.08% 92.08%

Supervised SVM 2018 Spam Tweets [18] O
(
n2)1 93.14% 93.14%

Unsupervised K-means 2007 Software [19] - - -
Unsupervised ADA 2020 service

disruption [20] - 93.00% 94.00%
Semi- supervised FCM 2015 Network [21] - - -

Semi- supervised CBLOF 2019 Financial
Transaction [22] - - 95.79%
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2.1. Supervised Anomaly Detection

Supervised learning-based anomaly detection methods work mainly through machine
learning methods to study and analyze the existing training set of completed labeled
network data to find out the laws contained in it and how to apply this law for anomaly
detection. Supervised methods require a label for each of the data points in the training
dataset. They use this information to learn the differences between normal and outlier
instances by either discriminative or generative algorithms. Theoretically, supervised
abnormality detection is superior in overall accuracy due to a clear understanding of
normality and abnormality. Neural network algorithms have proven to be robust and
highly accurate in applications, such as the prediction of medical time-series data [23].

Methods, such as Linear regression model parameter estimation [20], design and
implementation of a network anomaly detection system based on weighted plain Bayes [24]
and research on deep neural network video anomaly target detection [25], use linear
regression, Bayesian algorithm and neural network, respectively, and these methods can
effectively ensure the accuracy of anomaly detection in different scenarios. However, the
method is extremely dependent on the training set, and the accuracy of the model is easily
affected if there are unlabeled anomalies. Moreover, for online network anomaly detection,
it is simply impossible to perform enough labeling, so the supervised learning network
anomaly detection method is difficult to adapt to online network anomaly detection.

Several practical problems greatly hinder its use. Firstly, in the context of big data, the
labels of much of the data are unknown, which poses a challenge for supervised anomaly
detection algorithms. Data labels are often unavailable or too costly to obtain, e.g., the
labeling of network configurations is not completely clear unless the network is run and
inspected. Secondly, data labels may be unbalanced. Often, in practical anomaly detec-
tion problems, the number of normal samples greatly exceeds the number of anomalous
samples, which leads to prominent biases in the classification model and may degrade the
performance of anomaly detection [26].

2.2. Unsupervised Anomaly Detection

The unsupervised learning-based anomaly detection method refers to the input of an
unlabeled dataset to study and analyze the network traffic data via the machine learning
(MRL) method to find out the data structure and features in it and then perform anomaly
detection. Unsupervised techniques are typically employed in a situation where no prior
knowledge of the dataset is known [26].

Methods, such as variable selection and anomaly detection for automatic k-means
clustering [19], an improved hierarchy-based clustering and anomaly detection algorithm
and its application to data mining platforms [27] and research on parallel network traffic
anomaly detection method based on Spark [28], solve the dependence of supervised
learning on markers, but they only analyze from a statistical point of view and ignore
the potential features among data, leading to bias due to ignoring the actual meaning of
outliers; for example, they cannot solve the situation due to the aggregation of outliers.
Therefore, how to address unsupervised learning to learn and link the actual meaning of
network data is a key issue to improve online anomaly detection [29].

2.3. Semi-Supervised Anomaly Detection

Technique patterns that operate in semi-supervised mode have only labeled instances
of normal classes in the training data. Since they do not require labels of anomaly classes,
they are more widely applicable than supervised techniques than supervised ones [30].
For example, in spacecraft fault detection, anomalies imply accidents, which are not easy
to model [31]. The typical approach used in such techniques is to build a model normal
behavior for the class corresponding to normal behavior and use that model to identify
anomalies in the test data [32].

It has been previously proposed to use only anomalous instances for training [33]. This
technique is not commonly used, mainly because it is difficult to obtain training datasets
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that cover all possible anomalous behaviors in the data [34]. Some algorithms are the fuzzy
c-means and probabilistic c-means [35]. Other algorithms include Self-Organizing.

Maps (SOM), Expectation-Maximization, Find Out, CLAD and CBLOF [36] belong
to this category. However, based on the present large data situation, anomalies are not
difficult to obtain, so this provides a new opportunity for semi-supervised learning.

3. Problem and Goal

In big data anomaly detection, the KPI data tagged by business operators are called
“underlying facts” [36]. The primary goal of anomaly detection is accuracy, followed by
timeliness. The aim is identifying anomalies that are similar to the “underlying facts” in a
short enough time to eliminate false alarms.

