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Abstract: Multi-task optimization (MTO) is a novel emerging evolutionary computation paradigm. It
focuses on solving multiple optimization tasks concurrently while improving optimization perfor-
mance by utilizing similarities among tasks and historical optimization knowledge. To ensure its
high performance, it is important to choose proper individuals for each task. Most MTO algorithms
limit each individual to one task, which weakens the effects of information exchange. To improve
the efficiency of knowledge transfer and choose more suitable individuals to learn from other tasks,
this work proposes a general MTO framework named individually guided multi-task optimization
(IMTO). It divides evolutions into vertical and horizontal ones, and each individual is fully explored
to learn experience from the execution of other tasks. By using the concept of skill membership,
individuals with higher solving ability are selected. Besides, to further improve the effect of knowl-
edge transfer, only inferior individuals are selected to learn from other tasks at each generation. The
significant advantage of IMTO over the multifactorial evolutionary framework and baseline solvers
is verified via a series of benchmark studies.

Keywords: evolutionary algorithm; multi-task optimization; knowledge transfer; skill membership

1. Introduction

Evolutionary algorithms (EAs) are population-based stochastic optimization methods
that include mechanisms of natural selection and population genetics in the field of Artificial
Intelligence [1–3]. They are based on a collective learning process and can start with an
arbitrarily initialized population [4,5]. Individuals evolve towards better and better solution
regions by means of repetitive reproduction and mutation [6–9]. Due to their flexibility, ease
of interfacing, extensibility, and high search efficiency, population-based optimization has
been successfully applied to path planning, task assignment, energy-saving, and network
configuration [10–16].

Even though EAs are proven to be useful in many applications, they have some
disadvantages. For example, it is known that there are many similar optimization problems
in the real world. Traditional EAs just focus on solving a single optimization problem and
regard each optimization as an independent process while ignoring similarities among
different tasks. When handling a new optimization problem, EAs have to start from scratch
by assuming that no historical knowledge of solving related problems can be used [17].
Inspired by the idea of transfer learning and multi-task learning that a system can learn
knowledge or skills from performing previous tasks [18–20], this work aims to solve
multiple optimization problems and explore their implicit facilitations.

Traditionally, optimization problems can be divided into single-objective optimization
(SOO) and multi-objective one (MOO). In order to improve the search efficiency among
related tasks, a new paradigm named multi-task optimization is proposed. Instead of
solving multiple problems sequentially, MTO can utilize similarities of different tasks to
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improve search efficiencies [21–23]. Inspired by multifactorial inheritance, Gupta et al.
proposed a novel genetic EA named multifactorial evolutionary algorithm (MFEA) to solve
MTO problems [21]. In MFEA, complex developmental traits of offspring are influenced
by the combination of genetic and cultural factors [24–26]. During the evolution, MFEA
can utilize information transfer of similar problems to improve optimization performance,
which differs from traditional single-task methods [27–30].

Many MFEA variants have been proposed [31,32]. For example, in order to explore
the generality of multifactorial optimization (MFO) when using different population-based
search mechanisms, Feng et al. [33] attempted to conduct MFO with particle swarm opti-
mization (PSO) and differential evolution (DE). The derived two multi-tasking paradigms
are named as multifactorial particle swarm optimization (MFPSO) and multifactorial dif-
ferential evolution (MFDE). Chen et al. [17] proposed a general evolutionary framework
named MaTEA for solving many-task optimization problems. It chose assisted tasks based
on the KullbackLeibler divergence (KLD) mechanism that can be used to measure the
similarity among different tasks.

With a strong motivation for improving optimization efficiency and choosing suit-
able individuals to learn from other tasks, we propose an individually guided multi-task
optimization framework. It is capable of generalizing almost all existing single-objective
solvers, and answers when to start transfer and who should learn. In this paper, we place
four popular single-objective solvers, including genetic algorithm (GA), PSO, DE, and artifi-
cial bee colony (ABC) into our proposed framework to validate its usefulness in advancing
the field of MTO optimization. We intend to make the following novel contributions:

(1) We propose a novel MTO framework including the partial population information
sharing and individual learning schemes to achieve higher search efficiency than
existing frameworks.

(2) In order to represent the interests of each individual for solving different tasks, we
introduce a new concept of skill membership into the MTO framework.

(3) We divide an MTO search process into vertical and horizontal evolutions, and the
latter includes crossovers of individuals belonging to different tasks. Knowledge
transfer is guided according to the task performance to suppress the negative transfer
of each optimization task.

The rest of this paper is organized as follows: Section 2 introduces the background
of MTO. IMTO is described in Section 3. Experimental studies are presented in Section 4.
Section 5 concludes this work.

2. Related Work

MTO aims to conduct multiple tasks simultaneously through the use of knowledge
transfer among different tasks. Supposing that there are K tasks to be completed and
all of them are minimization problems. The jth task can be denoted as Tj with objective
function f j : Xj −→ R , in space Xj. MTO aims to find a set of global optimal solutions{

x∗1 , x∗2 , . . . , x∗k
}

which can satisfy

x∗i = argmin
x

fi(x), i ∈ {1, 2, . . . , K} (1)

MTO can solve multiple optimization tasks in a unified space and utilize similarities
among different tasks to accelerate an optimization process, while single-task optimization
just focuses on solving one task in one search space and finding the global optimal solution
through vertical evolution. MFEA can transfer knowledge among different tasks by the
interactions of genetic and cultural factors. During its operation, offspring not only inherit
genetic factors, but also are influenced by habits and preferences of parents belonging to
different tasks. To ensure different tasks can share useful optimization knowledge, it creates
a unified search space for MTO problems.

We first introduce some definitions related to individuals in MFEA [21].
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Factorial Cost: The factorial cost of candidate pi for a given task Tj can be given as
Ψi

j = Λ·δi
j + f i

j , where Λ is a penalizing multiplier, f i
j is an objective function value, and δi

j
represents the total constraint violation.

Factorial Rank: The factorial rank ri
j of individual pi on task Tj is its index in the list

of population members sorted in ascending order with respect to Ψj.
Scalar Fitness: The scalar fitness is calculated via the list of factorial ranks{

ri
1, ri

2, . . . , ri
K
}

, and ϕi = 1/minj{1,2,...,K}{ri
j}.

Skill Factor: The skill factor τi is a task whose individual pi performs the best, i.e.,
τi = argminj{ri

j}, where j {1, 2, . . . , K}.
Since the appearance of the MFO [21], many improvements have been made. Con-

sidering that knowledge transfer of different optimization tasks is sensitive to negative
inter-task interactions, Bali et al. [34] proposed a novel evolutionary computation frame-
work named MFEA-II. It can achieve online learning and explore similarities among distinct
tasks. Based on MFEA-II, they further proposed a cognizant evolutionary multitasking
approach called MO-MFEA-II to solve MOO problems [35]. Zheng et al. [23] proposed a
self-regulated evolutionary multi-task optimization (SREMTO) that used an ability vector
to reflect an individual’s solving ability for solving each task. It can automatically adapt the
intensity of cross-task knowledge transfer to different and varying degrees of relatedness
among different tasks. Liu et al. [36] proposed a surrogate-assisted multi-tasking memetic
algorithm (SaM-MA) that used a surrogate model to assist an evolution procedure. Bali
et al. proposed an enhanced MTO framework named LDA-MFEA that derived linear
transformations among solution spaces of component tasks [37].

