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Abstract: The regular frequent pattern mining (RFPM) approaches are aimed to discover the itemsets
with significant frequency and regular occurrence behavior in a dataset. However, these approaches
mainly suffer from the following two issues: (1) setting the frequency threshold parameter for the
discovery of regular frequent patterns technique is not an easy task because of its dependency on the
characteristics of a dataset, and (2) RFPM approaches are designed to mine patterns from the static
datasets and are not able to mine dynamic datasets. This paper aims to solve these two issues by
proposing a novel top-K identical frequent regular patterns mining (TKIFRPM) approach to function
on online datasets. The TKIFRPM maintains a novel synopsis data structure with item support index
tables (ISI-tables) to keep summarized information about online committed transactions and dataset
updates. The mining operation can discover top-K regular frequent patterns from online data stored
in the ISI-tables. The TKIFRPM explores the search space in recursive depth-first order and applies
a novel progressive node’s sub-tree pruning strategy to rapidly eliminate a complete infrequent
sub-tree from the search space. The TKIFRPM is compared with the MTKPP approach, and it found
that it outperforms its counterpart in terms of runtime and memory usage to produce designated
topmost-K frequent regular pattern mining on the datasets following incremental updates.

Keywords: frequent patterns; regular frequent patterns; data mining; algorithm

1. Introduction

The seminal work for the frequent itemsets (FIs) discovery is named as the Apriori
algorithm [1], and its successor procedures are defined to find frequently occurring items
in the datasets qualifying user-tuned support threshold parameter. The support threshold
is a fundamental parameter which is needed by the FIs’ discovery processes before the
initiation of mining operations. However, it is a challenging task to select a suitable support
threshold parameter for a dataset depending on the characteristics of the dataset [2,3].
Moreover, it is not clear to users how many numbers of patterns could be returned in
response to a particular support threshold parameter [4]. The classical frequent itemsets
mining (FIM) methods could return many redundant or/and insignificant patterns as
itemsets if a low support threshold parameter is provided by users. In addition, providing
a low support threshold parameter could result in less pruning of itemsets and high support
threshold parameter could prune large number of itemsets [5]. Therefore, several interest-
based pattern mining techniques have been proposed to cut down the size of the resultant
itemset [5–11].

One of the criterions for the interestingness of the patterns is to consider the periodicity
or regularity of the patterns along with their frequency [7]. The periodicity or regularity of

Appl. Sci. 2023, 13, 654. https://doi.org/10.3390/app13010654 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010654
https://doi.org/10.3390/app13010654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2650-4149
https://orcid.org/0000-0002-6959-3401
https://orcid.org/0000-0003-3265-0297
https://orcid.org/0000-0001-8363-2051
https://doi.org/10.3390/app13010654
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010654?type=check_update&version=2


Appl. Sci. 2023, 13, 654 2 of 22

a pattern present the occurrence behavior of a pattern (i.e., whether it is found regularly,
irregularly, or if it is present in a particular time interval in a given dataset) [7,12]. A pattern
is termed as a periodic frequent pattern if its frequency is greater than the support threshold
parameter and its periodicity is less than the maximum periodicity [7]. The discovery of
periodic frequent patterns is useful in many applications. For example, the analysis of
a customer’s purchase behavior patterns can result in a better marketing strategy [13]
and analysis of the Web users’ regular access patterns can help in efficiently browsing a
particular website [6]. Similarly, the regular and frequent stock market indices patterns can
be pertinent for companies and individuals for future investment [7,14,15]. A variety of
methods are proposed by the researchers, motivated by the importance and applications of
periodic frequent patterns, such as mining the approximate periodic frequent patterns [11],
mining rare periodic frequent patterns [8], using efficient approaches to mine periodic
frequent patterns from transactional datasets [9], periodic frequent pattern mining from
big data [10], and periodic frequent pattern mining with maximum items support con-
straints [16]. Moreover, periodicity of patterns is noticed by the data mining researchers in
sequential pattern mining, such as discovering periodic high-utility itemsets in a discrete
sequences [17] and an efficient mining of the periodic high-utility sequential patterns [18].
However, all methods need support threshold parameter to be defined by users, and the
mining operation could produce large number of patterns, most of which would not be of
any interest to a user.

To address the issues, a simple approach could be to ask a user about the number of top-
most frequent regular patterns, which are required initially in place of a support threshold.
Following this notion, a number of top-K frequent regular pattern mining methods are in-
troduced in [2,11,12,19]. All the top-K frequent regular patterns classically perform breadth-
first traversal of the search space to generate the required patterns. The top-K frequent
regular patterns maintain a top-K list to record the topmost-K frequent regular patterns in
descending support order during exploration of a search space. In top-K frequent regular
pattern mining, different support calculation procedures are adopted, such as the top-K
frequent regular pattern transaction identifiers (TIDs) intersection method [2], compressed
TIDs [12,19], using dataset partitioning and support estimation [19,20], and a partitioned
dynamic bit vector [21]. However, the available methods have the following limitations:

(a) The top-K frequent regular pattern mining methods adopt a best-fit strategy for the
patterns that are radically using the Apriori method for pattern generation. The
top-K frequent regular pattern mining methods perform excessive candidate pattern
generation, which is inessential for computing. These techniques use no pruning
methods to prune the unnecessary candidates before counting the supports of frequent
regular itemsets.

(b) The top-K frequent regular patterns are applied on offline-datasets. However, the
datasets are online nowadays, and are continuously growing and remain in the
updating stage. Therefore, it is mandatory to have an online synopsis or summary
data structure to maintain the consolidated information of an already present dataset
portion and the current dataset chunk retrieved so far.

