
Citation: Huang, B.; Lu, A.; Zhang,

N. Settlement Analysis of

Fractional-Order Generalised Kelvin

Viscoelastic Foundation under

Distributed Loads. Appl. Sci. 2023, 13,

648. https://doi.org/10.3390/

app13010648

Academic Editor: Arcady Dyskin

Received: 9 December 2022

Revised: 27 December 2022

Accepted: 27 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Settlement Analysis of Fractional-Order Generalised Kelvin
Viscoelastic Foundation under Distributed Loads
Bingcheng Huang, Aizhong Lu and Ning Zhang *

Institute of Hydroelectric and Geotechnical Engineering, North China Electric Power University,
Beijing 102206, China
* Correspondence: zning1125@ncepu.edu.cn

Abstract: A solution is proposed for ground surface settlement induced in fractional-generalised
Kelvin semi-infinite space by distributed loads, based on the fractional differential theory. The
effects of four main parameters—the differential order, the two shear moduli and the coefficient of
viscosity—on the settlements are analysed using a numerical example, and a parametric-sensitivity
analysis is conducted. The results show that the fractional-order generalised Kelvin model is more
flexible than the conventional integer-order generalised Kelvin model since it can account for the
rate of the deceleration creep phase; therefore, a wider range of mechanical properties of viscoelastic
materials can be described with fewer parameters, and the differential order has a higher sensitivity
than the other three parameters. Finally, the model is used to identify and fit the parameters to the
data of the field-bearing plate rheological tests. The fit results of the fractional-order generalised
Kelvin model, unlike those of the integer-order generalised Kelvin model, are closer to the measured
results and can more accurately describe the rock’s rheological behaviour at the test location.

Keywords: fractional derivative; viscoelastic model; correspondence principle; parametric analysis;
parametric-sensitivity analysis; displacement back analysis

1. Introduction

Both rock and soil have viscoelastic properties. The creep phenomenon of settlement
increases with time under the action of long-term loads, such as building loads. Excessive
settlement will compromise the building’s stability. Therefore, adopting a reasonable
viscoelastic model is crucial to accurately calculate and predict their deformation. Various
creep models have been adopted in previous studies to describe the rheological behaviour
of rock and soil, such as the Kelvin, Maxwell and general Kelvin models [1–4]. These
models are structurally simple, clear in mechanical parameters and easily solved. However,
these models often have significant errors with the measured results when applied to
displacement back analysis [5]. Researchers usually use more complex rheological models
to obtain better fitting results. Based on the three-parameter generalised Kelvin model,
Yang [6], Xiong [7] and Huang [8] connected a Kelvin body in series to form a five-parameter
generalised Kelvin model, and the fitting curve they obtained overcame the disadvantage
of rapid convergence compared with the fitting curve of the three-parameter generalised
Kelvin model. Furthermore, more elements are combined to improve the fitting accuracy.
However, the combined complex model will result in a more complex mathematical form
of the creep equation, making it more difficult to solve and inconvenient for engineering
applications. In addition, the physical meaning of some parameters becomes ambiguous
when the number of parameters increases [9].

Recently, fractional-order models have been widely used to simulate the viscoelastic
properties of materials [10–14]. Because fractional-order models have the advantages of
fewer parameters, clear physical meaning and practicality, they have also been widely
used in the field of geotechnical engineering [15]. The fractional-order model, unlike the
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traditional integer-order model, can describe a wider range of viscoelastic properties of
geotechnical soils with fewer parameters, enabling the more accurate fitting of experimen-
tal data. Ding [16] and Sun [17] used the fractional-order Maxwell and Kelvin models,
respectively, to fit the experimental creep data of tight sandstone and soft soil with higher
accuracy. Zhou [18,19] and Wu [15] used a fractional-order Nishihara model to fit the
rheological data of salt rocks with constant and multi-level loading with higher accuracy.
Gao [20] used a fractal-order model of variable order to simulate the creep response of rock
in the entire stage. The aforementioned studies are all based on the uniaxial compression
tests of geotechnical soils, whereas the three-dimensional viscoelastic space problem is
unaddressed. Therefore, Liu [21] and Qin [22] used the fractional-order Kelvin model
to simulate a semi-infinite spatial body and obtained the viscoelastic solutions for the
displacement when vertical and horizontal concentrated forces are applied to the surface
of the semi-infinite spatial body. Li et al. [23] obtained the viscoelastic solution of the
displacement in the horizontal and vertical directions when a vertical concentrated force
acted on the interior of a semi-infinite space using Mindlin’s solution and the fractional-
generalised Kelvin model. Zhu et al. [24] used the fractional-order Kelvin model to simulate
the plane strain problem for semi-infinite foundations and obtained a viscoelastic solution
for foundation settlements under concentrated vertical loads.