Recall
(

number of true anomalous points detected
number of true anomalous points

)
and precision

(
number of true anomalous points detected

number of anomalous points detected

)
are used to measure the accuracy of anomaly detection in this paper.

For business operators, Precision describes something more important than false-positive
rate (FPR) [37], because most anomalous data points are rare. According to Liu et al. [38],
operators not only understand the concept of recall rate and precision but can also express
their tendency to detect anomalous data with accuracy using “recall ≥ x and precision ≥ y”,
which comes from the operator’s experience with other detectors.

In this paper, the different accuracy criteria of the business operators will determine
the size of the hidden layers and training update frequency of the LNN-RLSTM neural
network. The LNN-RLSTM neural network will modify the configuration parameters by
the accuracy preference of the business operator. Of course, for the training of the network,
the lower the accuracy, the lower the required detection time and complexity will be. For
conventional detectors, it is relatively difficult for these detectors to obtain high recall and
precision due to the relatively small amount of anomaly data.

For the problem of few samples, Qui [39] et al. proposed VAEGEN oversampling to
augment anomalous samples for the problem of few anomalous samples, but it did not
increase the data characteristics of the anomalous data, but only augmented the samples
from the original anomalous data. Overall, the problem of less identification of anomalous
data has not been well solved. In fact, the requirements of recall and precision are usually
adjusted according to the actual needs. For example, busy operators are more concerned
with accuracy because they do not want to be constantly distracted by many false alarms,
while the labeling neural network (LNN) proposed in this paper would be good at filtering
out false alarms and allowing operators to focus only on “individual anomalies”. On the
other hand, if the operator’s task is to focus only on a single KPI or on a major KPI, he will
care more about the value of recall.

In addition, traditional unsupervised machine learning algorithms (e.g., isolated
forest, LOF, etc.) will fail when faced with the problem of “clustering of anomalies”, as
shown in Figure 2, where the set of anomalies may form an aggregated cluster, making
it difficult to distinguish from normal clusters. Based on this, the concept of “anomaly
cycle detection” is introduced and tries to solve the anomaly clustering problem using
LNN-RLSTM neural networks.

This paper focuses on identifying anomalous behaviors in the KPI time series of user-
aware class networks. This is the first solution to the anomaly detection problem using a
semi-supervised dual neural network algorithm and the first approach to label data at the
business and data layers using labeled neural networks. However, the user-aware class of
network KPIs discussed in this paper is somewhat seasonal, and other forms of KPI data
types are not reflected in the practice of the algorithm in this paper, but this does not mean
that our proposed LNN-RLSTM neural network model is not applicable to the unstable
big data environment. On the contrary, it is also possible to make our model applicable to
other data types by adjusting the window parameters and other methods, but we do not
elaborate on them in this paper.
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4. Network Traffic Anomaly Detection Scheme Based on LNN-RLSTM Neural Network

Our proposed multi-neural network fusion model is a combination of Labeling Neural
Networks and Long Short-Term Memory (LSTM) networks. The essence of the labeling
neural network is a BP neural network. The labeling neural network is proposed to train
a neural network that can automatically identify and label outliers in a sliding window,
which can automatically label individual data points according to the data distribution in a
local range. The training set for the labeling neural network is derived from three sources.

Source 1: Anomalous isolated points after initial screening.
Source 2: Anomalous cycles after decompression.
Source 3: Anomalous isolated points or anomalous cycles selected manually.
Then, the labeling neural network is applied to label the brand-new time series by

continuously iterating the sliding window and then substitute the labeled dataset into the
RLSTM neural network for training, and finally obtain an optimal RLSTM network that
can perform anomaly detection at the global level. Our proposed dual network model has
the following advantages:

(1) Scientific automatic machine labeling (mainly in the integration of business knowledge
and data feature detection).

(2) Greatly reduces the workload of manual labeling (only manual click anomaly cycle).
(3) Support for big data anomaly detection and update, network update suitable for big

data environment.

4.1. Automatic Labeling of Data

It should be emphasized that there are two sources of training sets for the identification
neural network.

