Cleaning Schedule Optimization of Heat Exchanger Network Using Moving Window Decision-Making Algorithm
Abstract
:1. Introduction
2. Moving Window Decision-Making Algorithm
3. Case Study
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
HEN | Heat exchanger network |
MINLP | Mixed-integer nonlinear programming |
GrA | Greedy algorithm |
MILP | Mixed-integer linear programming |
OCP | Optimal control problem |
Heat transfer rate [BTU/ h] | |
Overall heat transfer coefficient [BTU/ft2 h °F] | |
Heat transfer area [ft2] | |
Logarithmic mean temperature difference [°F] | |
Inlet temperatures of hot streams [°F] | |
Outlet temperatures of hot streams [°F] | |
Inlet temperatures of cold streams [°F] | |
Outlet temperatures of cold streams [°F] | |
Mass flow rate of hot streams [lb/h] | |
Specific heat of hot streams [BTU/lb °F] | |
Mass flow rate of cold streams [lb/h] | |
Specific heat of cold streams [BTU/lb °F] | |
Overall heat transfer coefficient at clean condition [BTU/ft2 h °F] | |
Fouling resistance [ft2 °F/BTU] | |
Fouling constant [ft2 °F/BTU] | |
Entire time horizon [month] | |
Cleaning sub-period [month] | |
Operating sub-period [month] | |
Binary control (decision) variable | |
MIOCP | Mixed integer optimal control problem |
DAEs | Differential-algebraic system of equations |
Extra energy consumption depending on the difference between the actual and the target temperature of the crude oil entering the furnace [MM BTU] | |
Cost of fuel [₤/MM BTU] | |
Furnace efficiency | |
Cleaning cost [₤/cleaning action] | |
Number of the discretized time periods | |
Number of heat exchangers | |
Moving window size | |
CIT | Crude inlet temperature to furnace [°F] |
SQP | Sequential Quadratic Programming |
Objective function value [k£] |
References
- Diaby, A.L.; Luong, L.; Yousef, A.; Addai Mensah, J. A Review of Optimal Scheduling Cleaning of Refinery Crude Preheat Trains Subject to Fouling and Ageing. Appl. Mech. Mater. 2011, 148–149, 643–651. [Google Scholar] [CrossRef]
- Ishiyama, E.; Heins, A.; Paterson, W.; Spinelli, L.; Wilson, D. Scheduling cleaning in a crude oil preheat train subject to fouling: Incorporating desalter control. Appl. Therm. Eng. 2010, 30, 1852–1862. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, E.M.; Paterson, W.R.; Wilson, D.I. The effect of fouling on heat transfer, pressure drop, and throughput in refinery preheat trains: Optimization of cleaning schedules. Heat Trans. Eng. 2009, 30, 805–814. [Google Scholar] [CrossRef]
- Diaby, A.L.; Miklavcic, S.J.; Addai-Mensah, J. Optimization of scheduled cleaning of fouled heat exchanger network under ageing using genetic algorithm. Chem. Eng. Res. Des. 2016, 113, 223–240. [Google Scholar] [CrossRef]
- Santamaria, F.L.; Macchietto, S. Online Integration of Optimal Cleaning Scheduling and Control of Heat Exchanger Networks under Fouling. Ind. Eng. Chem. Res. 2019, 59, 2471–2490. [Google Scholar] [CrossRef]
- Biyanto, T.R.; Khairansyah, M.D.; Bayuaji, R.; Firmanto, H.; Haksoro, T. Imperialist competitive algorithm (ICA) for heat exchanger network (HEN) cleaning schedule optimization. Procedia Comput. Sci. 2015, 72, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Diaby, A.L.; Miklavcic, S.J.; Bari, S.; Addai-Mensah, J. Evaluation of crude oil heat exchanger network fouling behavior under aging conditions for scheduled cleaning. Heat Trans. Eng. 2016, 37, 1211–1230. [Google Scholar] [CrossRef]
- Trafczynski, M.; Markowski, M.; Kisielewski, P.; Urbaniec, K.; Wernik, J. A modeling framework to investigate the influence of fouling on the dynamic characteristics of PID-controlled heat exchangers and their networks. Appl. Sci. 2019, 9, 824. [Google Scholar] [CrossRef] [Green Version]
- Müller-Steinhagen, H.; Malayeri, M.R.; Watkinson, A.P. Heat exchanger fouling: Environmental impacts. Heat Transf. Eng. 2009, 30, 773–776. [Google Scholar] [CrossRef]