To solve the problems, this research work has proposed an algorithm, namely top-
K identical frequent regular pattern mining (TKIFRPM). The TKIFRPM produces top-
K identical frequent regular patterns (FRPs) from the online incremental datasets. The
TKIFRPM maintains a novel data structure with item support index tables (ISI-tables)
to keep summarized information about the updated dataset. Subsequently, the mining
operation can be launched at any time interval to discover the top-K regular frequent
patterns from the ISI-tables. The TKIFRPM explores the search space (arranged in itemset
enumeration tree) in recursive depth-first order. The TKIFRPM applies a novel progressive
node’s sub-tree pruning strategy to rapidly eliminate a complete infrequent sub-tree from
the search space. Hence, the TKIFRPM is computationally efficient as compared to the
best-fit methods of top-K frequent regular pattern mining, since the TKIFRPM method does
not perform support checking on the nodes of the infrequent subtrees unlike other top-K
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frequent regular pattern mining methods. The TKIFRPM is compared with a state-of-the-art
relevant MTKPP approach in terms of runtime (i.e., execution) and memory usage. The
approaches are evaluated on three different dataset (i.e., mushroom, accident, and chess)
and the performance gain on each dataset is recorded. In all experimental scenarios, the
TKIFRPM has outperformed MTKPP in terms of low runtime and memory usage. The
proposed TKIFRPM algorithm could have several real-time applications, including web
mining, stream mining, real-time fraud detection, and stock exchange marketing.

The paper is organized in the following sections. Section 2 presents a detailed review
of the available frequent regular pattern approaches and highlights their advantages and
disadvantages. Section 3 discusses the preliminaries required for the top-K identical
frequent regular pattern mining. The Section 4 presents details of the methodology and
approach used in the proposed TKIFRPM algorithm. The experimental results are presented
in Section 5. In the last section, the conclusion of this research and potential future work
are presented.

2. Literature Review

This section provides a comprehensive overview of the methods proposed by the
researchers for the topmost frequent regular pattern mining algorithms. However, these
methods suffer from several issues. Firstly, these methods are computationally intensive
because they follow the classical Apriori approach for the required pattern mining. Sec-
ondly, the methods are inadequate because they are applicable on static datasets and have
no synopsis structure available to find patterns from online datasets. Thirdly, the K seman-
tics of a parameter where all the topmost regular frequent patterns does not consider the
distinct K support count as topmost-K frequent patterns; rather, if the topmost-K patterns
with the same support are found, it stops mining further distinct K topmost-K support
patterns. Fourthly, none of these methods apply pruning methods, other than the least
support threshold from the top-K list. A detailed review of the topmost-K regular frequent
pattern mining research can be found in [15]. However, a top-level comparison of the
available relevant methods, along with the proposed method, is presented in Table 1 and
discussed in the following paragraphs.

Table 1. Top-level comparison of the topmost frequent regular pattern mining methods.

S. No Method Name Support
Threshold/Top-K

Dataset
(Online/Offline)

Summary Data
Structure

1 MTKKP [2] Top-K Offline No
2 TR-CT [12] Top-K Offline No
3 TKRIMPE [19] Top-K Offline No
4 TFRC-Mine [21] Top-K Offline No
5 PF-ECLAT [22] Support threshold Offline No
6 IMTFRI [20] Top-K Online Yes
7 TKFIM [15] Top-K Offline No
8 TKIFIs Miner [14] Top-K Offline No
8 TKIFRPM (Proposed) Top-K Online Yes

Amphawan et al. [2] have proposed top-K regular frequent patterns from transactional
datasets, namely MTKPP. This approach performs a single scan of a given dataset to
record the TIDs in which the corresponding items appear. The MTKPP uses a top-K list
for ranking and recording top-K frequent regular patterns. The procedure discovers the
patterns by performing breadth-first traversal of the search space. The support of every
pattern is determined by TIDs’ intersection mechanism. The patterns with their support and
regularity are checked against the minimum support of the patterns in the top-K List and
the user-given regularity threshold. A discovered pattern is merged with the patterns in the
top-K list if the pattern’s support is greater than the minimum support and its regularity is
less than or equal to a user’s given regularity threshold. However, the main issues with
MTKPP are the excessive candidate generations and heavy memory consumptions due to
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the in-memory placement of the TIDs of all the items without compression, which could
compromise the performance of MTKPP on sparse and dense datasets.

Amphawan et al. [12] have proposed an approach in another research work on the
top-K frequent regular pattern mining, namely TR-CT (top-K regular frequent itemset
mining based on compressed TIDs). The TR-CT approach uses a top-K list and works
using a best-fit strategy, similar to MTKPP. The TR-CT merges the itemsets (based on
common prefixes) to present in the top-K list and finds their support by intersecting their
compressed TIDs. The discovered itemsets, along with their support and regularity, are
ranked in the top-K list. The performance of TR-CT on sparse datasets is similar to that
of MTKPP. However, TR-CT is found to be more efficient than the MTKPP technique on
dense datasets by requiring less memory due to the compression of the consecutive TIDs.

In another work, Amphawa et al. [19] have proposed another approach, namely
TKRIMPE (top-K regular-frequent itemset mining with dataset partitioning and support
estimation), which is more efficient than TR-CT on sparse datasets. The TKRIMPE works
in two phases. In the first phase, the dataset is partitioned, and each partition is scanned
to collect the support, regularity, and TIDs of a single itemset. The itemsets are ranked in
the top-K list. The second phase is reserved for the itemset mining purpose. This phase is
performed using a best-fit strategy over itemsets available in the top-K list. The itemsets
with highest support and common prefixes are considered first for candidate formation.
Once the candidate is formed, the support estimation method is applied to determine its
estimated support. If the candidate itemset has lower estimated support than the least
support of the itemset in the top-K list, it is dropped from the search space.