Source 1: Abnormal dataset automatically marked by machine.
Source 2: Manually selected anomalous datasets.
Although the initial labeling data only identify these anomalies from a mathematical

statistical point of view, when these anomalies are substituted into the labeling neural
network for training, the labeling neural network will automatically learn relevant data
features other than numerical values. This means that, compared with traditional statistical
models, the identification neural network will have the ability to detect anomalies in terms
of data features. In addition, with the input of a limited number of manually selected
“special case” anomalies, the labeling neural network will have the ability to accurately
label each period. Eventually, the labeling neural network can not only identify anomalous
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data features, but also learn the expertise of business operators from a business perspective,
thus, achieving the characteristics of scientific identification.

Since Zhang [40], Yang [41] et al. developed a software that allows for manual tagging,
and this paper will focus on the principle of automatic machine tagging, which divides into
two initial tagging steps.

Step 1: Initial labeling of anomalous isolated points.
Step 2: Initial labeling of anomalous cycle points.
After filtering by the statistical anomaly labeling algorithm, the raw data will be

automatically labeled. Then, these labels plus the manual input data will train the labeling
neural network well. This labeling neural network will replace the statistical initial labeling
method after reaching a certain training amount, i.e., the later data labeling will be done
automatically by the labeling neural network.

4.2. Initial Labeling of Exception Isolation Points

Anomalous values have a negative impact on the accuracy of the analysis results of
intelligent O&M. If the anomalous values are examined through the analysis of the trend
components in the time-series model, they will be too large and complex for the operation
and maintenance scenarios and the data will lose timeliness. Therefore, for a group of
brand-new, unlabeled data, a traditional simple test method is needed for fast initial
labeling of the data, which makes big data anomaly detection relevant. As a modification
of the “standard deviation method”, the quartile method uses the median and standard
interquartile distance to estimate the dataset instead of the mean and standard deviation in
the “standard deviation method”, respectively. It has a high robustness and perfectly fits the
analysis of a large amount of data in operation and maintenance scenarios. At the same time,
it is also free from the constraints of normal distribution and has higher generalizability.

Through the preliminary observation of the data, it can be found that: the user
perception class network KPI data have obvious seasonality and seasonal variation by days,
and although these time-series data do not conform to the positive-terrestrial distribution
from the whole, the positive-terrestrial distribution can be proved for each cycle, as shown
in Figure 3, and the positive-terrestrial distribution characteristics of the user perception
class KPI data within the cycle can be proved through the QQ chart observation. The
quartile method can have good robustness in the face of traditional anomaly detection
tasks. Figure 4 illustrates the anomaly detection process for data using the quartic method,
which will be subsequently extended and used to identify anomalous cycles.
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Therefore, a sliding window is applied, the data in one cycle at a time for quadrature
detection are framed and the data with a preliminary hit are labeled.

4.3. Initial Labeling of Exception Cycles

First, it is necessary to emphasize that a completely new approach to anomaly cycle
detection is necessary. Because in the face of a large number of anomalous data points,
aggregation, the traditional clustering, LOF, and isolated forest algorithms [14,20,24] will
not be able to identify the anomalous data points because the anomalous data clusters are
very similar to the normal data clusters, both in terms of aggregation degree and density
degree, as shown in Figure 5, the traditional unsupervised learning anomaly detection
algorithm is invalid.
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Figure 5. On the gathering of many anomalies.

The phenomenon of “anomaly clustering” occurs when the set of data points is
abnormal in a certain period with respect to the whole KPI series. To effectively solve the
problem of “anomaly clustering”, the concept of “compression window” is innovatively
proposed. This method intends to reduce the anomaly detection problem to the anomaly
detection problem by compressing the data through the compression window, as shown in
Figure 6. The main steps are as follows.
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Step 1: Choose a suitable compression window size (in this paper, we choose a cycle
length as the window size).

Step 2: Find a point in the compression window with the shortest sum of Euclidean
distances to all other points and use this point as the compression point.

MinE = ∑
x∈Ci

‖x− xk‖2xk ∈ Ci, k = 1, 2, . . .

Ci is the set of data points in the i-th cycle, xk is the value of the kth data point in the
cycle and x is the value of the current target data point.

Step 3: The KPI value of the compressed point is used as the compressed value of the
data in the window for dimensionality reduction.