- Awad, M.M. Fouling of Heat Transfer Surfaces. In Heat Transfer; Belmiloudi, A., Ed.; In Tech: Rijeka, Croatia, 2011; pp. 505–542. [Google Scholar]
- Biyanto, T.R.; Ramasamy, M.; Jameran, A.B.; Fibrianto, H.Y. Thermal and hydraulic impacts consideration in refinery crude preheat train cleaning scheduling using recent stochastic optimization methods. Appl. Therm. Eng. 2016, 108, 1436–1450. [Google Scholar] [CrossRef]
- Zhu, X.; Zanfir, M.; Klemes, J. Heat transfer enhancement for heat exchanger network retrofit. Heat Trans. Eng. 2000, 21, 7–18. [Google Scholar]
- Mule, B.A.; Hatkar, D.; Bembde, M. Analysis of Double Pipe heat exchanger with Helical Fins. Int. Res. J. Eng. Technol. 2017, 4, 961–966. [Google Scholar]
- Awais, M.; Bhuiyan, A.A. Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers. Int. J. Heat Mass Trans. 2019, 141, 580–603. [Google Scholar] [CrossRef]
- Lavaja, J.H.; Bagajewicz, M.J. On a New MILP Model for the Planning of Heat-Exchanger Network Cleaning. Ind. Eng. Chem. Res. 2004, 43, 3924–3938. [Google Scholar] [CrossRef]
- Pogiatzis, T.A.; Vassiliadis, V.S.; Wilson, D.I. An MINLP formulation for scheduling the cleaning of heat exchanger networks subject to fouling and ageing. In Proceedings of the International Conference on Heat exchanger Fouling and Cleaning, Crete Island, Greece, 5–10 June 2011; pp. 349–356. [Google Scholar]
- Goncalves, C.d.O.; Queiroz, E.M.; Pessoa, F.L.; Liporace, F.S.; Oliveira, S.G.; Costa, A.L. Heuristic optimization of the cleaning schedule of crude preheat trains. Appl. Therm. Eng. 2014, 73, 3–14. [Google Scholar] [CrossRef]
- Al Ismaili, R.; Lee, M.W.; Wilson, D.I.; Vassiliadis, V.S. Heat exchanger network cleaning scheduling: From optimal control to mixed-Integer decision making. Comput. Chem. Eng. 2018, 111, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Al Ismaili, R.; Lee, M.W.; Wilson, D.I.; Vassiliadis, V.S. Optimisation of heat exchanger network cleaning schedules: Incorporating uncertainty in fouling and cleaning model parameters. Comput. Chem. Eng. 2019, 121, 409–421. [Google Scholar] [CrossRef]
- Smaili, F.; Angadi, D.; Hatch, C.; Herbert, O.; Vassiliadis, V.; Wilson, D. Optimization of Scheduling of Cleaning in Heat Exchanger Networks Subject to Fouling. Food Bioprod. Process 1999, 77, 159–164. [Google Scholar] [CrossRef]
- Smaili, F.; Vassiliadis, V.S.; Wilson, D.I. Mitigation of fouling in refinery heat exchanger networks by optimal management of cleaning. Energy Fuels 2001, 15, 1038–1056. [Google Scholar] [CrossRef]
- Smaili, F.; Vassiliadis, V.S.; Wilson, D.I. Optimization of Cleaning Schedules in Heat Exchanger Networks Subject to Fouling. Chem. Eng. Commun. 2002, 189, 1517–1549. [Google Scholar] [CrossRef]
- Smaili, F.; Vassiliadis, V.; Wilson, D. Long-term scheduling of cleaning of heat exchanger networks: Comparison of outer approximation-based solutions with a backtracking threshold accepting algorithm. Chem. Eng. Res. Des. 2002, 80, 561–578. [Google Scholar] [CrossRef]
- Lavaja, J.H.; Bagajewicz, M.J. On a new MILP model for the planning of heat-exchanger network cleaning. Part II: Throughput loss considerations. Ind. Eng. Chem. Res. 2005, 44, 8046–8056. [Google Scholar] [CrossRef]
- Lavaja, J.H.; Bagajewicz, M.J. On a new MILP model for the planning of heat-exchanger network cleaning. Part III: Multiperiod cleaning under uncertainty with financial risk management. Ind. Eng. Chem. Res. 2005, 44, 8136–8146. [Google Scholar] [CrossRef]
- Patil, P.; Srinivasan, B.; Srinivasan, R. Cleaning schedule for heat exchanger networks subjected to maintenance constraints. In Computer Aided Chemical Engineering; Elsevier: Kyoto, Japan, 2022; Volume 49, pp. 511–516. [Google Scholar]
- Georgiadis, M.; Papageorgiou, L.G. Optimal energy and cleaning management in heat exchanger networks under fouling. Chem. Eng. Res. Des. 2000, 78, 168–179. [Google Scholar] [CrossRef]