The loads involved in the aforementioned studies are relatively simple when solv-
ing the problems using fractional-order models. Therefore, the fractional-order gener-
alised Kelvin model is used to model a half-space body under the action of vertically
distributed loads in this study, and the viscoelastic solutions for the settlements of the
ground surface are solved using the corresponding principle [25]. Then, the parametric and
parametric-sensitivity analyses are provided to analyse the influence of each parameter
on the rheological process in detail. Finally, based on the model’s theoretical solutions,
the experimental results of the field-bearing plate creep tests [8,26] are fitted and analysed
using the displacement inverse analysis method [27].

2. Fractional-Order Generalised Kelvin Model

The rheological element used to describe the fractional derivative is a damping element
named Abel {Figure 1A} [28], whose constitutive relationship is as follows:

σ(t) = λDαε(t) 0 < α ≤ 1 (1)

where σ(t) and ε(t) are the stress and strain, respectively, at time t; α is the order of
fractional differentiation; λ = G1−αηα, where G and η represent the shear modulus and the
coefficient of viscosity, respectively; D represents the derivative operator with respect to
time, t, Dα = dα/dαt.
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where 𝐴 is the area where the load acts; 𝑝(𝜉, 𝜁) is the load distribution function. 
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Figure 1. Schematic of the rheological models: (A) Abel damping element, (B) Fractional-order
generalised Kelvin model, (C) Integer-order generalised Kelvin model.

The fractional derivative element can be regarded as an ideal Newtonian liquid based
on the assumption of α = 1. Under the assumption of 0 < α < 1, the fractional derivative
element can be regarded as a fractional viscous body. This element can simulate the viscous
behaviour of materials between ideal solids and liquids.
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The fractional-order generalised Kelvin model {Figure 1B} is constructed by replacing
the viscous element in the integer-order generalised Kelvin model {Figure 1C} with the Abel
damping element, whose three-dimensional form of the constitutive equation is expressed
as follows [23]:

PSij = 2Qeij (2)

σii = 3Kεii (3)

where Sij, eij, σii and εii are deviatoric stress tensor, deviatoric strain tensor, spherical
stress tensor and spherical strain tensor, respectively; P and Q are viscoelastic differential
operators, which are expressed as follows:

P = G1 + G2 + λDα (4)

Q = G1G2 + λG1Dα (5)

where G1 and G2 are the shear moduli; K is the bulk modulus and λ = G1−α
2 ηα.

3. Viscoelastic Solutions for Surface Settlement under Vertically Distributed Loads
3.1. Elastic Solutions

The displacement of a half-space elastic body under a vertically distributed load on
the boundary is calculated based on the Boussinesq displacement solution of a half-space
elastic body under concentrated force [29]. When there is a normally concentrated force,
P, acting on the surface origin (0, 0), the vertical displacement of the point (x, y) on the
surface of ground is given as follows:

wM =
(1− µ2)P

πE
√

x2 + y2
(6)

where E is the modulus of elasticity and µ is the Poisson’s ratio.
By integration, the settlement, w(x, y) (vertical displacement), at any point (x, y) on the

surface when the vertically distributed load, p(ξ, ζ), is applied to the half-space elastomer
and can be derived as:

w(x, y) =
1− µ2

πE

x

A

p(ξ, ς)√
(x− ξ)2 + (y− ς)2

dξdς (7)

where A is the area where the load acts; p(ξ, ζ) is the load distribution function.

Let F(x, y) =
s

A p(ξ, ζ)/
√
(x− ξ)2 + (y− ζ)2dξdζ. When the distribution form of

the load, p(ξ, ζ), and the position of the point required to calculate the settlement are
known, F(x, y) is only related to the coordinate position (x, y), but unrelated to the elastic
modulus, E, and the Poisson’s ratio, µ. Therefore, F(x, y) does not change when using the
correspondence principle [25] to derive the viscoelastic solutions. Moreover, according to
the correspondence principle, it is also necessary to express the elastic modulus, E, and
Poisson’s ratio, µ, in Equation (7) in terms of the shear modulus, G, and bulk modulus, K:

w(x, y) =
F(x, y)

4π

[
1
G

+
3

3K + G

]
(8)

3.2. Viscoelastic Solutions

Applying the Laplace transform [25] separately to Equations (4) and (5):

L[P] = P(s) = G1 + G2 + λsα (9)