Step 4: Detect and mark the anomalies of the compressed new time series.
Step 5: Decompress the detected data and the decompressed data of each cycle will

carry the label value of the parent compression point.
In this Algorithm 1, the rules for selecting the compression points are based on many

experiments. In the case of Figure 7, the value of the compressed points will not exceed
the threshold of the compressed sequence because the anomaly of the sequence is caused
by very few anomalous isolated points, and most of the data points are not biased, and
the very few anomalous isolated points can only pull the compressed points towards
their own horizontal coordinates in this algorithm, without affecting the size of their
indicators (if their indicators are normal). In the case of anomalies, such as Figure 8, the
value of the compression points will significantly exceed the threshold of the compression
sequence because many points within the compression window are “biased”, causing the
value of the compression points to increase. In summary, this paper uses the compression
window to label the data points in the anomaly cycle to complete the task of detecting the
anomaly cycle.
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Algorithm 1: Compress Window Anomaly Period Test (create LNN training set)

Input: Training KPI dataset A without labels
Output: label_A is Set A after quartile labeling.
1: 0 means outlier, 1 means normal point
2: ceiling < –Upper bound of box graph
3: floor < –bound of box graph
4: for each element of A do
5: if A[i] < floor || A[i] > ceiling then
6: label_A[i] = 0
7: end if
8: end for
9: j < –1
10: for I = 1: N: length(A) do
11: for each elements a of A [i: i + N − 1] do
12: compress[j] <– a point whose distance from all elements in the A[i: i + N − 1] is the smallest
13: j < –j + 1
14: end for
15: end for
16: for each element of A do
17: if compress[i] < floor || compress[i] > ceiling then
18: label_A[(i − 1) × 24 + 1:24 × i] = 0
19: end if
20: end for
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5. Labeling Neural Network Structure

Labeling neural network structure is a multilayer forward type of neural network with
error back-propagation learning algorithm, and its structure is shown in Figure 9. In this
neural network model, it contains an input layer, an output layer and an intermediate layer
in between the input and output layers.

The main idea of labeling neural networks is to divide the learning process into two stages.
The first stage is a forward-propagation process that gives the input information, which

is processed layer by layer through the input layer by the implicit layer and calculates the
actual output value of each cell.
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The second stage is the error back-propagation process, where the difference between
the actual output and the desired output (i.e., the error) is recursively calculated layer by
layer if the desired output value is not obtained in the output layer to adjust the weights
according to this error, so that the error decreases along the gradient direction.
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As the process of pattern forward propagation and error back propagation is repeated
alternately, the actual output of the network gradually approaches the respective desired
output, and the correctness of the network’s response to the input pattern increases. Once
the connection weights for each layer question are determined by learning, the neural
network is ready to work.

The key to the training process of labeling a neural network is the selection of input
and output samples, the initialization of network connection weights and the data of
network results.

Preparation of training sample set: Firstly, input samples and output samples are
selected, then the data samples must be normalized, and finally, the training set and test
set must be set, specifying the number of samples to be trained and the organization of
samples to be selected.

Preparation of initial weights: The starting point of the network training travel surface
depends on the initialization of the connection weights, so choosing a suitable initialization
method is the key to reducing the training time. Usually, the weights are randomly taken
as a very small non-zero number.

The design of the neural network structure: mainly the design of the number of
hidden layers and the number of connected nodes. Since the labeling network with a single
hidden layer can approximate a continuous function in any closed interval, the three-layer
network structure can achieve the mapping from X-dimensional space to Y-dimensional
space. The number of connected nodes is determined by the number of training samples in
the network and the complexity of the implicit law of the samples.

Input layer: the input pattern vector has n inputs xi, (i = 1, 2, . . . , n);
Hidden layer (middle layer): there are n1 neurons with input of xi, (i = 1, 2, . . . , n)

and output of hj, (j = 1, 2, . . . , n1), weight of hidden layer of wij and threshold of θj;

hj = f

(
n1

∑
t=1

wijhj − θj

)
j = 1, 2, . . . , n1
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Output layer: there are m neurons, the output is yl , (l = 1, 2, . . . , m), the weight of this
layer is wjl and the threshold is θl .

yl = f

(
n1

∑ wjlhj − θl

)
l = 1, 2, . . . , m

Learning sample set:
{(Xp, tp) ‖ p = 1, . . . , T}

Here: XP =
(
−1, xP

1 , xP
2 , . . . , xP

n
)

is the input of the P-th sample; tP =
(
−1, tP

1 , tP
2 , . . . , tP

m
)

is the standard output of Xp;yP =
(
−1, yP

1 , yP
2 , . . . , yP

m
)

is the actual output of Xp.
Untrained network, general tP − yP 6= 0 and the learning algorithm are used to adjust

the network weight W so that
(
tP − yP)→ 0 . The specific steps of labeling neural network

algorithms (Algorithm 2) are as follows.