Existing MTO algorithms only focus on solving a small number of tasks at the same
time. If many tasks need to be solved, they would become ineffective in such complex multi-
task environment. To handle many-tasking problems, Tang et al. proposed a group-based
MFEA to group similar tasks, such that the genetic information interaction could occur
with the same group. To strengthen its effectiveness and efficiency, they further developed
a new selection criterion and mating selection mechanism [38]. Zhang et al. proposed a
framework named multisource selective transfer optimization that can choose source tasks
well. Besides, the optimization instance representation method named centroid distribution
is designed to measure the task relatedness of different optimization instances [39].

Due to its superior performance, MFEA has been used in many applications. For ex-
ample, in order to evolve several Deep Q-Learning (DQL) models and converge to optimal
policies, Martinez et al. [40] proposed a new MFO framework that blended meta-heuristic
optimization, transfer learning, and DQL to automate the process of knowledge transfer
and policy learning of distributed Reinforcement Learning (RL) agents. Feng et al. [41] ex-
plored the application of MTO to solve combinatorial optimization problems. They verified
its efficiency by using vehicle routing as an illustrative combinatorial optimization problem.
To overcome the difficulty that conventional evolutionary algorithms are not suitable for
solving expensive optimization problems, Ding et al. [28] proposed a new multitasking
evolutionary optimization framework named generalized MFEA (G-MFEA) to solve ex-
pensive problems. In G-MFEA, cheap optimization problems can transfer knowledge to
expensive ones, thus leading to faster convergences of the latter.

Except for multifactorial-based MTO algorithms, multipopulation approaches also have
been proposed to improve the efficiency of knowledge transfer. For example, Li et al. [42]
proposed a multi-population framework to solve MTO problems, and each population has
corresponding mating probability to exchange information. Cheng et al. [43] proposed a
MultiTasking Coevolutionary Particle Swarm Optimization (MT-CPSO) algorithm. In it,
the information from the assistant task can be transferred if the personal best solution of
the target sub-population cannot improve the search performance.
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3. Proposed Method
3.1. Motivations

In MTO, the optimization experience can be shared and each task can utilize the
superior experience of other tasks. So, they are expected to evolve faster and achieve higher
accuracy than traditional single-task optimization methods. As a typical MTO algorithm,
MFEA demonstrates its performance for both SOO and MOO problems, as well as real-
world optimization problems. MFEA uses the concept of a skill factor to divide the initial
population into different task groups. However, one individual can be suitable for different
tasks. This is common when these tasks have high similarities. The skill factor limits
individuals to one task group and weakens the effects of information exchange among
multiple tasks. As a result, the task pairs with high similarities can suffer from barely useful
information exchange among each other. In order to better represent the solving ability
of individuals on component tasks and choose more suitable individuals, we propose the
concept of skill membership to show the solving ability of individuals on component tasks.

3.2. Proposed Framework

Our newly proposed IMTO is an individually guided multi-task optimization based
on knowledge sharing as shown in Figure 1. Figure 2 shows the diagram of IMTO when
solving two optimization problems. It includes the following novelties in comparison with
other MTO algorithms:
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(1) We divide the optimization process of MTO into vertical and horizontal evolutions.
Each task has its sub-population to execute vertical evolution, and each sub-population
can be called a task groups. Traditional single-task optimization methods just con-
tain vertical evolutions that find global optimal solutions by a series of operations,
e.g., selection, crossover, and mutation. The distinction between the proposed MTO
framework and traditional single-task optimizers lies in horizontal evolution among
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different task groups. Optimization processes of multiple tasks can be influenced by
each other via the information interaction.

(2) MTO algorithms are able to perform K optimization problems simultaneously. Suppose
that the dimensionality of the jth task is Dj. We define the unified search space with
dimensionality D = maxj{Dj} and each individual is encoded with random variables
lying within the fixed range [0, 1].

(3) IMTO divides the initial population into K task groups, and each task group can
evolve independently. In order to represent the ability to perform each component
task, we introduce the concept of skill membership. A candidate may enter multiple
task groups as long as it shows high skill membership values on component tasks.

(4) In order to confirm when the optimization information should communicate, we use
the convergence rate to guide knowledge transfer. When the convergence rate shows
that a task may be trapped into local optima, the knowledge transfer mechanism
is triggered.

3.3. Individually Guided Multi-Task Evolutionary Optimization

Putting GA, PSO, DE, and ABC into IMTO leads to the corresponding algorithms
named IMGA, IMPSO, IMDE, and IMABC. To better show the designed framework, we
give the IMGA implementation as an example. Its pseudocode is described in Algorithm 1,
where its module performing horizontal transfer is realized in Algorithm 2.

It is worth noting that individuals in MFO evolve together in each iteration, and the
random mating probability (rmp) value decides the evolution directions of each individ-
ual. Different from MFO, vertical and horizontal evolutions are independent in IMTO
and each task group of IMTO has its vertical evolution. The additional horizontal evolu-
tion is triggered when the convergence rate is less than zero, which is used to improve
optimization performance.

We use skill membership values to represent individuals’ solving ability on differ-
ent tasks, which can be used for guiding the division of different task groups before
the evolution.

Definition 1 (Skill membership). For minimized optimization problems, the skill membership
value of individual pi is defined as:

µ
j
i = min

(
fj
)

/ f j
i (2)

where f j
i is an objective function value of individual pi on task Tj, and min

(
fj
)

is the obtained

minimum objective function value. If min
(

fj
)

or f j
i is equal to zero, it will be replaced by random

values ξ1 and ξ2 that are close to zero. The skill membership value µi = µ
j
i
k
j=1 reflects the solving

ability of individual pi on component task Tj. Next, we show how to divide the initial population
into different task groups according to skill membership values. This paper records the rank of skill
membership values in order from the highest to lowest, and the higher skill membership values mean
higher solving ability.

At the beginning of IMGA, N0 individuals are randomly initialized within the unified
search space. Given K optimization tasks, IMGA uses a partition strategy to divide the
initial population P0 into K task groups that focus on solving component tasks. Since simply
choosing better-performing individuals can be easily trapped into local optima, IMGA
randomly chooses some individuals according to the randomly chosen ratio γ. Specifically,
N0 individuals of the initial population P0 are ranked according to their skill membership
values. P0 is divided into Pj

01 and Pj
02 for task Tj. Pj

01 contains N(1-γ) individuals with the

highest skill membership values, and Pj
02 is composed of the remaining individuals of P0.

IMGA chooses all candidates of Pj
01 and randomly chooses Nγ candidates from Pj

02 to form
task group Gj. The setting of parameter γ with a default value 0.2 is to be discussed later.
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After a partition procedure, each task group contains N individuals, and KN = N0.
Individuals belonging to the same task group can evolve independently through the vertical
operators. Being similar to traditional single-task optimization, the vertical offspring
generation in IMGA includes crossover and mutation operators. During the vertical
evolution, each task can generate vertical offspring solutions to update the task group.

To confirm when the knowledge should transfer, we use a convergence rate to guide
the horizontal knowledge transfer. The convergence rate of minimization problems in
generation t is defined as ρt = f ∗t−1− f ∗t , where f ∗t−1 and f ∗t represent optimal fitness values
in generation of t − 1 and t. When the convergence rate of task Tj is less than zero, IMGA
starts the knowledge transfer to avoid being trapped into local optima.