L[Q] = Q(s) =G1G2 + λG1sα (10)
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When the Laplace transform is performed on Equation (8), based on the requirements
of the corresponding principle, G in Equation (8) should be replaced by Q/P, which can be
expressed as follows:

w(x, y, s) = F(x,y)
4π

[
1

G1s +
1

(G2+λsα)s +
3

(3K+G1)s

+
3G2

1
(3K+G1)[3K(G1+G2+λsα)+G1(G2+λsα)]s

] (11)

where s is the parameter involved in the Laplace transform.
Applying the inverse Laplace transform to Equation (11), the settlement of any point

(x, y) on the surface at a time, t, when the vertically distributed load, p(ξ, ζ), acts on the
fractional-generalised Kelvin half-space body is expressed as follows:

w(x, y, t) = F(x,y)
4π

{
1

G1
+ 1

G2

[
1− Eα

(
− tα

τ1

)]
+ 3

3K+G1

+
3G2

1
(3K+G1)(3KG1+3KG2+G1G2)

[
1− Eα

(
− tα

τ2

)]} (12)

where τ1 = λ/G2, τ2 = [(3K + G1)λ]/(3KG1 + 3KG2 + G1G2); E(·) is the Mittag-Leffler
function of a single parameter expressed as follows:

Eα(z) =
∞

∑
0

zn

Γ(1 + αn)
(13)

where Γ(·) is the Gamma function defined as Γ(z) =
∫ ∞

0 tz−1e−tdt and Rez > 0.

3.3. Analysis of Viscoelastic Solutions

F(x, y) > 0 when p(ξ, ζ) > 0, if 0 < α ≤ 1, the function, Eα(−tα/τ), is completely
monotonic for t ∈ [0, ∞), implying that dEα(−tα/τ)/dt ≤ 0 and d2Eα(−tα/τ)/dt2 ≥
0 [30]. Therefore, because dw(x, y, t)/dt ≥ 0 and d2w(x, y, t)/dt2 ≤ 0, the settlement
function, ω(x, y, t), given by Equation (12), is a monotonically increasing and upwardly
convex function at t ∈ [0, ∞). The instantaneous settlement, w(x, y, 0), at t = 0 is the
minimum value:

w(x, y, 0) =
F(x, y)

4π

(
1

G1
+

3
3K + G1

)
(14)

Equation (14) is the same as Equation (8), and Equation (14) becomes Equation (8) when
G1 is replaced with G. This is because when t = 0, the time-delay deformation body, which
is composed of the Abel damping element and the elastic element, G2, connected in parallel,
does not produce instantaneous deformation, and only the elastic element, G1, connected
in series with it produces instantaneous elastic deformation. Thus, the instantaneous
settlement is only related to the position coordinates (x, y), G1 and K, independent of α, G2
and η.

Equation (12) shows that the settlement, w(x, y, t), of each point also increases with an
increase in t, and when t→ +∞ , w(x, y,+∞) is a finite value that is the maximum value
of settlement, whose value is as follows:

w(x, y,+∞) =
F(x, y)

4π

[
1

G1G2
G1+G2

+
3

3K + G1G2
G1+G2

]
(15)

Equation (15) can be obtained by replacing G in Equation (8) with G1G2/(G1 + G2).
This is because the Abel damping element does not work when t→ +∞ , and only
the two elastic elements G1 and G2 connected in series work, which is equivalent to
an elastic element. When represented by an elastic element, G, it can be proved that
G = G1G2/(G1 + G2). Therefore, the ultimate settlement is related to the elastic element’s
G1 and G2, which are independent of α and η in the damping element.
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4. Parametric Analysis and Parametric-Sensitivity Analysis

The previous section shows that the creep described by the fractional-order gener-
alised Kelvin model is the stable creep and Equations (14) and (15) show the functional
relationship between instantaneous and ultimate settlements and each parameter; how-
ever, the influence of each parameter on the creep process cannot be intuitively observed
from this function. Therefore, a specific example is used to analyse the influence of each
parameter on the settlements at different moments.

Here, a rectangular area of a half-space viscoelastic surface is subjected to a uniform
load of 1 MPa (Figure 2), and a set of basic parameters (Table 1) are selected according to
the applicable parameters in the literature [24]. One of the parameters is increased by 20%,
40% and 60%, decreased by 20%, 40% and 60%, and the other parameters are kept constant,
which allows the effect of each parameter on creep displacement to be studied.
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Table 1. Basic parameters of the fractional-order generalised Kelvin model.