Algorithm 2: Labeling neural network

Input: training KPI dataset A with labels, params for Labeling neural network
Output: trained model labeling neural network
1: set parameters
2: epochs < –1000 training times
3: learning rate < –0.01
4: goal < –0.000001 minimum error of training targe
5: for element is groped into N do
6: count Windows < –A[i:i + N − 1] and labels[i:i + N − 1]
7: end for
8: count Windows < –0
9: for each count Windows do
10: ω, β < –count Windows
11: count Windows < –countWindows + 1
12: end for
13: build labeling neural network byω and β

This paper selects KPI data with seasonal distribution. First, 24 data points are taken
as the input layer to the bp neural network to learn and then continuously adjust the
model according to the anomalies derived from the quartiles to improve the accuracy of
the model. However, just bringing in the anomalies detected by the quadrature method
does not effectively cover all anomalies, such as anomalous cycles. In this regard, the
compression window method mentioned above is used to label all points in the anomaly
cycle as anomalies, and then label these anomalies as anomalies and bring them into the
LNN neural network for learning to further improve its accuracy.

Labeling neural network has an extremely strong nonlinear mapping capability. When
there is a certain mapping relationship between the input information and the output
information, the labeling neural network can preserve this relationship without knowing
the corresponding equation about this relationship in advance. By building a training
network with sufficient input samples, a spatial nonlinear mapping from the x dimension
to the Y dimension can be achieved. It can be found that the learned labeling neural
network not only accurately learns the anomalies judged by the quadrature method, but
also identifies the outliers not judged by the quadrature through its learning ability for
potential rules, which indicates that the labeling neural network can effectively solve the
novel anomalies appearing in the network environment.

6. The RLSTM Model

The multi-neural network model is a fusion of supervised and unsupervised learning
algorithms. The keys of this model are labeling neural network and LSTM-based RLSTM
neural network. Therefore, the detailed structure of the labeling neural network will be
introduced, LSTM neural network, and the LNN-RLSTM model outlined.

Long short-term memory (LSTM) is a special form of recurrent neural network first
proposed by Hoch Reiter [4] in 1997. In the gradient back-propagation phase, traditional
recurrent neural networks suffer from gradient disappearance and gradient explosion
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when the gradient signal is multiplied by many times. LSTM neural networks overcome
the long-term dependence and solve the problem of too small an impact factor due to the
large time span by cell variables. These features of LSTM neural networks are just suitable
for user-aware classes that possess time-series properties and the anomaly detection of KPI
data in the network.

To simulate the RLSTM, a graph of the operational structure of a single neuron is
constructed in Figure 10. C〈t−1〉 is the input to the memory unit, C〈t〉 is the memory unit
state, C̃〈t〉 is the updated memory unit state, O〈t〉 is the value of the output gate at moment
t, W f , Wc, Wu, Wr, Wo is the weight matrix and b f , bc, bu, br, bo is the deviation vector.
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The key to LSTM networks is to add or remove information using memory unit states,
which are regulated by structures called “update gates” and “forget gates”. In fact, the
traditional LSTM neural network is improved by adding a “correlation gate”, which adds
the correlation of the before and after time series as a weighting factor in the calculation of
C̃〈t〉. The gates act like filters, allowing optional information to pass through. They consist
of a sigmoid neural layer with output values between 0 and 1. The formulas inside these
gates are not indicated in Figure 1, but they will be given in detail later in the procedure. The
point-state multiplication operations ⊕ and 	 are used to denote the algebraic operations
referred to in the RLSTM internals. From Figure 10, an RLSTM has four gates to control the
information, which are: update gate, forget gate, correlation gate and output gate. Through
the RLSTM (Algorithm 3) neural network, the time-series information will be transmitted,
filtered, combined and finally output a whole message to the next memory storage unit.
The detailed steps of transmission are shown below.