In this paper, the task that needs to learn knowledge from another task is called a
target task, and the task used for providing knowledge is called an assistant task. To create
the special environment to transfer optimization knowledge and protect specific proper-
ties of better-performing individuals, an archive-memory knowledge transfer scheme is
introduced for partial population knowledge sharing. In the partial population knowledge
sharing scheme, only partial information in the assistant and target tasks will be shared.
The knowledge transfer archive Λt

j of task Tj in generation t includes superior individuals

Λ̂t
j and inferior individuals Λ̌t

j. It aims to maintain excellent evolutionary information
and improve behaviors of inferior individuals. This work uses communication rate (Ω)
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to choose individuals of each task to form its knowledge transfer archive. By setting
knowledge transfer archive size NΛ = ΩN, NΛ better-performing individuals and NΛ

worse-performing individuals are added to knowledge transfer archives in each generation,
and only the latter need to learn.

The communication rate Ω with a smaller value means that each task prefers main-
taining its vertical evolution, and arbitrary communications among different tasks are
permitted when Ω is close to 1. Cross-task communications can explore the entire search
space and avoid being trapped into local optima. The setting of Ω with its default value
of 0.2 is to be discussed later. IMGA applies crossover and mutation operations among
different tasks to finish horizontal evolutions, as described in Algorithm 2. When there
are more than two tasks, IMGA randomly chooses assisted tasks from component tasks
to provide knowledge. This work adopts simulated binary crossover and polynomial
mutation to realize information exchange [44]. The crossover probability of pC is set to
be 0.9. Distribution indexes for crossover and mutation operator are set as ηC = 10 and
ηM = 10.

Algorithm 2. Horizontal Transfer
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After the horizontal evolutin, we obtain horizontal offspring solutions Λ̌t
j_H for the

target task Tj. The generated horizontal offspring solutions are evaluated for the target task,
which can provide additional useful evolution information. Additionally, then IMGA will
choose NΛ better-performing individuals Λ̌′tj to replace those worse-performing individuals.
The horizontal evolution continues until a termination condition is met.

3.4. Computational Complexity

IMTO includes the following two operations: (1) Initialize the initial population and
divide them into different task groups; and (2) finish vertical evolutions and the knowledge
transfer among different tasks.

This work sets the size of initial population to KN, and each task has a sub-population
of size N. IMGA begins with skill membership values’ assignment for the initial population.
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It takes O(K2N) to calculate objective function values and assign task groups. In every
generation, vertical evolution takes O(KDN) to apply crossover and mutation operations,
where D is the dimension of the decision space. For the worst case, all individuals need
to perform horizontal evolution in every generation, and O(KDN) is required to keep
information exchange. The worst-case computational complexity in every generation is
O(KDN). So, IMGA has the complexity of O

(
ĝKdN + K2N

)
, where ĝ is the maximal number

of generations. The similar conclusions can be made with IMPSO, IMDE, and IMABC.

4. Experiments

To verify the generality and effectiveness of the MTO framework proposed in this
paper, we select well-represented single-objective algorithms: GA [45], PSO [46,47], DE [48],
and ABC [49] to combine with IMTO. The comparative experiments are performed on a
series of MTO problems to demonstrate:

(1) IMTO can significantly outperform corresponding baseline solvers.
(2) In terms of the optimization knowledge transfer, IMTO outperforms the multifactorial

optimization framework.
(3) IMTO can adapt to different task similarities and promise high transfer effectiveness.

4.1. Experimental Setup

In order to show the knowledge transfer effects of different kinds of MTO algorithms,
we use two test suites of test problems in our experiments. Test suite 1 contains 9 composite
two-task problems used in CEC 2017 EMTO Competition [50]. These nine problems belong
to nine categories with different degrees of overlap and different degrees of inter-task
similarity. It uses CI, PI, and NI to represent complete, partial, and no intersection, and
HS, MS, and LS to mean high, medium, and low similarity, respectively. Details of test
problems are given in Table 1. T1 and T2 denote two component tasks of each multi-task
optimization problem. The second test suite of the CEC2021 EMTO Competition consists
of much more complex objective functions.

Table 1. Summary of properties of problem pairs in test suite 1.

Task Set Category Task Component Dimensionality Search Space Inter-Task
Similarity

P1 CI+HS Griewank (T1)
Rastrigin (T2)

50
50

[−100, 100]
[−50, 50] 1.00

P2 CI+MS Ackley (T1)
Rastrigin (T2)

50
50

[−50, 50]
[−50, 50] 0.22

P3 CI+LS Ackley (T1)
Schwefel (T2)

50
50

[−50, 50]
[−500, 500] 0.00

P4 PI+HS Rastrigin (T1)
Sphere (T2)

50
50

[−50, 50]
[−100, 100] 0.86

P5 PI+MS Ackey (T1)
Rosenbrock (T2)

50
50

[−50, 50]
[−50, 50] 0.21

P6 PI+LS Ackey (T1)
Weierstrass (T2)

50
25

[−50, 50]
[−0.5, 0.5] 0.07

P7 NI+HS Rosenbrock (T1)
Rastrigin (T2)

50
50

[−50, 50]
[−50, 50] 0.94

P8 NI+MS Griewank (T1)
Weierstrass (T2)

50
50

[−100, 100]
[−0.5, 0.5] 0.36

P9 NI+LS Rastrigin (T1)
Schwefel (T2)

50
50

[−50, 50]
[−500, 500] 0.00
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The initial population size is set to 100, and each task is assigned with 50 individuals.
In MFEA, the distribution index for crossover ηC is set as 10. Acceleration coefficients of
MFPSO are set to 0.2. The weight of IMPSO and MFPSO decreases linearly from 0.9 to
0.4. In IMABC, the number of onlooker bees is set as 50. The value of random mating
probability controls knowledge transfer in a multi-task paradigm, and in MFEA, MFPSO,
and MFDE, we set rmp to 0.3 in all experiments by following [21,33]. We set individual
learning p_il of MFEA, MFDE, and MFPSO to 0. The sensitivities of Ω and γ are to be
discussed later.

Other parameters used in this work are summarized as: (1) Maximum number of
generations: ĝ = 1000; (2) Independent number of runs: r̂ = 20.

We choose parallel GAs, PSOs, DEs, and ABCs as four baseline solvers, named as
B-GA, B-PSO, B-DE, and B-ABC, respectively. All the baseline solvers share the same
parameters and search operators of IMGA, IMPSO, IMDE, and IMABC to guarantee fair
comparisons. Experiments are conducted by using the computer with a 1.00 GHz Intel
Corei5 processor and 16 GB RAM under window10.

4.2. Parametric Analysis

(1) Sensitivity of Ω: Communication rate Ω is used to control knowledge transfer among
different tasks. We examine performance sensitivity with respect to this parameter
for IMDE. We set it to 0.2, 0.4, 0.6, 0.8, and 1. Table 2 shows the best achieved fitness
values in 20 runs versus Ω in IMDE on test suite 1, and the best one is shown in
bold. It is clear that IMDE performs well with Ω from 0.2 to 1 with a small difference.
Nevertheless, the larger Ω can encourage more individuals to learn from other tasks,
thereby consuming more computing resources. To reduce running time on various
problems, we employ a relatively small Ω in our algorithms.

(2) Sensitivity of γ: Randomly chosen ratio γ is another control parameter utilized in
IMTO. To discuss performance sensitivity to γ in IMTO, we test its different settings on
test suite 1. Table 3 shows the best achieved fitness values in 20 runs versus γ in IMDE
on test suite 1, and the best one is shown in bold. IMDE is easily trapped into local
optima when only choosing better-performing individuals. However, adding some
randomly selected individuals can have better convergence performance. It is clear
that IMDE performs best when γ is set to 0.2. We thus set γ to 0.2 in our experiments.

