Antioxidant and Antimicrobial Properties of Selected Phytogenics for Sustainable Poultry Production
Abstract
:1. Introduction
2. Antioxidant Properties of Phytogenic Products Used in Poultry Production
3. Antimicrobial Properties of Phytogenic Products in Poultry
4. Selected Plant Sources of Antimicrobial and Antioxidant Compounds
4.1. Moringa oleifera
4.2. Lippia javanica
4.3. Camellia sinensis
4.4. Allium sativum L.
4.5. Allium cepa
4.6. Mentha piperita
4.7. Aloe vera
4.8. Seaweeds
5. Contribution of Phytogenics to Environmental Health and Food Security
6. Anti-Nutritional Factors as Constraints to the Use of Phytogenics in Poultry Nutrition
7. Amelioration of Antinutritional Effects in Poultry Consuming Phytogenics
8. Prospects and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farag, M.R.; Alagawany, M.; Tufarelli, V. In vitro antioxidant activities of resveratrol, cinnamaldehyde and their synergistic effect against cyadox-induced cytotoxicity in rabbit erythrocytes. Drug Chem. Toxicol. 2016, 17, 1–10. [Google Scholar]
- Patil, S.R.; Patil, R.S.; Godghate, A.G. Mentha piperita Linn: Phytochemical, antibacterial and dipterian adulticidal approach. Int. J. Pharm. Pharm. Sci. 2016, 8, 352–355. [Google Scholar]
- Reis, J.H.; Gebert, R.R.; Barreta, M.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Santos, I.D.; Wagner, R.; Laporta, L.V.; Stefani, L.M.; et al. Addition of grape pomace flour in the diet on laying hens in heat stress: Impacts on health and performance as well as the fatty acid profile and total antioxidant capacity in the egg. J. Therm. Biol. 2019, 80, 141–149. [Google Scholar] [CrossRef]
- Galli, G.M.; Gerbet, R.R.; Griss, L.G.; Fortuoso, B.F.; Petrolli, T.G.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Mesadri, J.; Wagner, R.; et al. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb. Pathog. 2020, 139, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.H.; Gebert, R.R.; Barreta, M.; Baldissera, M.D.; dos Santos, I.D.; Wagner, R.; Campigotto, G.; Jaguezeski, A.M.; Gris, A.; de Lima, J.L.F.; et al. Effects of phytogenic feed additive based on thymol, carvacrol and cinnamic aldehyde on body weight, blood parameters and environmental bacteria in broilers chickens. Microb. Pathog. 2018, 125, 168–176. [Google Scholar] [CrossRef]
- Starčević, K.; Krstulović, L.; Brozić, D.; Maurić, M.; Stojević, Z.; Mikulec, Ž.; Bajić, M.; Mašek, T. Production performance, meat composition and oxidative susceptibility in broiler chicken fed with different phenolic compounds. J. Sci. Food Agric. 2014, 95, 1172–1178. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Islam, M.M.; Bostami, A.B.M.R.; Mun, H.S.; Kim, Y.J.; Yang, C.J. Meat composition, fatty acid profile and oxidative stability of meat from broilers supplemented with pomegranate (Punica granatum L.) by-products. Food Chem. 2015, 188, 481–488. [Google Scholar] [CrossRef]
- Gouda, H.N.; Charlson, F.; Sorsdahl, K.; Ahmadzada, S.; Ferrari, A.J.; Erskine, H.; Leung, J.; Santamauro, D.; Lund, C.; Aminde, L.N.; et al. Burden of non-communicable diseases in sub-Saharan Africa, 1990–2017: Results from the Global Burden of Disease Study 2017. Lancet. Glob. Health 2019, 7, 1375–1387. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N.; Stanaćev, V.; Glamočić, D.; Lević, J.; Perić, L.; Milić, D. Beneficial effects of phytoadditives in broiler nutrition. World Poult. Sci. J. 2013, 69, 27–34. [Google Scholar] [CrossRef]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Mehdi, Y.; Létourneau-Montminy, M.P.; Gaucher, M.L.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.; Côté, C.; Ramirez, A.A.; Godbout, S. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 2018, 4, 170–178. [Google Scholar] [CrossRef]
- Polat, U.; Yesilbag, D.; Eren, M. Serum biochemical profile of broiler chickens fed diets containing rosemary and rosemary volatile oil. J. Biol. Environ. Sci. 2011, 5, 23–30. [Google Scholar]