Step 1: Calculate update gate to store new useful information

Ut = σ
(

Wu

[
a〈t−1〉, x〈t〉

]
+ bu

)
Step 2: Calculate forgetting gate to forget the redundant old information

ft = σ
(

W f

[
a〈t−1〉, x〈t〉

]
+ b f

)
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Step 3: Calculate the correlation gate to determine the correlation before and after
the time series

rt = σ
(

Wr

[
a〈t−1〉, x〈t〉

]
+ br

)
Step 4: Calculate the state of the memory unit to be updated

C̃〈t〉 = tan h
(

Wc

[
r∗t a〈t−1〉, x〈t〉

]
+ bc

)
Step 5: Calculate and update the state of the unit

C〈t〉 = U∗t C̃〈t〉 + f ∗t C〈t−1〉

Step 6: Compute output gate

Ot = σ
(

Wo

[
a〈t−1〉, X〈t〉

]
+ bo

)
Step 7: Output the next memory unit state

a〈t〉 = O∗t tan hC〈t〉

Algorithm 3: RLSTM neural network

Input: training KPI dataset A with labels, params for RLSTM neural network
Output: trained model RLSTM neural network
1: for each element of set A do
2: count Windows < –A[i: i + N − 1] and labels[i:i + N − 1]
3: end for
4: set parameters
5: Max Epochs < –1000 the maximum number of rounds to train
6: Gradient Threshold < –1 the positive threshold for the gradient
7: Initial Learn Rate < –0.005 the initial learning rate of the training
8: Learn Rate Schedule < –piecewise ways to reduce the overall learning rate
9: Learn Rate Drop Period < –125 learning rate reduction factor
10: Learn Rate Drop Factor < –0.2 the number of epochs
11: count Windows < –0
12: for sliding read data by N do
13: ω < –count Windows
14: errors < –∑labels
15: count Windows < –countWindows + 1
16: end for
17: build LSTM neural network by minimum errors

7. Combination of LNN and RLSTM Based on Pre-Labeled Data

In this section, a neural network model with the combination of LNN and RLSTM
will be elaborated, which has the ability to identify (1) anomalies, (2) anomalous cycles,
(3) anomalous frequencies and other anomalous changes (based on operator experience)
that occur in a range of business scenarios.

Figure 11 shows the data-flow diagram for training the anomaly detection neural
network in this paper. The network service data mainly come from the terminal layer,
which consists of various devices and mainly completes the operation of collecting raw
data and reporting them. Taking the mobile communication industry as an example, these
data will be captured by the nearby base stations. The base station computing layer realizes
the response of basic services through reasonable deployment and deployment of storage
capacity. The reported data from the base stations will be permanently stored by the cloud
computing center. In the cloud computing center, our model is enabled to be used. Through
the pre-processing of the data, the data take on the characteristics of a time series, when the
network signal data are not tagged. During the initial input period of the model, to train
the LNN, the data are initially labeled by using the quadrature method combined with
compressed windows for outlier and anomaly cycle detection, respectively, for the network
data. At this point, the data labels contain numerically anomalous outliers and anomalous
cycles, and then manual anomalous network data are input (“individual examples” that
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the salesperson considers anomalous). The purpose of the preceding step is to solve the
problem of missing LNN training data in the case of missing data labels. The labeled data
will be substituted into the LNN, a sliding window and BP-based neural network model, for
training, which will have the ability to accurately label the data on each given cycle. After
training reaches a certain number, the LNN will replace all previous data pre-processing
operations and directly label the initial data. The LNN will identify anomalies from the
data perspective and business perspective, but due to the existence of the sliding window,
the LNN labeling step is “fragmented”, so the labeled data are substituted into the RSTM.
The RLSTM is a recurrent neural network model with continuous training, which can solve
the “fragmentation” phenomenon of LNN labeling. Through training, RLSTM will inherit
the abnormal data recognition ability of LNN and further recognize abnormalities from
the perspective of time-series continuity, so a neural network model that can accurately
recognize data abnormalities is constructed. The final anomalous data detection results are
shown in Figure 12.
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8. Evaluation
8.1. Dataset

The dataset used in this experiment comes from 67 KPI indicators, corresponding to
58 cells covered by five base stations for a total of 29 days from 28 August 2021 at 00:00 to
25 September at 23:00 of the National University Big Data Contest, and they are manually
labeled accordingly. We select three KPIs with different characteristics and they have the
same 1 h interval between observations. Table 2 shows the detail information of the dataset
we used.

Table 2. Statistics of dataset.