The top-K frequent regular pattern discovery methods avoid a large number of pat-
terns. However, these methods still produce a result set containing redundant patterns.
To avoid the redundancy in the result set, top-K frequent regular closed patterns method
with minimum length constraint is proposed by Amphawan et al. [21], namely TFRC-Mine.
The TFRC-Mine follows a two-step process, as with TKRIMPE. The first step is to scan
and initialize the top-K list and the second step is to use best-fit strategy for search space
exploration and pattern mining. For support calculation partition, a dynamic bit vector ap-
proach is applied in TFRC-Mine. The TFRC-Mine method is found to be effective to prune
the candidate itemsets and to count support of the patterns. The TFRC-Mine is reported
to be more computationally efficient than MTKPP [2], TR-CT [12], and TKRIMPE [19] for
large value of K over dense datasets.

Ravikumar et al. [22] has proposed periodic frequent-equivalence class transformation
(PF-ECLAT) for periodic frequent itemset mining. The PF-ECLAT uses frequent itemset
mining ECLAT (equivalence class clustering and bottom-up lattice traversal) algorithm for
periodic frequent itemset mining. The PF-ECLAT requires minimum support threshold
and maximum periodicity as parameter in advance from users. Firstly, the PF-ECLAT finds
one-length patterns and converts the given dataset into a vertical format by applying the
PFP-List data structure. Secondly, the PF-ECLAT works on the PFP-List in depth-first order
and applies a down word closure property to effectively prune itemsets from the search
space. The PF-ECLAT algorithm is found to be more computationally and memory-usage
efficient than other periodic frequent itemset mining algorithms. However, the PF-ECLAT
has the limitations of requiring a support threshold and application on the offline datasets.

Bandit et al. [20] has introduced a single-pass incremental miner of top-k frequent-
regular itemset (IMTFRI). The algorithm is described in two main steps. In the first step,
the incoming batch of transaction is read one by one to record the frequency information of
items. In the second step, the entire top-K frequent regular items list is computed using
the frequency information of the items in the first step. The IMTFRI approach increments
the frequency counts of already discovered top-K frequent regular items. The new top-K
frequent regular itemsets are also discovered from the updated dataset chunk. For the
frequency counting, it uses a partition dynamic bit vector (PDBV) data structure. This
approach uses breadth-first best-fit traversal to mine top-K frequent regular itemsets. No
pruning mechanism is utilized during traversal to prune the itemsets whose frequency is
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decreasing due to the baseline frequency updation mechanism. In other words, IMTFRI
uses only single criteria to merge itemsets whose prefixes are the same rather than also
considering their frequency, which could drop due to baseline frequency updation.

Iqlab et al. [15] has proposed a top-K frequent itemset mining (TKFIM) algorithm
for detecting FIs without a user-defined support threshold. The TKFIM uses the idea of
equivalence classes of set theory where each class represents an independent group of
itemsets. The support of the itemsets is counted and the procedure is applied to the vertical
database structure containing transaction IDs and items. The class-based strategy is used
to determine itemsets of highest support, and the joining process is used for mining class-
based candidates. The current class stops generating candidate itemsets if the least support
in the top-K list is greater than the support of an itemset, and the next class joining is used.
This process is repeated as long as frequent or candidate itemsets are found. However, the
TKFIM does not merge itemsets, and uses a class-based strategy for counting support for
mining, which can work on the static offline datasets but not on the incremental dynamic
online datasets.

Rehman et al. [14] have recently introduced a methodology to mine identical frequent
patterns without a user support threshold, namely the TKIFIs Miner. This approach
generates patterns from offline datasets. However, the patterns it produces are not regular
patterns. The method also accepts K as a parameter from the user finding K topmost
support identical patterns.

3. Background

This section provides detailed preliminary background information to understand the
frequent regular identical itemsets and top-K frequent regular identical itemsets which are
used and presented in the proposed approach in the next section. Several definitions are
presented along with their mathematical equations to provide the background knowledge
of the area and proposed method. The notions used in the equations are presented and
explained in Table 2.

Table 2. Introduction and explanation of the notions used in the mathematic equations.

S. No Symbol/Term Explanation

1 tr Incoming transaction

2 tb/Tb Transaction buffer

3 θr Regularity threshold

4 θs Support threshold

5 ISI − Tables Item support index table

6 P Possible set of candidate itemsets

7 Fl
Frequent regular patterns or patterns

generated at the parent node

8 Cl
Candidate itemsets generated or

available at the parent node

9 Fl+1 New generated frequent pattern

10 Cl+1 New set of candidate itemsets/patterns

11 I Set of all items in a dataset

12 X Itemset or pattern

13 tj Individual transaction

14 IFR Set of frequent regular patterns
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Let I = {i1, i2, . . . . . . . . . .in} present the set of all items. A set X = {ij, . . . . . . . . . .ik} ⊆ I
j ≤ k, j, k ∈ [1, n] is called an itemset or pattern. A transaction dataset T = {t1, t2, . . . ., tm}
over dataset D contain m number of total transactions. Every transaction ti ∈ T is
2-tuple (i.e., ti = (TID, Y) where TID ∈ [1, m] and Y is a pattern). If a pattern X ⊆ Y
is found in transaction ti ∈ T, then the transaction ID (i.e., TID) of the corresponding
transaction is written as tx

j , j ∈ [1, m]. The support count of pattern X is the set of all

corresponding TIDs where transactions contained X as patterns (i.e., Tx =
{

tx
j , . . . . . . , tx

k

}
,

j, k ∈ [1, m] j ≤ k). The period of pattern X is the number of transactions where X as a
pattern does not appear between any two consecutive transections tj, tj+1 ∈ T, J ∈ [1, m].
The regularity of pattern X is the maximum number of transactions between two con-
secutive transactions tj,tj+1 ∈ Tx j ∈ [1, m] where X does not occur in the transaction