Item Value

Shear modulus G1 (MPa) 60
Shear modulus G2 (MPa) 60
Bulk modulus K (MPa) 80

Viscosity coefficient η (MPa·d) 1000
Fractional differential order α 0.5

For the given load distribution form in this example, the elastic and viscoelastic
solutions of surface settlements are still calculated by Equations (8) and (12). F(x, y) in the
equation is given as follows:

F(x, y) = p0

(
a1ln

a3 + b1

−a4 + b3
+ a2ln

a3 + b2

−a4 + b4
+ a3ln

a1 + b1

−a2 + b3
+ a4ln

a1 + b3

−a2 + b4

)
(16)

where a1 = b/2 − x, a2 = b/2 + x, a3 = a/2 − y, a4 = a/2 + y, b1 =
√

a2
1 + a2

3,

b2 =
√

a2
2 + a2

3, b3 =
√

a2
1 + a2

4, b4 =
√

a2
2 + a2

4, where a and b are the lengths of the
rectangle along the x and y axes, respectively; p0 is the uniformly distributed load acting
on the surface, which is 1 MPa for this example.

Because the viscoelastic solutions of the settlements, w(x, y, t) and F(x, y), are linearly
related, the settlements at different locations have the same variation law with time; for
convenience, we only selected the settlements at the centre of the rectangle for analysis.
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4.1. Effect of Differential Order α

First, the order α of the differential is increased by 20%, 40% and 60% and decreased
by 20%, 40% and 60%, while other parameters are kept constant. Figure 3 shows the
settlements at the centre of the rectangle with time for different α. The figure shows
that the settlements contain two stages, instantaneous settlement and deceleration creep,
and the change in order α has no effect on the instantaneous settlement at t = 0 and the
ultimate settlement at t→ +∞ , which is consistent with the law described in the analysis
of viscoelastic solutions above. Moreover, Figure 3B shows that there is a demarcation
point for different α that divides the creep curve into two stages: in the first stage, the
settlement’s value decreases at the same moment as α increases; in the second stage,
the settlement’s value increases at the same moment as α increases. The peculiar law is
attributed to the Abel damping element, an intermediate between the ideal solid (α = 0)
and the Newtonian fluid (α = 1), which allows the fractional-order model to describe
a wider range of rheological properties of the soil or rock than the integer-order model
(α = 1). This phenomenon is consistent with the results of the literature [22–24]. The
smaller the value of α, the longer the time required to reach a steady state. For α = 1, 0.8,
0.7, 0.6, 0.5, 0.4, 0.3 and 0.2, the times required for the basic stabilisation of settlements are
130, 2× 104, 105, 8× 105, 107, 5× 108, 2× 1011 and 4× 1016 d, respectively.
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4.2. Influence of Shear Modulus (G1)

The shear modulus, G1, is increased by 20%, 40% and 60% and decreased by 20%, 40%
and 60%, while other parameters are kept constant. Figure 4 shows the settlements at the
centre of the rectangle with time for different G1. The analysis of viscoelastic solutions in the
previous section shows that G1 influences the instantaneous and ultimate settlements, and
Figure 4 shows that the larger G1 is, the smaller the instantaneous and ultimate settlements.
Moreover, in the creep deceleration stage of 0 < t < +∞, the settlement value and the
change amplitude of settlements also decrease as G1 increases, and the change amplitude
of settlements is also related to the time, t. When G1 increases from 24 to 96 MP, the
instantaneous settlements are 0.0360, 0.0262, 0.0212, 0.0181, 0.0160, 0.0144 and 0.0131 m,
while the amplitudes of the change in settlements are 54.14%, 27.62%, 17.13%, 11.6%, 8.84%
and 7.18%, respectively. In addition, the ultimate settlements are 0.0475, 0.0379, 0.0331,
0.0302, 0.0282 m, 0.0268 and 0.0257 m, with corresponding amplitudes of the change in
settlements of 31.79%, 15.89%, 9.60%, 6.62%, 4.64% and 3.64%, respectively.
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4.3. Influence of Shear Modulus (G2)

The shear modulus, G2, is increased by 20%, 40% and 60% and decreased by 20%, 40%
and 60%, while other parameters are kept constant. Figure 5 shows the settlements at the
centre of the rectangle with time for different G2. The analysis of viscoelastic solutions
in the previous section shows that G2 does not affect the instantaneous settlement but
affects the ultimate settlement, and the larger G2 is, the smaller the ultimate settlement
value. Moreover, Figure 5 shows that in the creep deceleration stage of 0 < t < +∞, the
settlement values and the amplitudes of the change in the settlement also decrease with the
increase of G2. When G2 increases from 24 to 96 MP, the ultimate settlements are 0.0475,
0.0379, 0.0331, 0.0302, 0.0282, 0.0268 and 0.0257 m, with corresponding amplitudes of the
change in the settlement of 31.79%, 15.89%, 9.60%, 6.62%, 4.64% and 3.64%.
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4.4. Effect of Viscosity Coefficient η