- Paraskeuas, V.; Fegeros, K.; Palamidi, I.; Hunger, C.; Mountzouris, K.C. Growth performance, nutrient digestibility, antioxidant capacity, blood biochemical biomarkers and cytokines expression in broiler chickens fed different phytogenic levels. Anim. Nutr. 2017, 3, 114–120. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kim, S.J. Effects of dietary Nigella sativa seed supplementation on broiler productive performance, oxidative status and qualitative characteristics of thighs meat. Ital. J. Anim. Sci. 2016, 15, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Siroma, T.K.; Machate, D.J.; Zorgetto-Pinheiro, V.A.; Figueiredo, P.S.; Marcelino, G.; Hiane, P.A.; Bogo, D.; Pott, A.; Cury, E.R.J.; Guimarães, R.D.C.A.; et al. Polyphenols and ω-3 PUFAs: Beneficial outcomes to obesity and its related metabolic diseases. Front. Nutr. 2022, 8, 781622. [Google Scholar] [CrossRef]
- Zdanowska-Ssiadek, A.; Lipínska-Palka, P.; Damaziak, K.; Michalczuk, M.; Marchewka, J. Antioxidant effects of phytogenic herbal-vegetable mixtures additives used in chicken feed on breast meat quality. Anim. Sci. Pap. Rep. 2018, 36, 393–408. [Google Scholar]
- Tian, X.Z.; Lu, Q.; Paengkoum, P.; Paengkoum, S. Short communication: Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage. J. Dairy Sci. 2020, 103, 7808–7812. [Google Scholar] [CrossRef]
- Dyshlyuk, L.; Babich, O.; Ivanova, S.; Vasilchenco, N.; Atuchin, V.; Korolkov, I.; Prosekov, A. Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation. Int. Biodeterior. 2020, 146, 104821. [Google Scholar] [CrossRef]
- Nakatani, N. Phenolic antioxidants from herbs and spices. Biofactors 2000, 13, 141–146. [Google Scholar] [CrossRef]
- De Castilho, T.S.; Matias, T.B.; Nicolini, K.P.; Nicolini, J. Study of interaction between metal ions and quercetin. Food Sci. Hum. Well. 2018, 7, 215–219. [Google Scholar] [CrossRef]
- Na, H.K.; Surh, Y.J. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem. Toxicol. 2008, 46, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Cornelius, C.; Mancuso, C.; Pennisi, G.; Calafato, S.; Bellia, F.; Bates, T.E.; Giuffrida Stella, A.M.; Schapira, T.; Dinkova Kostova, A.T.; et al. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem. Res. 2008, 33, 2444–2471. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Mahfuz, S.; Shang, Q.; Piao, X. Phenolic compounds as natural feed additives in poultry and swine diets: A review. J. Anim. Sci. Biotechnol. 2021, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Kuralkar, P.; Kuralkar, S.V. Role of herbal products in animal production—An updated review. J. Ethnopharmacol. 2021, 278, 114246. [Google Scholar] [CrossRef] [PubMed]
- Rossi, B.; Toschi, A.; Piva, A.; Grilli, E. Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutr. Res. Rev. 2020, 33, 218–234. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Borguini, R.G.; Markowicz, C.H.; Bastos, J.M.; Moita-neto, F.S.; Capasso, E.A.; Ferraz da Silva, T. Antioxidant potential of tomatoes cultivated in organic and conventional systems. Braz. Arch. Biol. Technol. 2013, 56, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.W.; Everts, H.; Kappert, H.J.; van der Kuilen, J.; Lemmers, A.G.; Frehner, M.; Beynen, A.C. Growth performance, intestinal viscosity, fat digestibility and plasma cholesterol in broiler chickens fed a rye-containing diet without or with essential oil components. Int. J. Poult. Sci. 2004, 3, 613–618. [Google Scholar]
- Burt, S.; Reindeers, R.D. Antibacterial activity of selected plant essential oils against E. coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Mathis, G.F.; Hofacre, C.; Scicutella, N. Performance improvement with a feed added coated blend of essential oils, a coated blend of organic and inorganic acids with essential oils, or virginiamycin in broilers challenged with Clostridium perfringens. In Proceedings of the International Poultry Scientific Forum, Strasbourg, France, 26–30 August 2007. [Google Scholar]
- Chen, D.; Chen, G.; Sun, Y.; Zeng, X.; Ye, H. Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: A review. Food Res. Int. 2020, 137, 109584. [Google Scholar] [CrossRef]
- Dhifi, W.; Hamrouni, I.; Ayachi, S.; Chahed, T.; Saidani, M.; Marzouk, B. Biochemical characterization of some Tunisian olive oils. J. Food Lipids 2004, 11, 287–296. [Google Scholar] [CrossRef]