dataset (i.e., Px = max
(

Px
1 , Px

2 , . . . .Px
|Tx |−1 , Px

|Tx |

)
). On a user-supplied support threshold

and regularity threshold, R is the set of patterns qualifying aforementioned constraint (i.e.,
R = {∀i = 1 · · · n Xi|∀i = 1 · · · n support(Xi) ≥ θs ∧ ∀i = 1 · · · n Reg(Xi) ≤ θr}). The sup-
port count of all the patterns in R can be collected in a set of distinct support counts
S = {∀i = 1, . . . . . . , m Si = max_suppi(R)}. The patterns in R can be classified into identi-
cal frequent regular (IFR) patterns and top-K identical frequent regular patterns.

3.1. Definition 1—Identical Frequent Regular (IFR) Itemsets

One or more itemsets are called (IFR), if and only if every itemset belongs to a set of
frequent regular patterns R and all the patterns have same support count s ∈ S, where S is
the set of support counts of itemsets belong to R, as shown in the following Equation (1):

IFR = {∀i = 1, . . . , m , 1 ≤ m ≤ nXi ∈ R | ∀i = 1, . . . , m, Support(Xi) = swhere s ∈ S} (1)

For example, if R is a set of frequent regular patterns with user-given regularity = 3,
then any itemset in Table 3 can be considered as a member of R and, hence, is IFR.

Table 3. Transaction dataset batch A.

TID No. Transactions

1 a, b, d
2 b, c, d, e
3 a, b, e, g, h
4 b, e, g, h
5 a, d, e, g
6 c, d, g, h
7 b, c, d, e, g, h
8 a, b, e, h
9 b, d, e, g, h
10 a, b, c, g, h

3.2. Definition 2—Top-1 IFR Itemsets

One or more itemsets are called top-1 IFR (IFR1), if and only if every itemset belongs
to a set of frequent regular patterns R, and all the patterns have a similar highest support
count s1 ∈ S, where S is the set of support counts of itemsets belong to R, as shown in the
following Equation (2):

IFR1 = {∀i = 1, . . . , m , 1 ≤ m ≤ n Xi ∈ R | ∀i = 1, . . . , m, ∃s1 ∈ S Support(Xi) = s1}. (2)

For example, an itemset A = {b} positioned at serial No. 1 in Table 3 with support
(A) = 8 and regularity (A) = 3 is termed as IFR1 . This itemset has the first highest support in
R, and it also satisfies the user-given regularity value that is 3.
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3.3. Definition 3—Top-Kth IFR Itemsets

One or more itemsets are called top-K IFR (IFRK ), if and only if every itemset belongs to
a set of frequent regular patterns R and all the patterns have the same Kth highest support
count sk ∈ S, where S is the set of support counts of itemsets which belong to R, as shown
in the following Equation (3):

IFRK = {∀i = 1, . . . , m , 1 ≤ m ≤ n Xi ∈ R | ∀i = 1, . . . , m, ∃sk ∈ S Support(Xi) = sk} (3)

For example, any itemset in Table 3 is a member of a frequent regular pattern and is
referred as Top-Kth IFR.

In the incremental framework, an online transaction buffer TB is a collection of m transac-
tions received online in a particular time t and is denoted as TBt = {tid1, tid2, tid3, . . . , tidm}.
Then, a transactional set at any current time is a collection of TBs received so far (i.e.,
T = {TB1, TB2, TB3, . . . , TBt}). On a user-provided parameter that is the number of
required patterns K and a regularity threshold σr, the problem of frequent regular pattern
mining is to find the topmost −K identical frequent regular patterns set from the online
transactions dataset.

3.4. Definition 4—Topmost-K IFR Set

A set of IFRs (TK_IFRs) of highest support to the Kth support is found from a given
online transaction dataset D, as is stated in the following Equation (4), where R is the set of
frequent and regular itemsets:

TK_IFRs =
{
∀j = 1, 2, 3, . . . , K IFR_ j ∈ R

∣∣∀i = 1, 2, 3, . . . , K–1, support
(

IFR_ j
)
> support

(
IFR_ j+1

)}
(4)

3.5. Case Example

Consider a dataset consisting of 8 items and 20 transactions. The dataset is bifurcated
into two groups of transactions (shown in Tables 3 and 4, respectively) received in an
online transaction buffer. Mining operation is performed two times on the dataset with the
topmost patterns K = 5 and regularity θr = 3.

Table 4. Transaction dataset batch B.

TID No. Transactions

11 a, d, f
12 b, d, f
13 a, b, c, d, e
14 a, c, d
15 a, b, d
16 a, c, d, e
17 b, c, d, f
18 c, e, f
19 a, b, c, d
20 a, c, d, f

Tables 3 and 4 represents the transaction datasets bifurcated into batch A and batch B,
respectively. After performing a mining operation on the transaction dataset in batch A,
the topmost-5 IFR sets with a regularity less than or equal to 3 are shown in Table 5. The
results produced by performing a mining operation on the online dataset given in Table 5.
Subsequently, the dataset is updated with transaction dataset batch B, as shown in Table 4.
After the update, the mining operation is performed again for finding the topmost-5 IFR
set with a regularity less than or equal to 3. The results produced for the topmost-5 IFR
set is shown in Table 6, which shows that, after the update, the results produced for the
topmost-5 IFR set are different than those shown in Table 5.
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Table 5. Top-5 IFR set after mining batch A.