KPI Average # of Users Average # of
Activated Users Cell PDCP Traffic

Total points 3480 3480 3480
Anomaly point 156/4.48% 100/2.87% 178/4.91%
Total windows 145 145 145

Abnormal windows 2/1.38% 1/0.69% 2/1.38%
Average 16.2898 1.7046 1.7133 × 1010

8.2. Model Parameter Setting

To compare the objectivity of the results, the hidden layer of the LNN network was set
to two layers, 24 units in the first layer and 12 units in the second layer. The size of each
sliding window is set to 24 and a training target minimum error of 0.00001 is chosen. The
Adam optimizer with an initial learning rate of 0.005 is chosen for RLSTM neural network
training. As one of the important components in the model proposed in this paper, the
LNN-RLSTM has two important parameters: Initial Learn Rate and Learn Rate Drop Factor.
If Initial Learn Rate is too low, the training will take a long time, but if the learning rate is
too high, the training may fall into suboptimal results. Learn Rate Drop Factor is applied to
the learning rate each time a certain number of epochs pass, reducing the impact of overly
old historical data on future data. Experimentally, Initial Learn Rate is chosen to be 0.005
and Learn Rate Drop Factor is chosen to be 0.2, and the model accuracy is high.
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8.3. Performance Evaluation

There are different metrics and measures to evaluate an ML model. Each learning task
has a focus on various measures [42]. A good anomaly detector must have a high detection
rate and a low false-alarm rate. Therefore, in this paper, the relevant measures from the
confusion matrix are used to measure the model efficiency. The performance evaluation of
anomaly detection algorithms based on time-series data uses recall, precision and accuracy
in addition to the best F-Score. The percentage of positive samples predicted by using the
model in the overall sample is reflected by the precision, recall reflects the proportion of
true-positive samples among those predicted to be positive, F1-score combines precision
and recall and accuracy is the number of correctly identified samples in the test sample as a
percentage of the total number of samples tested in the database.

• True Positive (TP): if an anomaly is classified by model as an anomaly, result is accepted
as TP.

• False Positive (FP): if a normal instance is classified by model as an anomaly, result is
accepted as FP.

• True Negative (TN): if an anomaly is classified by model as normal instance, result is
accepted as TN.

• False Negative (FN): if a normal instance is classified by model as normal instance,
result is accepted as FN.

precision = TP
TP+TN ;

recall = TP
TP+FN ;

F1-score = 2TP
2TP+FP+FN ;

accuracy = TP+TN
TP+TN+FP+FN

As shown in Figure 13, we compare the performance based on the four metrics under
different models with three KPIs. The experimental results show that the LNN-RLSTM
model outperforms the other three models. In the three datasets, the anomaly feature of
the average number of activated users is more prominent, so the F-Score is higher. The
anomaly frequency of the average number of users in the cell is larger than that of the
anomaly data, which can explain the phenomenon of “anomaly aggregation” in the cell
PDCP data (4.48% of the anomalies and 1.38% of the anomaly windows), but its F-Score is
the smallest.

In fact, due to the complexity and diversity of data anomalies, it is still challenging to
detect the anomaly frequency with very high accuracy unless the anomalies of data features
are extremely obvious (obvious peaks or troughs in values).

8.4. Impact of LNN-RLSTM Technology

Compared with other models, LNN-RLSTM is improved by three points:

(1) Numerical visualization of anomalous data using quartiles.
(2) Identification of anomalous data and anomalous cycles using LNN neural network

training data.
(3) Anomalous frequencies can be identified using RLSTM neural network training data.

We used these three techniques to optimize our model and experiments. Adding these
three improvements step by step gives us the LNN-RLSTM model.
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8.5. LNN-RLSTM Labels and Real Labels