4.3. Comparison with MFO

To verify the performance of IMTO, optimization results of IMTO and MFO on test
suites 1 and 2 are summarized. MTO algorithms are designed based on different single-task
algorithms. This work compares IMGA with MFEA, IMDE with MFDE, and IMPSO with
MFPSO. The computational time results of different algorithms are shown in Table 4 and
Figure 3.

It can be found that although IMGA, IMPSO, and IMDE need to finish information
exchange in each generation, their running time is much shorter than MFO. For example,
MFPSO needs 19.03s to optimize P2, while IMPSO just needs 3.43s in Table 4. This can also
apply to IMGA and IMDE. IMTO prefers to maintain the vertical evolution of each task, and
each generation just needs to evaluate objective functions and communicate information.
However, MFEA, MFPSO, and MFDE need to divide task groups at each generation, and
the calculations of factorial cost, factorial rank, scalar fitness, and skill factor consume many
computation resources. Hence, the knowledge transfer scheme of IMTO is much more
efficient than the method of multifactorial influence used in MFEA, MFPSO, and MFDE.
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Table 2. The mean and standard deviation (in brackets) of the best achieved fitness values of IMDE with different communication rates.

Task Set IMDE (Ω = 0.2) IMDE (Ω = 0.4) IMDE (Ω = 0.6) IMDE (Ω = 0.8) IMDE (Ω = 1)

P1
T1
T2

1.20 × 10−4 (3.63 × 10−4)
5.03 × 101 (1.30 × 101)

2.02 × 10−3 (3.43 × 10−3)
4.32 × 101 (7.83 × 100)

1.92 × 10−3 (3.95 × 10−3)
3.22 × 101 (1.10 × 101)

6.99 × 10−4 (2.69 × 10−3)
3.48 × 101 (9.85 × 100)

4.44 × 10−4 (1.62 × 10−3)
2.84 × 101 (6.67 × 100)

P2
T1
T2

4.74 × 10−3 (9.54 × 10−3)
4.43 × 101 (1.15 × 101)

8.84 × 10−2 (2.64 × 10−1)
3.98 × 101 (1.13 × 101)

1.11 × 10−1 (3.27 × 10−1)
3.78 × 101 (1.46 × 101)

9.05 × 10−4 (3.38 × 10−3)
3.04 × 101 (7.59 × 100)

1.02 × 10−2 (3.95 × 10−2)
2.88 × 101 (9.50 × 100)

P4
T1
T2

8.10 × 101 (9.75 × 100)
2.44 × 10−6 (7.82 × 10−6)

7.29 × 101 (2.27 × 101)
8.06 × 10−4 (2.91 × 10−3)

7.46 × 101 (1.22 × 101)
4.97 × 10−5 (2.15 × 10−4)

7.40 × 101 (1.45 × 101)
1.46 × 10−6 (4.66 × 10−6)

6.77 × 101 (1.66 × 101)
1.23 × 10−4 (5.35 × 10−4)

P5
T1
T2

6.74 × 10−5 (9.91 × 10−5)
6.48 × 101 (2.97 × 101)

7.29 × 10−5 (5.01 × 10−5)
9.82 × 101 (3.15 × 101)

3.14 × 10−4 (5.71 × 10−4)
7.82 × 101 (2.97 × 101)

1.32 × 10−4 (2.92 × 10−4)
6.96 × 101 (2.81 × 101)

9.48 × 10−5 (1.79 × 10−4)
7.33 × 101 (3.08 × 101)

P7
T1
T2

9.25 × 101 (2.75 × 101)
5.14 × 101 (1.22 × 101)

8.83 × 101 (4.47 × 101)
4.72 × 101 (1.28 × 101)

7.78 × 101 (6.08 × 101)
4.10 × 101 (1.22 × 101)

6.86 × 101 (3.42 × 101)
3.53 × 101 (9.74 × 100)

8.29 × 101 (4.78 × 101)
3.74 × 101 (9.87 × 100)

P8
T1
T2

1.41 × 10−3 (3.33 × 10−3)
5.93 × 100 (2.04 × 100)

3.39 × 10−3 (7.11 × 10−3)
3.84 × 100 (1.34 × 100)

1.49 × 10−3 (3.51 × 10−3)
4.41 × 100 (1.28 × 100)

2.03 × 10−3 (5.95 × 10−3)
4.20 × 100 (1.30 × 100)

1.62 × 10−3 (3.84 × 10−3)
3.55 × 100 (2.07 × 100)

Table 3. The mean and standard deviation (in brackets) of the best achieved fitness values of IMDE with different randomly chosen ratios.

Task Set IMDE (γ = 0) IMDE (γ = 0.2) IMDE (γ = 0.4) IMDE (γ = 0.6) IMDE (γ = 0.8) IMDE (γ = 1.0)

P1
T1
T2

2.12 × 10−3 (4.22 × 10−3)
5.55 × 101 (1.67 × 101)

1.202 × 10−4 (3.632 × 10−4)
5.032 × 101 (1.302 × 101)

1.46 × 10−3 (4.21 × 10−3)
4.95 × 101 (1.23 × 101)

1.51 × 10−3 (2.95 × 10−3)
4.79 × 101 (1.39 × 101)

1.38 × 10−3 (3.36 × 10−3)
5.08 × 101 (1.34 × 101)

1.65 × 10−3 (3.22 × 10−3)
5.72 × 101 (1.41 × 101)

P2
T1
T2

4.41 × 10−2 (1.92 × 10−1)
4.72 × 101 (1.47 × 101)

4.742 × 10−3 (9.542 × 10−3)
4.432 × 101 (1.152 × 101)

1.33 × 10−4 (1.86 × 10−4)
4.80 × 101 (1.48 × 101)

1.79 × 10−3 (3.96 × 10−3)
5.24 × 101 (1.82 × 101)

1.48 × 10−1 (3.50 × 10−1)
5.11 × 101 (1.52 × 101)

1.44 × 10−1 (4.41 × 10−1)
4.95 × 101 (1.20 × 101)

P4
T1
T2

8.57 × 101 (2.72 × 101)
1.70 × 10−1 (6.46 × 10−1)

8.102 × 101 (9.752 × 10+00)
2.442 × 10−6 (7.822 × 10−6)

8.06 × 101 (1.78 × 101)
1.96 × 10−4 (7.32 × 10−4)

8.77 × 101 (2.75 × 101)
6.10 × 10−5 (2.57 × 10−4)

7.98 × 101 (2.01 × 101)
6.76 × 10−5 (2.94 × 10−4)

7.72 × 101 (2.35 × 101)
3.07 × 10−2 (9.20 × 10−2)

P5
T1
T2

3.30 × 10−4 (6.71 × 10−4)
8.93 × 101 (2.67 × 101)

6.742 × 10−5 (9.912 × 10−5)
6.482 × 101 (2.972 × 101)

3.30 × 10−4 (8.34 × 10−4)
8.45 × 101 (2.96 × 101)

1.89 × 10−4 (2.95 × 10−4)
9.97 × 101 (3.19 × 101)

1.23 × 10−3 (4.55 × 10−3)
9.29 × 101 (2.75 × 101)