K Itemsets Regularity/Periodicity Support

1 b 3 8

2 e, g, h 2 7

3 d, be, bh
gh

3
2 6

4 a, bg, eh, beh, bhg
eg

3
2 5

5 ed, beg, egh, begh
gd

3
2 4

Table 6. Top-5 IFR set after mining batch A and B.

K Itemsets Regularity/Periodicity Support

1 d 3 15

2 b 3 13

3 a 3 12

4 g, h 2 7

5 bh, ac, gh 3
2 6

4. TKIFRPM Approach

This section provides a detailed discussion of the proposed top-K identical frequent
regular pattern mining (TKIFRPM) approach for producing topmost-K IFRs. The approach
is able to perform mining on online datasets. The overall TKIFRPM approach/methodology
and algorithm are shown in Figure 1 and Algorithm 1 respectively. The TKIFRPM algorithm
receives online committed transaction tr in step 1. The committed transaction tr is copied
into transactions buffer tb in step 2. Step 3 checks whether the transactions buffer tb is full
or not. If the transaction buffer tb is full, step 4 applies an online synopsis or summary data
structure (explained in Section 4.1), and the synopsis data structure ISI-table is updated
when the transaction buffer tb is found to be full. Step 5 receives all distinct support K
1-itemsets from the ISI-table in the candidate list Cl . Step 6 calls the top-K IFRs mining
search procedure to return K topmost distinct support and regular itemsets of a size greater
than 1. Step 8 and 9 return the itemsets in the top-K list for the current buffer tb.

Algorithm 1 Overall TKIFRPM

r:—Incoming transaction
Input:
tb:—Trasaction bu f f er
θr—Regularity threshold
θs: —Support threshold, initially zero
ISI− tables :—Item support index table
(0) flag = 0 // for the merge sort to be performed for the first time on ISI-Tables
(1) while ((tr = read ( ))! = ∅)
(2) tb = tb ∪ tr
(3) i f (tb is f ull)
(4) update_ISI_tables(ISI − tables, tb, f lag)
(5) f lag = 1 // to perform binary search when tb is full
(6) Cl ← ∅ , Fl ← ∅ ,
(7) Select_K_item( ISI − tables, K, Cl , θr )
(8) Gen_Top–KIFRs( Fl , Cl , θr, θs, top− K List)
(9) Output top− K List;
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Figure 1. The overall TKIFRPM approach and methodology.

4.1. Item Support Index Tables (ISI-Tables)

The classical FIM procedures are designed to perform mining on static datasets. The
static dataset is permanently stored on secondary storage media. These procedures scan
offline static datasets more than once to compute all of the frequent patterns. On the
other hand, the size of an online dataset is not fixed, and the online dataset continuously
remains in the updation mode, which is simultaneously updated when an online committed
transaction arrives or when the online transaction buffer tb is full. Therefore, there is no
specific time for online dataset updation. The classical frequent pattern mining approaches
when applied on an online dataset will inherently perform multiple scans of entire online
dataset stored in the secondary storage media, resulting in a large response time. The
pattern mining routine should have reasonably short response time and perform only one
pass for the selected items on an online dataset when applied recurrently [23,24]. This
motivates the designing of a summary data structure. The TKIFRPM has proposed a
novel summary data structure, namely the items support index tables (ISI-tables). The
structure of the ISI-tables is shown in Figure 2. The ISI-tables have a dynamic data structure
which is maintained in the primary memory area. The ISI-tables data structure stores items
along with their support and TIDs. In addition, the ISI-tables data structure stores items
in an order (ascending or descending) automatically after it is updated. The proposed
mining routine will perform only one pass on the selected items in the ISI-tables rather
than scanning the entire data structure for the generation of topmost frequent patterns. The
ISI-tables’ data structure supports one-time and incremental mining operations.
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Figure 2. Structure of ISI-tables.

4.2. Update ISI-Tables

The ISI-tables are updated using the “update_ISI_tables” algorithm as shown in
Algorithm 2. The algorithm receives the following three parameters: ISI-tables, transaction
buffer Tb, and flag. The ISI-tables are updated with the transactions received in the trans-
action buffer Tb. Each transaction in the Tb is scanned, and for every item in a selected
transaction from Tb, the corresponding row in the support table is adjusted. Every item
in the selected transaction is hashed and stored in the items table to find the address of
the corresponding row ( f1 − ptr) in the support table. The address of an item is used to
update the support, Updt-bit, and TID fields in the support table. At the end, the value
of the flag is checked. If it is 1, the support table is sorted in descending support order
using a merge-sort. The flag value 1 indicates that the ISI-tables are populated for the first
time, and the flag value 0 occurs every time the transaction buffer is copied to the ISI-tables,
and that updation of the ISI-tables is needed. The ISI-tables maintain items in the support
descending order using a binary search. The items with their support values are searched
in the support table using a binary search to find the suitable place for its adjustment. This
way, ISI-tables maintain the order of the items without performing sorting operations on all
items in a dataset.

Algorithm 2 update_ISI_tables (ISI-tables, Tb, flag)

Input:
ISI − tables : −Items Support Index Tables
Tb : −transaction bu f f er
f lag− to per f orm Merge sort or binary search
(1) f oreach tr ∈ Tb
(2) f oreach item ∈ tr
(3) f1 − ptr = ISI− tables.items¯table[item]
(4) ISI− tables.Support¯table[ f1 − ptr].Support ++
(5) ISI− tables.Support¯table[ f1 − ptr].Updt_bit← 1
(6) ISI− tables.Support¯table[ f1 − ptr].id ∪ tr.tid
(7) If (flag==1)
(8) Merge-sort (ISI-tables) // to sort the support table in descending order of the support
(9) else
(10) Binary-search (ISI-tables) // to place the updated items in their correct order in
support table
(11) Return

The “select-K-itemset” algorithm shown in Algorithm 3 copies a 1-itemset from the
ISI-tables. The ISI- tables may contain more than one 1-itemset with a similar support. The
similar support of all these are treated as distinct and selected if their support is above or
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equal to the kth topmost support. This procedure considers three parameters, as follows:
ISI-tables, K, and Cl . The “select-K-itemset” algorithm counts the unique support of items
in ISI-tables and select the corresponding items until the total number of unique supports is
equal to K.