- Fitriyani, N.; Nahdliyah, S.D.; Biyanto, T.R. Operational Optimization of Binary Distillation Column to Achieve Product Quality Using Imperialist Competitive Algorithm (ICA). In Proceedings of the 2016 6th International Annual Engineering Seminar (InAES), Yogyakarta, Indonesia, 1–3 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 112–115. [Google Scholar]
- Rodriguez, C.; Smith, R. Optimization of operating conditions for mitigating fouling in heat exchanger networks. Chem. Eng. Res. Des. 2007, 85, 839–851. [Google Scholar] [CrossRef]
- Pogiatzis, T.; Ishiyama, E.M.; Paterson, W.R.; Vassiliadis, V.S.; Wilson, D.I. Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing. Appl. Energy 2012, 89, 60–66. [Google Scholar] [CrossRef]
- Kashani, M.N.; Aminian, J.; Shahhosseini, S.; Farrokhi, M. Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique. Chem. Eng. Res. Des. 2012, 90, 938–949. [Google Scholar] [CrossRef]
- Ishiyama, E.M.; Juhel, C.; Aquino, B.; Hagi, H.; Pugh, S.J.; Gomez Suarez, E.; Kennedy, J.; Zettler, H.U. Advanced Fouling Management through Use of HTRI SmartPM: Case Studies from Total Refinery CDU Preheat Trains. Heat Trans. Eng. 2021, 168, 1365–1377. [Google Scholar] [CrossRef]
- Sager, S. Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control. J. Process Control 2009, 19, 1238–1247. [Google Scholar] [CrossRef]
Parameter | Heat Exchanger | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
[lb/h] | 1.41 | 0.74 | 4.23 | 4.29 | 2.08 | 4.23 | 2.10 | 1.41 | 2.83 | 2.08 |
[lb/h] | 7.21 | 7.21 | 7.21 | 7.21 | 7.21 | 7.21 | 7.21 | 6.49 | 6.49 | 6.49 |
[BTU/lb °F] | 0.67 | 0.70 | 0.62 | 0.62 | 0.67 | 0.62 | 0.69 | 0.67 | 0.69 | 0.67 |
[BTU/lb °F] | 0.46 | 0.46 | 0.46 | 0.46 | 0.55 | 0.55 | 0.55 | 0.57 | 0.57 | 0.57 |
[ft2] | 465 | 287 | 1192 | 1488 | 183 | 546 | 492 | 437 | 885 | 1257 |
[ft2 °F/BTU] | 1.23 | 1.84 | 1.23 | 1.64 | 3.07 | 2.25 | 3.07 | 3.27 | 3.68 | 3.88 |
Time Horizon (Month) | Fixed-Time Horizon | Moving Window | |||||||
---|---|---|---|---|---|---|---|---|---|
Bang-Bang Solution Satisfied (True/False) | No. of Cleaning | Objective Function Value [k£] | Optimization Time (min) | Bang-Bang Solution Satisfied (True/False) | No. of Cleaning | Objective Function Value [k£] | Optimization Time (min) | Optimal Moving Window Size | |
12 | True | 2 | 385 | 0.46 | True | 2 | 385 | 0.17 | 4 |
18 | True | 10 | 620 | 2.35 | True | 7 | 627 | 0.51 | 4 |
24 | True | 16 | 852 | 6.39 | True | 18 | 863 | 0.49 | 5 |
30 | True | 22 | 1085 | 9.43 | True | 21 | 1099 | 0.51 | 5 |
36 | False | 25 | 1329 | 12.10 | True | 28 | 1332 | 0.67 | 5 |
42 | False | 35 | 1556 | 21.49 | True | 33 | 1568 | 0.75 | 5 |
48 | False | 44 | 1791 | 27.37 | True | 39 | 1807 | 0.91 | 5 |
54 | False | 47 | 2022 | 43.04 | True | 46 | 2035 | 1.02 | 5 |
60 | False | 55 | 2393 | 35.95 | True | 52 | 2271 | 1.13 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dekebo, S.B.; Oh, G.-T.; Lee, M.-W. Cleaning Schedule Optimization of Heat Exchanger Network Using Moving Window Decision-Making Algorithm. Appl. Sci. 2023, 13, 604. https://doi.org/10.3390/app13010604
Dekebo SB, Oh G-T, Lee M-W. Cleaning Schedule Optimization of Heat Exchanger Network Using Moving Window Decision-Making Algorithm. Applied Sciences. 2023; 13(1):604. https://doi.org/10.3390/app13010604
Chicago/Turabian StyleDekebo, Simegnsh Bekele, Gi-Taek Oh, and Min-Woo Lee. 2023. "Cleaning Schedule Optimization of Heat Exchanger Network Using Moving Window Decision-Making Algorithm" Applied Sciences 13, no. 1: 604. https://doi.org/10.3390/app13010604
APA StyleDekebo, S. B., Oh, G. -T., & Lee, M. -W. (2023). Cleaning Schedule Optimization of Heat Exchanger Network Using Moving Window Decision-Making Algorithm. Applied Sciences, 13(1), 604. https://doi.org/10.3390/app13010604