5.44 × 10−4 (1.38 × 10−3)
9.07 × 101 (3.23 × 101)

P7
T1
T2

9.93 × 101 (4.71 × 101)
5.82 × 101 (1.06 × 101)

9.252 × 101 (2.752 × 101)
5.142 × 101 (1.222 × 101)

1.01 × 102 (5.66 × 101)
5.76 × 101 (9.24 × 100)

7.44 × 101 (2.56 × 101)
5.53 × 101 (1.41 × 101)

8.83 × 101 (3.74 × 101)
5.37 × 101 (1.04 × 101)

7.52 × 101 (4.35 × 101)
5.60 × 101 (1.02 × 101)

P8
T1
T2

1.72 × 10−3 (3.97 × 10−3)
6.18 × 100 (2.55 × 100)

1.412 × 10−3 (3.332 × 10−3)
5.932 × 100 (2.042 × 100)

2.54 × 10−3 (6.20 × 10−3)
5.47 × 100 (2.95 × 100)

1.63 × 10−3 (2.92 × 10−3)
6.18 × 100 (3.71 × 100)

4.27 × 10−3 (6.69 × 10−3)
5.11 × 100 (2.06 × 100)

3.24 × 10−3 (6.19 × 10−3)
5.15 × 100 (2.67 × 100)
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Table 4. Results of computational time(s) and the mean and standard deviation (in brackets) of the best fitness values in test suite 1.

Task Set

IMGA MFEA IMPSO MFPSO IMDE MFDE

GA-Based PSO-Based DE-Based

Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time

P1

T1

T2

1.11 × 10−1

(5.27 × 10−2)
3.39 × 102

(4.72 × 101)

4.02

3.35 × 10−1 +
(4.88 × 10−2)
2.27 × 102 −
(5.33 × 101)

18.57

4.99 × 10−3

(6.57 × 10−3)
3.26 × 102

(6.26 × 101)

3.49
5.20 × 10−1 +
(1.42 × 10−1)
3.32 × 102 ≈
(2.54 × 101)

21.79

1.20 × 10−4

(3.63 × 10−4)
5.03 × 101

(1.30 × 101)

4.87

8.77 × 10−4 +
(2.63 × 10−3)
3.69 × 100 −
(1.14 × 101)

20.29

P2

T1

T2

3.83 × 100

(8.78 × 10−1)
4.16 × 102

(3.65 × 101)

4.24
8.00 × 100 +

(6.38 × 10−1)
4.52 × 102 +
(5.68 × 101)

19.00

3.93 × 10−1

(4.54 × 10−1)
3.73 × 101

(1.20 × 101)

3.43
5.32 × 100 +

(6.68 × 10−1)
3.97 × 102 +
(4.24 × 101)

19.03

4.74 × 10−3

(9.54 × 10−3)
4.43 × 101

(1.15 × 101)

5.47

1.08 × 10−1 +
(3.28 × 10−1)

7.47 × 10−1 −
(2.83 × 100)

18.87

P3

T1

T2

2.08 × 101

(4.19 × 10−1)
1.30 × 104

(6.82 × 102)

4.40

2.11 × 101≈
(7.66 × 10−2)
9.46 × 103 −
(6.91 × 102)

19.06

2.10 × 101

(5.53 × 10−2)
1.64 × 104

(3.28 × 102)

2.61

2.13 × 101 +
(5.07 × 102)

1.54 × 104 −
(8.39 × 102)

18.89

2.12 × 101

(3.86 × 10−2)
9.68 × 103

(2.25 × 103)

5.79

2.12 × 101 ≈
(3.33 × 10−2)
1.15 × 104 +
(1.45 × 103)

18.98

P4

T1

T2

1.95 × 102

(4.43 × 101)
7.64 × 103

(6.35 × 102)

4.25

7.78 × 102 +
(1.00 × 102)

2.58 × 102 −
(8.90 × 101)

19.17

3.23 × 102

(8.88 × 101)
3.38 × 10−4

(2.65 × 10−4)

2.60
7.72 × 102 +
(1.09 × 102)
3.53 × 103 +
(8.34 × 102)

21.91

8.10 × 101

(9.75 × 100)
2.44 × 10−6

(7.82 × 10−6)

4.79
8.13 × 101 ≈
(1.71 × 101)

1.64 × 10−5 +
(1.30 × 10−5)

20.00

P5

T1

T2

3.59 × 100

(7.93 × 10−1)
2.49 × 104

(2.25 × 104)

4.09
7.21 × 100 +

(5.99 × 10−1)
7.37 × 104 +
(4.33 × 104)

18.80

2.52 × 10−1

(3.81 × 10−1)
6.67 × 101

(3.11 × 101)

2.63
3.69 × 100 +

(6.01 × 10−1)
8.39 × 103 +
(3.85 × 103)

20.70

6.74 × 10−5

(9.91 × 10−5)
6.48 × 101

(2.97 × 101)

5.14
2.80 × 10−3 +
(5.52 × 10−3)
6.52 × 101 ≈
(2.28 × 101)

19.47

P6

T1

T2

3.74 × 100

(8.99 × 10−1)
5.52 × 100

(8.98 × 10−1)

19.46
2.10 × 101 +

(7.61 × 10−2)
2.17 × 101 +
(2.49 × 100)

27.67

3.10 × 10−1

(5.02 × 10−1)
2.19 × 101

(3.61 × 100)

18.20

1.02 × 101 +
(1.34 × 100)

7.87 × 100 −
(1.47 × 100)

46.21

3.06 × 10−1

(5.67 × 10−1)
1.88 × 100

(2.37 × 100)

30.13

7.71 × 10−1 +
(1.08 × 100)

2.61 × 10−1 ≈
(6.59 × 10−1)

33.32

P7

T1

T2

2.25 × 103

(1.74 × 103)
5.78 × 102

(2.49 × 102)

4.47

7.75 × 104 +
(3.70 × 104)

4.30 × 102 −
(6.03 × 101)

18.42

8.56 × 101

(8.06 × 101)
7.09 × 101

(3.80 × 101)

3.57
1.05 × 105 +
(4.72 × 104)
3.77 × 102 +
(6.90 × 101)

21.59

9.25 × 101

(2.75 × 101)
5.14 × 101

(1.22 × 101)

5.55

1.17 × 102 ≈
(1.17 × 102)

2.65 × 101 −
(1.92 × 101)

18.78

P8

T1

T2

4.21 × 10−2

(1.28 × 10−2)
3.07 × 101

(5.12 × 10−1)

33.23

1.04 × 100 +
(4.22 × 102)

2.86 × 101 −
(2.66 × 100)

38.55

5.33 × 10−3

(6.56 × 10−3)
5.26 × 101

(3.80 × 100)

35.86

1.06 × 100 +
(3.68 × 10−2)
2.91 × 101 −
(2.01 × 100)

70.41

1.41 × 10−3

(3.33 × 10−3)
5.93 × 100

(2.04 × 100)

51.45

1.67 × 10−3 +
(3.99 × 10−3)
2.81 × 100 −
(1.20 × 100)

63.82

P9

T1

T2

3.36 × 102

(8.16 × 102)
1.75 × 104

(5.37 × 102)

5.69

7.33 × 102 +
(7.24 × 101)

9.81 × 103 −
(6.92 × 102)

17.90

3.55 × 102

(6.91 × 101)
1.60 × 104

(4.90 × 102)

3.71

2.43 × 103 +
(6.27 × 102)

1.57 × 104 ≈
(5.88 × 102)