The viscosity coefficient, η, is increased by 20%, 40% and 60% and decreased by 20%,
40% and 60%, while other parameters are kept constant. Figure 6 shows the settlements
at the centre of the rectangle with time for different η. The analysis of viscoelastic solu-
tions in the previous section shows that η does not affect the instantaneous and ultimate
settlements. However, Figure 6 shows that the viscosity coefficient, η, affects the settlement
rate, and the smaller the value of η, the less the time it takes for the settlement to reach
a steady state. The calculation shows that for η increasing from 400 to 1600 MPa·d, the
time required to reach the ultimate settlement at t→ +∞ are, respectively, 4× 106, 6× 106,
8× 106, 1.05× 106, 1.25× 107, 1.45× 107 and 1.65× 107 d. Moreover, the change in η has
a lower influence on the change amplitude of settlement than other parameters. When
t = 100 d, the settlements are 0.0285, 0.0282, 0.0279, 0.0276, 0.0274, 0.0273 and 0.0271 m,
with corresponding amplitudes of the change in the settlement of only 1.25%, 1.01%, 0.86%,
0.76%, 0.67% and 0.61%.
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4.5. Parametric-Sensitivity Analyses

During the analysis of the aforementioned parameters, we discovered that the change
in each parameter has a different amplitude of influence on the settlement. The sensitivity
coefficient (SC) was used to analyse and compare the influence of each parameter on the
settlement [31]. SC denotes the rate at which the model output value changes due to a
slight change in the parameter value. In mathematics, SC is the partial derivative of the
dependent variable for each independent variable, and it is therefore expressed in this
study as a first-order partial derivative of the settlement function, w(x, y, t), with respect to
α, G1, G2 and η:
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SCα = ∂w(x,y,t)
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The SCs of the parameters solved by the first-order partial derivatives produce large
errors after 100 d due to the influence of computational errors. Therefore, the SCs are
calculated using this method for the first 100 d, and thereafter they are approximated using
the differential method as follows:

SCj(t) =
w
(
t + ∆Xj

)
− w(t)

∆Xj
(18)

where w(t) is the creep displacement corresponding to the basic parameter; ∆Xj is the jth
mechanical parameter change in the base parameter; w

(
t + ∆Xj

)
is the creep displacement

corresponding to the change in the jth mechanical parameter.
Equation (18) is used to compute the four mechanical parameters after increasing them

by 1%. Figure 7 shows the results of the SCs for each parameter.
Figure 7A shows that when 0 ≤ t < 13 d, SC < 0 and when t > 13 d, SC > 0, indicating

that the settlements are negatively correlated with α before 13 d, and positively correlated
with α after 13 d, which also proves the law obtained from the previous analysis of the
effect of differential order α on settlement: there is a point on the creep curve that divides
it into two stages, and the law of increase and decrease in settlements in the two stages
is opposite to the increase in α. Moreover, SCα = 0 when t = 0 and t→ +∞ , which also
proved the law that the change in α has no effect on the instantaneous and final settlements.

Figure 7B,C show that SCG1 < 0 and SCG2 ≤ 0, indicating that the settlements are
negatively correlated with G1 and G2. Moreover,

∣∣SCG1

∣∣ decreases gradually with time, t,
and tends to be stable, whereas

∣∣SCG2

∣∣ increases gradually with time, t, and tends to be
stable, and when t→ +∞ ,

∣∣SCG1

∣∣ = ∣∣SCG2

∣∣ = 1.995× 10−4, thus the changes in G1 and
G2 affect the final settlement. SCη = 0 when t = 0 and t→ +∞ , thus the change in η does
not affect the instantaneous and final settlement.

Figure 7D shows that SCη < 0, indicating that the settlements are negatively correlated
with η. In addition,

∣∣SCη

∣∣ increases first and then decreases with time t, implying that the
influence of η on settlements first increases and then decreases.
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Figure 7. Sensitivity analysis: (A) SC of differential order, α, (B) SC of shear modulus, G1, (C) SC of
shear modulus, G2 and (D) SC of viscosity coefficient, η.

By calculation,−6.2× 10−3 ≤ SCα ≤ 6.4× 10−3,−2.1× 10−4 ≤ SCG1 ≤ −1.995× 10−4,
−1.995× 10−4 ≤ SCG2 ≤ 0 and 1.7× 10−6 ≤ SCη ≤ 0. Thus, α is the most sensitive to
the settlement effects, followed by G1 and G2, while η is the least sensitive. Therefore,
significant attention should be given to α, G1 and G2 when the displacement inverse
analysis method is used to invert the geotechnical parameters.