The quartile method is suitable for excluding only the most prominent feature anoma-
lies and this task is very meaningful for LNN-RLSTM, which has good noise immunity by
training to describe the real data feature distribution. During the training process, although
the proportion of anomalous data is small, each anomaly may significantly affect the pa-
rameters of the model, thus, improving the sensitivity of the model to anomalies. As shown
in Figure 14, the time to train the model with the traditional machine learning algorithm
with the addition of novel anomalies at a later stage is illustrated. Although the quartile
method has better robustness in anomaly detection, the quartile method is not sensitive to
novel anomalies added at a later stage because it is an unsupervised learning algorithm
and does not learn from the later dataset. Although the training time of Random Forest and
LightGBM is shorter than LNN-RLSTM in the model pre-training stage, the model needs to
be trained once again as a whole every time a new anomaly type is added manually, thus,
not improving in time and even increasing the time complexity. The LNN, on the other
hand, can recognize the newly added data anomalies in one cycle length unit and, thus, the
LNN training is much faster. In the early stage of model pre-training, the time consumption
is relatively high because LNN- RLSTM needs to train a dual network. However, when the
model is trained, for variable real-time monitoring environments, further updates to the
model can be achieved by simply varying the relevant parameters of the LNN, because the
operator’s marking law is also checked in one cycle.
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The time complexity of LNN and RLSTM is low, as shown in Table 3. The time
complexity of LNN is mainly related to the number of layers in its stack. Since the concept
of sliding window is introduced in this paper to help LNNs perform local detection, the
number of layers of LNN stacking does not need to be excessive, about 4–7 layers are
sufficient. The semi-supervised learning approach of this algorithm is further optimized
to improve the accuracy of the algorithm by introducing artificial labeling. The fuzzy
weight of the sequence memory in the previous cycle is realized by adding the concept of
correlation gate to RLSTM. The parameters in RLSTM can be simplified to two matrices,
U and V, which are mapped to input and output, the dimension of U is hidden number *
Input and the dimension of V is hidden number * hidden number, so the time complexity
is lower than other deep learning algorithms.

Table 3. Time complexity comparison.

Categories Technique Year Domain Ref Time Complexity

Supervised Naive Bayes 1960 Cybersecurity [42] O(mn)2

Supervised Random forest 2001 Cybersecurity [43] O(O(Mmlogn))3

Supervised ANN 2000 Cybersecurity [44] O(emnk)4

Supervised SVM 2011 Email Spam [45] O
(
n2)1

Unsupervised DBN 2016 Email Spam [46] O((n + N)k)7

Supervised Decision Tree 2016 Email Spam [47] O
(
mn2)5

Supervised SVM 2018 Spam Tweets [48] O
(
n2)1

Unsupervised K-means 2007 Software [49] O(I × n × k ×m)
Semi-supervised LNN 2022 Operational exception - O(n ×m × k × v)
Semi-supervised RLSTM 2022 Operational exception - O (4(nm + n2 + n))

8.6. Real Exceptions for Data Labels

The quartile method is only suitable for testing the most obvious anomalous data,
while Random Forest, SVM [42] and LightGBM cannot effectively check the anomalous
frequencies [49]. As shown in Table 1, for the average number of users in the cell, the
quartile method has the worst detection effect on the dataset and performs better on other
datasets, which, to some extent, can also explain why LNN-RLSTM has the smallest F-Score
for the average number of users dataset in the previous experiments. Further, we can
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see the limitations of the quartile method, so it can only be used as a tool for auxiliary
LNN-RLSTM training.

9. Conclusions and Future Work

The LNN-RLSTM model not only has strong anomaly data detection capability, but
also constructs different kinds of anomaly detection network models from network oper-
ation and maintenance business perspective and operator bias perspective, respectively.
Compared with traditional classification methods, such as quadrature method, random
forest and lightGBM-genetic algorithm [43–47], its performance is better in terms of Ac-
curacy, Precision, Recall, F1-Score and other indexes. Especially in the case of complex
business scenarios, the LNN-RLSTM network architecture can efficiently learn the business
knowledge of business operators and can quickly and automatically iterate training to
learn new abnormal data types in a timely manner in the face of big data environments.
The self-learning habit of this network architecture makes it possible to detect anomalies in
the field of anomaly detection, not only at the numerical level but also at the operational
level. Of course, in future research, we will still study the factors influencing the formation
of data-compression windows to avoid false anomalies from overlearning and further
investigate the impact of multi-neural network models in anomaly detection performance.

However, although the proposed architecture in this paper improves in time complex-
ity and business detection capability, it does not consider the impact brought by adversarial
attacks [48], and this algorithm model only considers network business data anomalies
caused by non-human factors [49], which is not comprehensive for network security detec-
tion. In the future, we will focus our research on anomaly detection by adversarial attacks,
which is a method where an adversary intentionally adds an adversarial perturbation to
the input file to disable the detector. Such anomaly detection is considered necessary in
white-box attack prevention [50], where the attacker generates adversarial examples to
fool the model based on its architecture, parameters and input features. Our future work
will be devoted to the problem of adversarial attacks to improve the generalizability and
robustness of the model.
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