22.33
3.22 × 102

(1.06 × 102)
5.86 × 103

(5.84 × 102)

6.23

1.01 × 102 −
(2.66 × 101)

4.24 × 103 −
(8.61 × 102)

24.75

+/−/≈ 11/6/1 13/3/2 7/6/5

“+” means that IMTO significantly outperforms other algorithms. “−” means that IMTO is significantly outperformed by other algorithms. “≈” means that no significant differences
between IMTO and compared algorithms.
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Figure 3. Comparison of six algorithms in terms of the average computational time (s) via 20 runs 
in test suite 2. 
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To better show effects of knowledge transfer on solution accuracy, the optimization
results of IMTO and MFO on test suites 1 and 2 are summarized in Tables 4 and 5. The mean
and standard deviation of the best achieved fitness values obtained via 20 independent
runs are presented. The best performance of fitness values is shown in bold. It is obvious
that the proposed IMTO exhibits a better overall performance than its peer, i.e., MFO.
To judge whether there is a significant difference among IMTO and its peers, Wilcoxon’s
rank-sum test at the significant level of 0.05 is invoked. Symbols “−” and “+” denote that
the compared MFO algorithm performs significantly better and significantly worse than
IMTO, while “≈” indicates there is no statistically significant difference between them.

The performance superiority of IMTO over MFO can be evidenced by the fact that
IMGA significantly outperforms MFEA in 11 out of 18 tasks, IMPSO outperforms MFPSO
in 13 out of 18 tasks, and IMDE outperforms MFDE in 7 out of 18 tasks on test suite 1.
Table 5 shows that the optimization accuracy of IMTO and MFO are relatively similar on
complex problems, but the computation time results in Figure 3 show that IMTO can greatly
shorten the running time. For example, MFPSO needs 228.1 s to optimize P7, while IMPSO
just needs 26.5 s. IMTO allows individuals to belong to different tasks as long as it shows
higher skill membership values, which promotes the individuals’ potential in task-solving.
Besides, the superior individuals of assisted tasks can be used for providing knowledge to
guide the evolution of target tasks, which can improve the optimization results. It is worth
noting that all the results are shown in scientific notation, which means that presented
results are limited by the precision. Even though some comparative results shown in
Table 4 are nearly the same because of the precision limitation, their actual average best
fitness values may be very different. When executing the Wilcoxon’s rank-sum test, there is
a significant difference between these comparative results.

The convergence curves of IMTO and MFO in 1000 iterations are illustrated in Figure 4,
and they can tell the search efficiencies of different algorithms. Each sub-figure shows the
optimization processes of T1 and T2. Y-axis represents the fitness curves and X-axis denotes
the number of generations. This work just shows the convergence trace of P5 due to page
limitation. It can be easily found that IMTO possesses faster convergence than MFO. This
is because shared archives can generate similar genetic materials, and IMGA, IMPSO, and
IMDE can update the evolution direction of worse-performing individuals. Obviously,
the more similar tasks, the greater optimization facilitation. MFEA, MFPSO, and MFDE
control knowledge transfer through the rmp value and neglect task similarities, thus easily
causing negative optimization transfer. So, the convergences of MFEA and MFPSO are
slower than IMTO’s.
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Table 5. The mean and standard deviation (in brackets) of the best achieved fitness values in test Suite 2.

Task Set
IMGA MFEA IMPSO MFPSO IMDE MFDE

GA-Based PSO-Based DE-Based

P1
T1
T2

6.226 × 102 (1.999 × 10−1)
6.279 × 102 (1.476 × 10−1)

6.241 × 102 (2.565 × 10−1) +
6.272 × 102 (1.722 × 10−1) −

6.232 × 102 (2.039 × 10−1)
6.262 × 102 (2.346 × 10−1)

6.235 × 102 (2.507 × 10−1) +
6.270 × 102 (2.411 × 10−1) +

6.217 × 102 (1.503 × 10−1)
6.246 × 102 (1.351 × 10−1)

6.217 × 102 (1.236 × 10−1) ≈
6.246 × 102 (1.217 × 10−1) ≈

P2
T1
T2

7.112 × 102 (2.545 × 10−3)
7.194 × 102 (6.928 × 10−2)

7.113 × 102 (1.519 × 10−2) +
7.177 × 102 (1.642 × 10−2) −

7.112 × 102 (2.068 × 10−4)
7.176 × 102 (3.411 × 10−13)

7.113 × 102 (6.677 × 10−2) +
7.178 × 102 (1.976 × 10−1) +

7.112 × 102 (7.461 × 10−10)
7.176 × 102 (1.450 × 10−9)

7.112 × 102 (6.483 × 10−8) +
7.176 × 102 (1.465 × 10−7) +

P3
T1
T2

2.887 × 106 (2.510 × 104)
5.787 × 107 (1.480 × 106)

2.974 × 106 (2.537 × 104) +
3.597 × 107 (2.123 × 105) −

2.834 × 106 (0.000 × 100)
3.474 × 107 (7.451 × 10−9)

2.878 × 106 (6.454 × 104) +
3.637 × 107 (1.434 × 106) +

2.834 × 106 (2.792 × 10−3)
3.474 × 107 (2.889 × 10−2)

2.834 × 106 (8.790 × 10−2) +
3.474 × 107 (1.096 × 100) +

P4
T1
T2

1.304 × 103 (2.390 × 10−4)
1.305 × 103 (2.121 × 10−3)

3.400 × 105 (4.295 × 102) +
8.574 × 105 (1.582 × 103) +

1.304 × 103 (2.274 × 10−13)
1.305 × 103 (4.547 × 10−13)

1.304 × 103 (2.450 × 10−3) −
1.305 × 103 (3.531 × 10−3) −

1.304 × 103 (2.119 × 10−11)
1.305 × 103 (1.993 × 10−11)

1.304 × 103 (1.346 × 10−9) +
1.305 × 103 (1.320 × 10−9) +

P5
T1
T2

3.374 × 105 (4.217 × 102)
9.640 × 105 (8.560 × 103)

3.400 × 105 (4.230 × 102) +
8.574 × 105 (1.548 × 103) −

3.366 × 105 (4.285 × 10−2)
8.491 × 105 (2.755 × 10−10)

3.384 × 105 (2.654 × 103) +
8.618 × 105 (8.758 × 103) +

3.366 × 105 (3.049 × 100)
8.491 × 105 (7.984 × 10−5)

3.366 × 105 (2.084 × 10−3) −
8.491 × 105 (7.594 × 10−3) +

P6
T1
T2

1.868 × 108 (1.105 × 105)
2.815 × 109 (6.530 × 106)

1.892 × 108 (3.407 × 105) +
2.671 × 109 (2.557 × 106) −

1.867 × 108 (5.960 × 10−8)
2.653 × 109 (4.768 × 10−7)

1.885 × 108 (1.482 × 106) +
2.674 × 109 (1.551 × 107) +

1.867 × 108 (1.422 × 10−2)
2.653 × 109 (1.088 × 10−1)

1.867 × 108 (1.120 × 100) +
2.653 × 109 (9.594 × 100) +

P7
T1
T2

6.221 × 104 (9.702 × 101)
1.724 × 104 (1.394 × 102)

6.284 × 104 (1.462 × 102) +
1.495 × 104 (2.677 × 101) −

6.201 × 104 (4.659 × 10−1)
1.478 × 104 (7.520 × 100)