5. Method of Determining Parameters by Field Experiments

The field-bearing plate test is a method for determining the deformation parameters of
rock masses, and it is also commonly used to execute field creep tests due to its simple test
procedure and easy operation. The bearing plate test is theoretically based on Boussinesq’s
solution for local forces on the surface of a uniform, continuous and isotropic semi-infinite
elastomer [8].

The bearing plate test can be divided into rigid and flexible bearing plate tests ac-
cording to the stiffness of the bearing plate and the size of the elastic modulus of the rock
mass. In the rigid bearing plate test, the rock body is considered flexible while the bearing
plate is rigid, and the vertical displacement generated at each point of the rock body below
the contact with the bearing plate is the same; however, the normal pressure between the
bearing plate and the rock body is not uniformly distributed. In the flexible bearing plate
test, the bearing plate is considered flexible, and the normal pressure between the bearing
plate and the rock mass is uniform; however, the vertical displacement produced by the
rock mass below the bearing plate is not uniform.
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The displacement solutions for the two cases of circular flexible and rigid bearing
plates are derived below, based on the integer- and fractional-order generalised Kelvin
models. The creep test results are then used to identify each parameter in the model using
the displacement inverse analysis method.

5.1. Parameter Identification of the Circular Flexible Bearing Plate Test

Jinping I Hydropower Station uses flexible bearing plates with a diameter of 105 cm
(effective output size of 100 cm) at the dam site to conduct creep tests on the bearing plates
on site [8].

A displacement measuring instrument was installed at the edge of a circular flexible
bearing plate, and the elastic and viscoelastic solutions of settlement at the measuring
point were calculated using Equations (8) and (12), in which F(x, y) is expressed in polar
coordinates as follows:

F(x, y) = F(r = R0) = 4pR0 (19)

where R0 is the radius of the pressure plate, r is the pole diameter, and p is the uniform
load under the bearing plate.

Figure 8 shows the creep curves of the rock mass at different loading stages. The figure
shows that the rock mass has obvious instantaneous abrupt displacement and tends to
be stable after creep with a gradually decreasing rate. Therefore, the rock mass can be
regarded as a viscoelastic body, and its deformation can be analysed using the fractional-
order generalised Kelvin model, including instantaneous and creep deformations.
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Figure 8. Creep curves of rock mass at different loading stages of circular flexible pressure-
bearing plates.

The process of parameter inversion is shown in Figure 9. First, based on the elastic
displacement formula at the edge of a circular flexible bearing plate, the elastic modulus E0
of the rock mass can be obtained from the instantaneous deformation, w0, at the edge of
the bearing plate:

E0 =
4pR0(1− µ2)

πw0
(20)
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The shear and bulk moduli of the rock mass are then expressed as follows:

G1 =
E0

2(1 + µ)
, K =

E0

3(1− 2µ)
(21)

Second, other parameters, G2, η and α, in the fractional-order model are inverted
according to the measured creep displacement. The objective function is established by the
residuals of the measured displacement, w(ti), and the calculated displacement, w(X, ti),
at moment ti, and the objective function in the form of the sum of squares is expressed in
this study as follows:

F(X) =
N

∑
i=1

[w(ti)− w(X, ti)]
2 (22)
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where X is the design variable expressed as follows:

X = (X1, X2, X3) = (G2, η, α) (23)

where N is the number of measured displacements.
In this study, the set of X∗ that minimises Equation (22) is obtained using the differen-

tial evolution method [32], and X∗ is the determined parameter. This degenerates to the
case of using the integer-order generalised Kelvin model if α = 1, and the parameters G2
and η can be obtained using the differential evolution method.

In this study, the coefficient of determination, R2, is applied to evaluate the perfor-
mance of the aforementioned two models.

R2 = 1−

N
∑

i=1
[w(ti)− w(X∗, ti)]

2

N
∑

i=1
[w(ti)− w]

2 (24)

where w is the average value of the measured displacements.
Tables 2 and 3 show the parameters of the rheological models obtained under different

loading conditions, based on the above two-step inversion analysis process. The theoretical
displacement curves under different stress levels are then obtained by substituting the
inversion analysis parameters into the corresponding analytical equations. Figure 10 shows
the comparisons between the theoretical displacement curves based on the two rheological
models and the measurements obtained under different stress levels.