Algorithm 3 select_K_item (ISI-tables, K, Cl)

Input:
∪spt ← unique support
prev− spt← previous support
(1) i← 1 , ∪spt ← 0 , K ← 1 , Cl ← ∅
(2) New item
(3) item.id← ISI − tables.support¯table.item_ id[i]
(4) item.tid← ISI − tables.support¯table.tid[i]
(5) Cl ← Cl ∪ item
(6) prev− spt← support (item.tid)
(7) repeat Until ∪sprt <= k
(8) i ++
(9) New item
(10) item.id← ISI − tables.item− id[i]
(11) item.tid← ISI − tables.support¯tabel.item− tid[i]
(12) Cl ← Cl ∪ item
(13) i f (prev− spt ! = support(item.tid))
(14) ∪sprt ++
(15) prv− spt← support(item.tid)
(16) i f

(
∪sprt ≥ k

)
(17) break
(18) Return Cl

4.3. Topmost-K IFRP Miner

The top-K IFRP set miner is a derivation of the classical depth-first procedure for the
FIS mining [25]. The method finds the set of topmost-K IFRPs using the “gen_top_KIFRs”
algorithm shown in Algorithm 4. The proposed method traverses the search tree using a
recursive depth-first strategy. In every iteration, it forms a new node of a tree, and every
new node is logically divided into two parts, i.e., the head (Fl+1) and tail (Cl+1)). The head
of every new node presents a frequent pattern (Fl+1) greater than the current minimum
threshold. This head p of a new node (Fl+1) is an extension of parent node head potion Fl
with any item ∈ Cl , where Cl is candidate item list (i.e., a tail of a parent node). The tail of
a new node Cl+1 is formed in two steps. Firstly, all items with support less than the item
combined with previous Fl for Fl+1 are collected in P (possible candidate). Secondly, the
support of every item along Fl+1 is checked against the current minimum threshold θs.

4.4. Computational Complexity

The frequent pattern mining approach is comprised of candidate set generation and
the support for finding of candidates. The more candidate set generation is performed, the
more time is consumed for their support calculation. For the support finding operation of
the candidate itemsets, the TKIFRPM performs TIDs intersection of two sets of TIDs. The
TKIFRPM completes one TID intersection in nlogn time. As it performs a binary search
to find whether the TID exist in another set or not, this operation requires nlogn time
for finding one TID. If the total number of transactions received are m (maximum TIDs
received), then the total number of operations required to complete one support calculation
operation is m(nlogn). The TKIFRPM will create maximum 2n nodes in the worst case (i.e.,
to find all frequent itemsets in K) scenario, where n + 1 nodes will not be needed in the
support calculation operations. Therefore, the total number of nodes to be created will be
2n − (n + 1). Thus, the total number of operations required for frequent regular pattern
mining in the worst case will be ((2n − (n + 1))*m (nlogn)), and it will be the same for every
case of mining when the mining operation “Gen_top_KIFRs” is performed on the data
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received from the ISI-tables. In every case, m transaction will be received in transaction
buffer Tb, and if every transaction contains n items, four constant time operations will be
required to be completed. Thus, the time required to complete all operations in updating
ISI-tables will be 4mn. The binary search or merge-sort is performed for enforcing order on
the items and will require nlogn time. Thus, the total time required to update the ISI-tables
will be 4mn+nlogn, and the time required for selecting K itemsets for mining will be n.
Therefore, the total time taken or the computational complexity of the TKIFRPM is shown
in Equation (5), as follows:

Computational Complexity = {((2n − (n + 1)) ∗m(nlogn)) + 4mn + nlogn + n} (5)

Algorithm 4 Gen_top-KIFRs (Fl , Cl , θr, θs, TK_ IFRs)

Input
K: Topmost-K regular frequent itemsets
Fl+1: New frequent pattern extended with highest support item from Cl
Cl+1: Set of candidate items found frequent with the frequent pattern Fl+1
Fl : Frequent pattern or head portion of the parent node
Cl : Candidate itemset list of parent node
θr: User-given regularity threshold
θs: Support threshold
P: Possible candidate set
(1) Foreach x ∈ Cl
(2) Fl+1 = Fl U { x }
(3) TK_ IFRs = TK_ IFRs U Fl+1
(4) θs = min_support(TK_ IFRs )
(5) P = { i : i ∈ Cl and support(i) ≤ support(x)}
(6) Cl+1 = ∅
(7) Foreach y ∈ P
(8) If (support (Fl+1 U y ) ≥ θs and Periodicity (Fl+1 U y ) ≤ θr )
(9) Cl+1 = Cl+1U y
(10) Gen_Top-k_IFRs ( Fl+1, Cl+1, l, θr, θs, TK_ IFRs )

5. Evaluation and Discussion

The experiments are conducted to evaluate and compare the performance trends of
the proposed TKIFRPM approach with the available approaches. The TKIFRPM method
can be compared with all of the available topmost-K identical frequent pattern mining
approaches. However, due to limitations in resources and time, the comparison of the
TKIFRPM is limited to the MTKPP only. The reason for selecting MTKPP is its operational
and structural relevancy to the proposed TKIFRPM to provide better and widely acceptable
results. However, the conclusion derived can be theoretically applied to other relevant
approaches. The performance of both of the approaches is recorded in terms of runtime
(i.e., execution) and memory usage to find/mine the topmost-K identical frequent regular
patterns using incremental online datasets.