6.323 × 104 (9.237 × 102) +
1.481 × 104 (4.567 × 101) +

6.201 × 104 (1.970 × 100)
1.477 × 104 (7.585 × 10−1)

6.201 × 104 (5.445 × 10−4) +
1.477 × 104 (2.106 × 100) ≈

P8
T1
T2

5.201 × 102 (6.791 × 10−2)
5.214 × 102 (5.860 × 10−2)

5.203 × 102 (9.244 × 10−2) +
5.202 × 102 (8.411 × 10−2) −

5.208 × 102 (1.072 × 10−1)
5.207 × 102 (1.176 × 10−1)

5.205 × 102 (1.066 × 10−1) −
5.206 × 102 (1.349 × 10−1) ≈

5.202 × 102 (5.078 × 10−2)
5.202 × 102 (5.740 × 10−2)

5.202 × 102 (1.028 × 10−1) ≈
5.202 × 102 (6.809 × 10−2) ≈

P9
T1
T2

1.898 × 104 (3.961 × 100)
1.624 × 103 (1.820 × 10−1)

1.902 × 104 (9.390 × 100) +
1.622 × 103 (7.316 × 10−2) −

1.897 × 104 (2.119 × 100)
1.622 × 103 (1.012 × 10−1)

1.906 × 104 (1.112 × 102) +
1.622 × 103 (1.118 × 10−1) ≈

1.897 × 104 (1.770 × 100)
1.622 × 103 (1.113 × 10−1)

1.897 × 104 (1.125 × 102) ≈
1.622 × 103 (8.822 × 10−2) ≈

P10
T1
T2

1.947 × 109 (1.414 × 106)
7.516 × 108 (4.203 × 106)

1.957 × 109 (1.920 × 106) +
6.781 × 108 (6.624 × 105) −

1.945 × 109 (2.384 × 10−7)
6.728 × 108 (1.192 × 10−7)

1.972 × 109 (1.430 × 107) +
6.740 × 108 (2.580 × 106) +

1.945 × 109 (1.043 × 10−1)
6.728 × 108 (7.069 × 10−2)

1.945 × 109 (8.881 × 100) +
6.728 × 108 (4.084 × 100) +

+/−/≈ 11/9/0 15/3/2 12/1/7

“+” means that IMTO significantly outperforms other algorithms. “−” means that IMTO is significantly outperformed by other algorithms. “≈” means that no significant differences
between IMTO and compared algorithms.
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Figure 4. Convergence traces of IMTO and MFO on multitasking problem P5 in test suite 1. (a) Con-
vergence traces of IMGA and MFEA, (b) Convergence traces of IMPSO and MFPSO, and (c) Con-
vergence traces of IMDE and MFDE. 

Figure 4. Convergence traces of IMTO and MFO on multitasking problem P5 in test suite 1.
(a) Convergence traces of IMGA and MFEA, (b) Convergence traces of IMPSO and MFPSO, and
(c) Convergence traces of IMDE and MFDE.

4.4. Comparison with Baseline Solvers

This section compares IMTO with baseline solvers to further illustrate its generality.
Table 6 shows the mean and standard deviation of the best achieved fitness values obtained
via 20 independent runs on test suite 1. The best fitness values are shown in bold.

It can be found that even though baseline solvers have different characteristics, IMTO
always has superior optimization performance over traditional baseline solvers. The
performance superiority of IMTO over baseline solvers can be evidenced by the fact that
IMGA significantly outperforms B-GA in 17 out of 18 tasks, IMPSO outperforms B-PSO in
14 out of 18 tasks, IMDE outperforms B-DE in 13 out of 18 tasks, and IMABC outperforms
B-ABC in 15 out of 18 tasks on test suite 1. The individually guided learning and archive-
memory schemes of IMTO share useful optimization experience in the unified search space,
and update inferior individuals continuously through learning from better-performing
individuals of other tasks.

Solving tasks with low similarities shows higher challenges for MTO. The results
in Table 6 show that IMGA achieves higher better optimization accuracy than B-GA in
most cases. The knowledge transfer scheme can help the algorithms find globally optimal
solutions for problems possessing different properties. The P6-T1 optimization result
shows that the baseline solver GA just finds the fitness value of 1.47e+01, but IMGA can
find the value of 3.74e+00 by sharing historical experience. Similarly, IMPSO, IMDE, and
IMABC perform better in most cases than PSO, DE, and ABC according to Table 6. In
IMTO, the superior individuals need not learn from other tasks, which can maintain the
vertical evolution of each task. Compared with a single-task solver, inferior individuals
can constantly learn from other tasks to avoid being trapped into local optima, thereby
suppressing negative transfer.

The convergence curve of P5 in 1000 iterations is shown in Figure 5. It can be easily
found that IMTO has faster convergence in most cases. IMTO’s additional horizontal
evolution allows for the exchange of information among different tasks. Different task
groups are located in homogenous search spaces, and assisted tasks can provide useful
knowledge, thereby speeding up the algorithms’ convergence.
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Table 6. The mean and standard deviation (in brackets) of the best achieved fitness values in test Suite 1.

Task Set
IMGA GA IMDE DE IMPSO PSO IMABC ABC

GA-Based DE-Based PSO-Based ABC-Based

P1

T1

T2

1.11 × 10−1

(5.27 × 10−2)
3.39 × 102

(4.72 × 101)

9.22 × 10−1 +
(4.21 × 10−1)
9.23 × 102 +
(7.73 × 102)

1.20 × 10−4

(3.63 × 10−4)
5.03 × 101

(1.30 × 101)

2.49 × 10−3 ≈
(5.33 × 10−3)
4.03 × 102 +
(1.84 × 101)

4.99 × 10−3

(6.57 × 10−3)
3.26 × 102

(6.26 × 101)

4.80 × 10−2 +
(1.13 × 10−2)
4.90 × 102 +
(7.21 × 101)

2.47 × 10−1

(1.22 × 10−1)
2.06 × 102

(6.73 × 101)

1.75 × 100 +
(1.32 × 10−1)
1.33 × 103 +
(1.47 × 102)

P2

T1

T2

3.83 × 100

(8.78 × 10−1)
4.16 × 102

(3.65 × 101)

1.55 × 101 +
(3.39 × 100)
7.14 × 103 +
(7.28 × 103)

4.74 × 10−3

(9.54 × 10−3)
4.43 × 101

(1.15 × 101)

2.33 × 10−1 +
(4.46 × 10−1)
4.04 × 102 +
(2.66 × 101)

3.93 × 10−1

(4.54 × 10−1)
3.73 × 101

(1.20 × 101)

8.16 × 100 +
(1.44 × 100)
5.14 × 102 +
(1.11 × 102)

1.28 × 100

(8.18 × 101)
1.25 × 102

(8.33 × 101)

2.12 × 101 +
(3.61 × 10−2)
1.31 × 103 +
(1.30 × 102)

P3

T1

T2

2.08 × 101

(4.19 × 10−1)
1.30 × 104

(6.82 × 102)

2.00 × 101 −
(4.14 × 10−2)
1.79 × 104 +
(6.29 × 102)

2.12 × 101

(3.86 × 10−2)
9.68 × 103

(2.25 × 103)

2.12 × 101 +
(2.77 × 10−2)
9.81 × 103 ≈
(1.72 × 103)

2.10 × 101

(5.53 × 10−2)
1.64 × 104

(3.28 × 102)

2.08 × 101 −
(1.28 × 10−1)
1.68 × 104 +
(5.75 × 102)