Table 2. Inverse analysis results based on the integer-order model.

p (MPa) K (GPa) G1 (GPa) G2 (GPa) η (GPa·h) R2

2 3.3087 1.9852 1.8081 3.2682 0.9929
3 2.2010 1.3180 10.4010 17.9602 0.9938
4 2.3760 1.4228 5.5509 11.5528 0.9401

Table 3. Inverse analysis results based on the fractional-order model.

p (MPa) K (GPa) G1 (GPa) G2 (GPa) η (GPa·h) α R2

2 3.3087 1.9852 1.7919 3.2802 0.9412 0.9941
3 2.2010 1.3180 10.2042 17.5820 0.8680 0.9993
4 2.3760 1.4228 4.6696 15.5269 0.5330 0.9932

Figure 10 shows that the creep curves described by the integer-order model have a
faster growth rate in the deceleration creep phase, so it will quickly reach stability, and
the results have a serious error when considered in the context of the field-measured
data; moreover, the error increases with an increase in the stress level, and the calculated
displacement of the final creep is smaller than the measured displacement. The creep
curves in the deceleration creep stage for the fractional-order model are consistent with
the measurements obtained at different stress levels, which can better describe the creep
process of the rock mass. Because the fractional-order model has the additional parameter,
α, which can adjust the rate of the deceleration creep phase compared with the traditional
integer-order model, this enables the creep rate to be adjusted over a wider range. The
determination coefficients of the integer-order model and the fractional-order model are
shown in Table 2, and the fitting accuracy of the latter is significantly better than that of the
former. Moreover, the coefficients of determination between the calculated displacements
of the fractional-order model and measured displacements are all greater than 0.99 at
different levels, with a high correlation; thus, the fractional-order model can also describe
the creep behaviour of the rock well at high-stress levels.
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5.2. Parameter Identification of Circular Rigid Bearing Plate Test

A circular rigid pressure-bearing plate with an area of 2000 cm2 was used to test the
shale section on the downstream side of the second stage hoist foundation of the Tectonic
Beach Hydropower Station for compression creep [26]. The displacement measuring
instrument was situated beneath the circular rigid bearing plate, and the load was applied
by the jack above the bearing plate. The stress distribution transferred to the rock by the
circular rigid bearing plate is as follows [33]:

p(r) =
P

2πr
√

R2
0 − r2

(25)

where P is the total pressure on the bearing plate, P = πR2
0q; q is the normal uniform load

applied by the jack. The elastic and viscoelastic solutions of settlement at the measuring
point are calculated using Equations (7), (12) and (25), in which F(x, y) is expressed in polar
coordinates as follows:

F(x, y) = F(0 ≤ r ≤ R0) =
π2R0q

2
(26)

The results of the rheological model parameter inversions of the rock are obtained
using the same parameter inversion method as in the previous section (Tables 4 and 5).
Figure 11 also shows the comparisons between the theoretical displacement curves of the
two models and the measurements obtained.
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Table 4. Inverse analysis results based on the integer-order model.

q (MPa) K (GPa) G1 (GPa) G2 (GPa) η (GPa·h) R2

1.2 34.77 20.86 56.13 160.09 0.9631
1.5 33.77 20.26 70.69 237.65 0.9602
1.7 30.29 18.18 112.89 270.78 0.8177
2.0 31.89 19.13 81.20 275.01 0.9228
2.2 29.61 17.77 100.54 900.40 0.9653
2.5 29.68 17.81 69.40 496.77 0.9385
2.9 28.82 17.29 73.28 525.61 0.9785

Table 5. Inverse analysis results based on the fractional-order model.

q (MPa) K (GPa) G1 (GPa) G2 (GPa) η (GPa·h) α R2

1.2 34.77 20.86 49.95 171.04 0.707 0.9913
1.5 33.77 20.26 62.81 277.65 0.757 0.9833
1.7 30.29 18.18 74.19 1000 0.389 0.9526
2.0 31.89 19.13 55.89 557.66 0.496 0.9944
2.2 29.61 17.77 88.50 1000 0.786 0.9855
2.5 29.68 17.81 43.42 1000 0.613 0.9858
2.9 28.82 17.29 61.48 633.92 0.852 0.9827
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and the measured results.

Figure 11 shows that both the calculated displacements based on the integer- and
fractional-order models can be consistent with the measurements obtained at different
stress levels; however, as time increases, the creep deformations predicted by the integer-
order model are smaller than those of the fractional-order model. Tables 4 and 5 show
the coefficients of determination of the calculated displacements and the measurements
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obtained for the two models. The fractional-order model’s coefficients of determination are
larger than those of the integer-order model at different stress levels, and the fractional-
order model’s coefficients of determination are greater than 0.95. Therefore, the model’s
theoretical displacements correlate highly with the measurements obtained and can better
describe and predict the rock’s creep deformation.