5.1. Experimental Setup and Datasets

The TKIFRPM and MTKPP approaches are implemented in Python 3.0 to perform the
comparative evaluation. The three benchmark datasets, namely mushroom, accident, and
chess, are used for both algorithms. The detailed characteristics of the used datasets are
presented in Table 7. The comparative evaluation is carried out using K, θr, and Tb, where K
presents the topmost patterns, θr represents is periodicity, and Tb represents the transaction
buffer size. The different K = {100, 200, 300, 400, 500] values are used in the experimental
setup to discover the topmost patterns. The fixed value of periodicity θr = 15 is used in
every experiment for each of the datasets to compare the runtime on each iteration. The
transaction buffer Tb = {3K for mushroom, 30K for accident, and 1.5K for chess} sizes (i.e.,
size and number of transactions of the dataset) for recording online committed transactions
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is used to simulate an online dataset environment. The experiments are performed in
three iterations on every dataset. The variable size of the transaction buffer is used to
conclude every experiment in each of the three iterations due to the size of the datasets,
which varies in terms of the number of transactions. The transaction buffer Tb size is kept
at 3K transactions for the mushroom dataset, 30K transactions for the accident dataset, and
1.5K transactions for the chess dataset. An individual transaction is read from the dataset
and recorded in the transaction buffer in every transaction, and when the transaction buffer
is found full it is copied to the ISI-tables.

Table 7. Benchmark datasets description.

Datasets Number of Items Average Pattern Length Number of Transactions

Mushroom 119 23 8, 124
Accident 468 33.8 340, 183

Chess 76 37 3, 196

5.2. Runtime Evaluation and Comparision

It is observed that TKIFRPM (i.e., average runtime = 3.15 s) takes less time to find and
produce designated topmost-K patterns then MTKPP (i.e., average runtime = 83.16 s) in the
first iteration, as shown in Figure 3a. However, if a dataset size is large, the MTKPP method
is expected to consume more time to find the topmost-K patterns due to its multiple
scans and support calculation architecture. In the second iteration, it is observed that
TKIFRPM (i.e., average runtime = 1.33 s) is more efficient, performance-wise, at producing
designated topmost-K patterns than the MTKPP (average runtime = 1.98 s), as shown in
Figure 3b. However, in the third iteration, as the dataset size is increased, the performance
of TKIFRPM (i.e., average runtime = 1.60 s) is a little slower to produce designated topmost-
K patterns than the MTKPP (average runtime = 0.29 s), as shown in Figure 3c. It is due
to the fact that in these datasets, the patterns could be of the similar/same support, and
that the MTKPP architecturally skips the multiple patterns of the same support during its
computation process for producing designated topmost-K patterns and results in a shorter
time. However, the TKIFRPM do not skip multiple patterns of the similar/same support,
and ranks them properly to produce designated topmost-K patterns because of its identical
characteristics, in order to pick and process all the identical patterns.

On the accident dataset, the TKIFRPM performs better to produce designated topmost-
K patterns then the MTKPP in all three iterations. In the first iteration, the TKIFRPM has an
average runtime of 104.86 s, and the MTKPP has an average runtime 2061.55 s, as shown in
Figure 4a. In the second iteration, the TKIFRPM has an average runtime of 225.13 s, and
the MTKPP has average runtime of 3303.69 s, as shown in Figure 4b. In the third iteration,
the TKIFRPM has average runtime of 382.95 s, and the MTKPP has average runtime of
4637.52 s, as shown in Figure 4c. For all iterations, it is due to the fact that MTKPP performs
multiple scans for support calculation to produce designated topmost-K patterns, which
results in a long runtime, whereas TKIFRPM does not perform multiple scans, which results
in low runtime and makes TKIFRPM more efficient than MTKPP in terms of performance.
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Figure 3. (a) Performance trends of the first iteration on the mushroom dataset. (b) Performance
trends of the second iteration on the mushroom dataset. (c) Performance trends of the third iteration
on the mushroom dataset.
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Figure 4. (a) Performance trends of the first iteration on the accident dataset. (b) Performance trends
of the second iteration on the accident dataset. (c) Performance trends of the third iteration on the
accident dataset.
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On the chess dataset, the MTKPP takes less time (i.e., average runtime = 108.12 s) than
TKIFRPM (i.e., average runtime = 474.73) to produce designated topmost-K patterns in the
first iteration, as shown in Figure 5a. This is because the size of the dataset is initially small.
Having a small number of multiple patterns of the same support, as discussed earlier, means
that MTKPP skips multiple patterns of the same support, while TKIFRPM do not skip
them and processes them properly. In addition, due to being a small dataset, the MTKPP
picks the patterns with a length equal to 1 of the highest support, whereas TKIFRPM picks
multiple patterns of variable length and of the K highest support simultaneously. However,
as the size of the dataset grows, the TKIFRPM performs better to produce designated
topmost-K patterns as compared to MTKPP in iterations two and three, respectively. In
the second iteration, the TKIFRPM has average runtime of 51.22 s, and the MTKPP has
average runtime of 131.12 s, as shown in Figure 5b. In the third iteration, the TKIFRPM has
average runtime of 10.64 s, and the MTKPP has average runtime of 121.51 s, as shown in
Figure 5c. This is because as the size of a dataset increases, the existence of the patterns
of highest support is similarly increased, and could be of variable length; therefore, the
MTKPP performs multiple scans to find the support of multiple patterns, and the TKIFRPM
does not perform multiple scans for support calculation.