2.12 × 101

(3.57 × 10−2)
3.20 × 10119

(1.32 × 10120)

2.12 × 101 ≈
(3.43 × 10−2)
1.72 × 10122 +
(4.00 × 10122)

P4

T1

T2

1.95 × 102

(4.43 × 101)
7.64 × 103

(6.35 × 102)

8.63 × 102 +
(2.95 × 102)
1.02 × 104 +
(7.25 × 102)

8.10 × 101

(9.75 × 100)
2.44 × 10−6

(7.82 × 10−6)

3.98 × 102 +
(2.01 × 101)

4.64 × 10−6 +
(1.81 × 10−5)

3.23 × 102

(8.88 × 101)
3.38 × 10−4

(2.65 × 10−4)

4.62 × 102 +
(7.88 × 101)

7.95 × 10−1 +
(2.54 × 10−1)

6.29 × 102

(4.97 × 101)
2.50 × 102

(1.06 × 102)

1.38 × 103 +
(2.19 × 102)
2.89 × 103 +
(4.87 × 102)

P5

T1

T2

3.59 × 100

(7.93 × 10−1)
2.49 × 104

(2.25 × 104)

1.69 × 101 +
(3.94 × 100)
1.02 × 109 +
(9.87 × 108)

6.74 × 10−5

(9.91 × 10−5)
6.48 × 101

(2.97 × 101)

1.67 × 10−1 +
(4.40 × 10−1)
4.09 × 104 +
(1.61 × 105)

2.52 × 10−1

(3.81 × 10−1)
6.67 × 101

(3.11 × 101)

4.80 × 10−2 −
(1.35 × 100)
4.90 × 102 +
(1.07 × 102)

2.64 × 10−1

(6.23 × 10−2)
1.07 × 102

(5.57 × 100)

2.12 × 101 +
(4.47 × 10−2)
8.49 × 108 +
(2.22 × 108)

P6

T1

T2

3.74 × 100

(8.99 × 10−1)
5.52 × 100

(8.98 × 10−1)

1.47 × 101 +
(3.81 × 100)
3.58 × 101 +
(1.45 × 100)

3.06 × 10−1

(5.67 × 10−1)
1.88 × 100

(2.37 × 100)

2.25 × 10−1 ≈
(4.21 × 10−1)
2.51 × 100 ≈
(2.67 × 100)

3.10 × 10−1

(5.02 × 10−1)
2.19 × 101

(3.61 × 100)

8.29 × 100 +
(1.31 × 100)

2.14 × 101 ≈
(3.77 × 100)

2.12 × 101

(4.34 × 10−2)
2.00 × 101

(4.47 × 100)

2.12 × 101≈
(3.51 × 10−2)
3.15 × 101 +
(1.61 × 100)

P7

T1

T2

2.25 × 103

(1.74 × 103)
5.78 × 102

(2.49 × 102)

4.25 × 106 +
(9.03 × 106)
1.60 × 103 +
(1.25 × 103)

9.25 × 101

(2.75 × 101)
5.14 × 101

(1.22 × 101)

1.21 × 104 +
(3.03 × 104)
4.01 × 102 +
(1.82 × 101)

8.56 × 101

(8.06 × 101)
7.09 × 101

(3.80 × 101)

3.47 × 102 +
(1.81 × 102)
4.87 × 102 +
(9.55 × 101)

5.78 × 102

(1.66 × 102)
2.67 × 102

(3.88 × 101)

8.29 × 108 +
(1.76 × 108)
1.30 × 103 +
(1.25 × 102)

P8

T1

T2

4.21 × 10−2

(1.28 × 10−2)
3.07 × 101

(5.12 × 10−1)

1.06 × 100 +
(3.91 × 10−1)
7.86 × 101 +
(1.90 × 100)

1.41 × 10−3

(3.33 × 10−3)
5.93 × 100

(2.04 × 100)

9.94 × 10−3 +
(2.17 × 10−2)
6.71 × 100 ≈
(1.44 × 100)

5.33 × 10−3

(6.56 × 10−3)
5.26 × 101

(3.80 × 100)

5.57 × 10−2 +
(1.68 × 10−2)
4.41 × 101 ≈
(1.42 × 101)

1.01 × 100

(3.17 × 10−2)
2.37 × 101

(1.15 × 100)

1.79 × 100 +
(1.32 × 10−1)
7.38 × 101 +
(1.76 × 100)

P9

T1

T2

3.36 × 102

(8.16 × 102)
1.75 × 104

(5.37 × 102)

8.94 × 102 +
(3.07 × 102)
1.81 × 104 +
(6.28 × 102)

3.22 × 102

(1.06 × 102)
5.86 × 103

(5.84 × 102)

3.97 × 102 +
(2.92 × 101)
9.33 × 103 +
(1.57 × 103)

3.55 × 102

(6.91 × 101)
1.60 × 104

(4.90 × 102)

4.64 × 102 +
(1.33 × 102)
1.70 × 104 +
(5.97 × 102)

2.23 × 103

(3.87 × 102)
3.08 × 10120

(1.33 × 10121)

1.28 × 103 −
(1.86 × 102)

1.22 × 10122 +
(4.80 × 10122)

+/−/≈ 17/1/0 13/0/5 14/2/2 15/1/2

“+” means that IMTO significantly outperforms other algorithms. “−” means that IMTO is significantly outperformed by other algorithms. “≈” means that no significant differences
between IMTO and compared algorithms.
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5. Discussion

In this work, we propose a novel framework to handle multi-task problems. It focuses
on choosing more suitable and potential individuals to solve each task. The experiments
on benchmark problems show that the inter-task learning method used in IMTO can
significantly improve the solving accuracy. This is because the target task can learn superior
experience from other tasks and avoid being trapped into local optima.

Clearly, the inter-task learning method decides the performance of MTO algorithms.
However, the solution distributions of multiple tasks may be different. If the target task
learns the knowledge from the assistant task directly, the algorithm performance may be
even degraded. So, the inter-task learning faces a challenge that is how to learn knowledge
correctly. Consequently, the knowledge transfer proposed in this work may have a limita-
tion caused by a direct learning method. So, to further improve the solution accuracy, we
need to minimize the discrepancy of different sub-populations, which can avoid that the
learned individuals are not suitable for the original task. Besides, there is much information
existing in the assistant task. If we can choose more useful knowledge for a target task, the
effect of knowledge on solving the target task can be further improved.

6. Conclusions

This paper has presented a novel high-efficiency multi-task optimization framework
focusing on choosing the most suitable individuals to handle each task, which can improve
the optimization accuracy via knowledge transfer. It divides the initial population into
different task groups according to individuals’ skill membership values. Each task group
cannot only do the vertical evolution, but also horizontal evolution that contains knowledge
transfer among different tasks. The knowledge transfer includes population information
sharing and inter-task learning. To further confirm when the knowledge should transfer,
the convergence rate is used to guide horizontal knowledge transfer. When a solution
process is trapped into local optima, a knowledge transfer mechanism is triggered. Four
representative ingle-objective optimization algorithms are used to combine with IMTO.
The experimental results show that the proposed framework can significantly outperform
baseline solvers and MFO.

Our future work aims to extend the proposed framework to solve multi-objective
MTO problems [51–56] and make this kind of individually guided knowledge transfer
more general. How to improve the effect of knowledge transfer maximally and avoid
negative transfer minimally [57,58] deserve further research efforts.
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