6. Conclusions

This study develops the fractional-order generalised Kelvin model by replacing the
viscous elements in the classical integer-order generalised Kelvin model with the Abel
damping element. The viscoelastic solutions of a half-space viscoelastic body subjected
to arbitrarily distributed loads are solved for the fractional-order model. In addition, the
function of the settlement is a monotonically increasing function with upper and lower
bounds, demonstrating that the model describes the stable creep and verifies the unity of
the creep equation and the elastic deformation equation for t = 0 and t→ +∞ .

The fractional-order generalised Kelvin model has one more parameter, the differen-
tial order, α, than the integer-order generalised Kelvin model that can regulate the rate
of the decremental phase, according to the parametric and parametric-sensitivity analy-
ses of the four parameters in the fractional-order generalised Kelvin model. Therefore,
the model is more flexible and can describe a wider variety of rheological properties of
viscoelastic bodies, and this parameter is more sensitive to displacement than the other
three parameters.

The fractional- and integer-order generalised Kelvin models are used to fit the exper-
imental results of the two groups of field-bearing plate creep experiments. The results
show that the fractional-order generalised Kelvin model has a better correlation than the
integer-order generalised Kelvin model and can better fit the rock’s creep curve.

Author Contributions: A.L. conceived and designed the study. B.H. derived the formulas and wrote
the programs. B.H. wrote the paper. A.L. and N.Z. reviewed the edited manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: The study is supported by the National Natural Science Foundation of China (U2106224,
51974124) and the Fundamental Research Funds for the Central Universities (2020MS027).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Some or all data, models, or code generated or used during the study
are available from the corresponding author by request.

Acknowledgments: We thank the staff at the same laboratory. We also would like to thank the
reviewers for their constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maheshwari, P.; Viladkar, M.; Kumar, A. Experimental evaluation of nonlinear Kelvin model constants from triaxial test data. Int.

J. Geotech. Eng. 2011, 5, 363–371. [CrossRef]
2. Zhao, D.; Jia, L.; Wang, M.; Wang, F. Displacement prediction of tunnels based on a generalised Kelvin constitutive model and its

application in a subsea tunnel. Tunn. Undergr. Space Technol. 2016, 54, 29–36. [CrossRef]
3. Huang, M.; Zhan, J.W.; Xu, C.S.; Jiang, S. New Creep Constitutive Model for Soft Rocks and Its Application in the Prediction of

Time-Dependent Deformation in Tunnels. Int. J. Geomech. 2020, 20, 04020096. [CrossRef]
4. Wei, Y.; Chen, Q.; Huang, H.; Xue, X. Study on creep models and parameter inversion of columnar jointed basalt rock masses.

Eng. Geol. 2021, 290, 106206. [CrossRef]
5. Li, Y.-P.; Wang, Z.-Y.; Ding, X.-L. Model identification for rheological load test curve and its application. J. Univ. Pet. China Nat.

Sci. Ed. 2005, 29, 73–77.
6. Yang, W.; Zhang, Q.; Li, S.; Wang, S. Estimation of in situ viscoelastic parameters of a weak rock layer by time-dependent

plate-loading tests. Int. J. Rock Mech. Min. Sci. 2014, 66, 169–176. [CrossRef]

http://doi.org/10.3328/IJGE.2011.05.04.363-371
http://doi.org/10.1016/j.tust.2016.01.030
http://doi.org/10.1061/(ASCE)GM.1943-5622.0001663
http://doi.org/10.1016/j.enggeo.2021.106206
http://doi.org/10.1016/j.ijrmms.2014.01.002


Appl. Sci. 2023, 13, 648 17 of 17

7. Xiong, S.; Zhou, H.; Zhong, Z. Study of methodology of plate-loading creep test of rock mass. Chin. J. Rock Mech. Eng. 2009, 28,
2121–2127.

8. Huang, S.; Ding, X.; He, J.; Xiong, S. Analytical solution for rock mass bearing plate rheological tests based on a novel viscoelastic
combination model. Eur. J. Environ. Civ. Eng. 2022, 26, 3204–3218. [CrossRef]

9. Zhou, F.-X.; Wang, L.-Y.; Liu, Z.-Y.; Zhao, W.-C. A viscoelastic-viscoplastic mechanical model of time-dependent materials based
on variable-order fractional derivative. Mech. Time Depend. Mater. 2021, 26, 699–717. [CrossRef]
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