Figure 6a,b shows the consolidated results of all iterations for TKIFRPM and MTKPP
on the mushroom dataset, where TKIFRPM is faster than MTKPP. The TKIFRPM completes
the mining operation in maximum 3 s, whereas MTKPP consumes a maximum 150 s to
complete the same mining operation. The results on the accidents dataset are shown in
the Figure 7a,b, and the results on the chess dataset are shown in the Figure 8a,b, which
signifies that the performance differences are quite clear for the TKIFRPM and MTKPP.
The TKIFRPM is significantly faster in the topmost-K IFR itemset mining than MTKPP.
This is due to that fact that MTKPP is simply using a breadth-first approach, similar to
Apriori, and does not apply any pruning method in the candidate generation. Thus, all
the candidates who have common prefixes are merged, and their support is intersected
using TIDs sets. However, the TKIFRPM strategy of working with candidates is more
effective. The TKIFRPM method first checks the support against the minimum support and
the periodicity against the maximum periodicity. If a candidate has less support than the
minimum support or periodicity greater than maximum periodicity, then the candidate
is pruned from further consideration. Thus, the entire sub-tree with the candidate as root
node is removed from the search space. Therefore, the TKIFRPM method uses a pruning
method, which makes it working faster than the MTKPP method.
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Figure 8. (a) Results of three iterations of TKIFRPM on the chess dataset. (b) Results of three iterations
of MTKPP on the chess dataset.

Conclusively, the performance of TKIFRPM is better than the MTKPP on both small
and large datasets, such as mushroom, accident, and chess. It is also observed that on very
small dataset, the MTKPP requires only a slight lead in runtime as compared to TKIFRPM.
However, as the size of the dataset grows (as in the chess dataset), the performance of
MTKPP deteriorates significantly.

5.3. Memory Usage Evaluation and Comparision

The memory usage evaluations of TKIFRPM and MTKPP methods is performed for
the different datasets discussed earlier (i.e., mushroom, accident, and chess) using K, θr and
Tb values (i.e., K = {100, 200, 300, 400, 500}, K, θr = 15 and K, θr and Tb = {3K for mushroom,
30K for accident, and 1.5K for chess}. The memory usage evaluations are conducted in
same way as runtime evaluations (discussed in Section 5.2) by recording the memory usage
of the methods in three iterations for each of the datasets. The average memory usage of
the methods for the different values of K and each of the datasets are shown in Figure 9a
(mushroom dataset), 9b (accident dataset), and 9c (chess dataset), respectively. The results
depict that TKIFRPM is, memory-wise, more efficient than MTKPP in all scenarios. This is
because MTKPP is an Apriori-based algorithm and follows no candidate pruning strategy
and accepts the Apriori property. Therefore, it keeps large amount of data in the tree in
the memory, which simultaneously grows with the increase in a dataset size. Thus, the
memory usage of MTKPP is the highest not only compared to TKIFRPM but among all
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topmost-K frequent pattern mining techniques. On the other hand, TKIFRPM is based on
the depth-first strategy and, apart from the threshold-based pruning, the TKIFRPM also
follows the look-ahead pruning strategy. This strategy allows TLIFRPM to prune entire
subtrees and eliminate them from the mining process. Therefore, it saves the memory
which could be wasted in the candidate generations and subsequently used in the support
calculation of the TKIFRPM. Conclusively, the TKIFRPM results in less memory usage than
the MTKPP in all experiments.

Figure 9. (a) Memory usage estimations of TKIFRPM and MTKPP on the mushroom dataset.
(b) Memory usage estimations of TKIFRPM and MTKPP on the accident dataset. (c) Memory
usage estimations of TKIFRPM and MTKPP on the chess dataset.
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6. Conclusions and Future Work

Several top-K frequent regular pattern mining methods are introduced using a support
threshold defined by users to determine the number of topmost frequent regular patterns.
The top-K frequent regular patterns maintain the top-K list to record the topmost-K frequent
regular patterns in descending support order during exploration of a search space. The top-
K frequent regular patterns classically perform breadth-first traversal of the search space to
generate the required patterns. In top-K frequent regular pattern mining, different support
calculation procedures are adopted. However, the available methods have the following
limitations: (1) top-K frequent regular pattern mining methods adopt a best-fit strategy
for the patterns, perform excessive candidate pattern generation which is inessential for
computing, and use no pruning methods to prune the unnecessary candidates before
counting the support of the frequent regular itemsets, and (2) top-K frequent regular
patterns are applied on offline-datasets, which are not feasible for the online datasets,
which continuously remain in the updating stage.

This paper has presented a novel top-K identical frequent regular pattern mining
(TKIFRPM) method producing top-K identical frequent regular patterns from the online
transactional and incremental datasets. The TKIFRPM maintains a novel performance-wise
effective data structure with item support index tables (ISI-tables) to keep summarized
information about the updated datasets. The mining operation can be launched at any time
interval to discover top-K regular frequent patterns from the ISI-tables at any instant of
time. The TKIFRPM explores the search space (arranged in an itemset enumeration tree)
in recursive depth-first order. The TKIFRPM applies a novel progressive node’s sub-tree
pruning strategy to rapidly eliminate a complete infrequent sub-tree from the search space.
Hence, the TKIFRPM is computationally efficient compared to the best-fit methods of top-K
frequent regular pattern mining, since TKIFRPM does not perform support checking on
the nodes of the infrequent subtrees, unlike other top-K frequent regular pattern mining
methods. The experimental results have shown that the TKIFRPM method performs better
than its counterpart methods (e.g., MTKPP) on the datasets following incremental updates.

In the future, we expect to provide detailed comparisons of the proposed TKIFRPM
method with other top-K frequent regular pattern mining methods (i.e., TR-CT, TKRIMPE,
TFRC, etc.) using available large-sized online datasets to derive more accurate and widely
acceptable results.
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