- Alloui, M.N.; Agabou, A.; Alloui, N. Application of herbs and phytogenic feed additives in poultry production—A Review. Glob. J. Anim. Sci. 2014, 2, 234–243. [Google Scholar]
- Nantapo, C.W.T.; Marume, U. Exploring the potential of Myrothamnus flabellifolius Welw. (resurrection tree) as a phytogenic feed additive in animal nutrition. Animals 2022, 12, 1973. [Google Scholar] [CrossRef]
- Oladeji, I.S.; Adegbenro, M.; Osho, I.B.; Olarotimi, O.J. The efficacy of phytogenic feed additives in poultry production: A review. Turk. J. Agric. Food Sci. Technol. 2019, 7, 2038–2041. [Google Scholar] [CrossRef] [Green Version]
- Perricone, V.; Comi, M.; Giromini, C.; Rebucci, R.; Agazzi, A.; Savoini, G.; Bontempo, V. Green tea and pomegranate extract administered during critical moments of the production cycle improves blood antiradical activity and alters cecal microbial ecology of broiler chickens. Animals 2020, 10, 785. [Google Scholar] [CrossRef]
- Aksit, M.; Goksoy, E.; Kok, F.; Ozdemir, D.; Ozdogan, M. The impacts of organic acid and essential oil supplementations to diets on the microbiological quality of chicken carcasses. Arch. Geflugelkd. 2006, 70, 168–173. [Google Scholar]
- Ganguly, S. Phytogenic growth promoter as replacers for antibiotic growth promoter in poultry birds. Adv. Pharmacoepidem. Drug Saf. 2013, 2, 119. [Google Scholar] [CrossRef] [Green Version]
- Mohebodini, H.; Jazi, V.; Bakhshalinejad, R.; Shabani, A.; Ashayerizadeh, A. Effect of dietary resveratrol supplementation on growth performance, immune response, serum biochemical indices, cecal microflora, and intestinal morphology of broiler chickens challenged with Escherichia coli. Livest. Sci. 2019, 229, 13–21. [Google Scholar] [CrossRef]
- Vanmarsenille, C.; Elseviers, J.; Yvanoff, C.; Hassanzadeh-Ghassabeh, G.; Garcia Rodriguez, G.; Martens, E.; Depicker, A.; Martel, A.; Haesebrouck, F. In planta expression of nanobody-based designer chicken antibodies targeting Campylobacter. PLoS ONE 2018, 13, e0204222. [Google Scholar] [CrossRef]
- Ferreira, P.M.P.; Farias, D.F.; Oliveira, J.T.D.A.; Carvalho, A.D.F.U. Moringa oleifera: Bioactive compounds and nutritional potential. Rev. Nutr. 2008, 21, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, M.; Anwar, F.; Iqbal, T.; Bhanger, M.I. Physico-chemical characterization of Moringa concanensis seeds and seed oil. J. Am. Oil Chem. Soc. 2007, 84, 413–419. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Elrys, A.S.; Desoky, E.S.M.; Tolba, H.M.; Elnahal, A.S.; Elnesr, S.S.; Swelum, A.A. Effect of forage Moringa oleifera L.(moringa) on animal health and nutrition and its beneficial applications in soil, plants and water purification. Agriculture 2018, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Ravani, A.; Prasad, R.V.; Gajera, R.R.; Joshi, D.C. Potentiality of Moringa oleifera for food and nutritional security—A review. Agric. Rev. 2017, 38, 228–232. [Google Scholar] [CrossRef]
- Dalei, J.; Rao, V.M.; Sahoo, D.; Rukmini, M.; Ray, R. Review on nutritional and pharmacological potencies of Moringa oleifera. Eur. J. Pharm. Med. Res. 2016, 3, 150–155. [Google Scholar]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Mbikay, M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycaemia and dyslipidaemia: A review. Front. Pharm. 2012, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Shetty, N.P.; Giridhar, P. GC-FID/MS analysis of fatty acids in Indian cultivars of Moringa oleifera: Potential sources of PUFA. J. Am. Oil Chem. Soc. 2014, 91, 1029–1034. [Google Scholar] [CrossRef]
- Maizuwo, A.I.; Hassan, A.S.; Momoh, H.; Muhammad, J.A. Phytochemical constituents, biological activities, therapeutic potentials and nutritional values of Moringa oleifera (Zogale): A review. J. Drug Des. Med. Chem. 2017, 3, 60–66. [Google Scholar]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crops Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K. Nutritional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Anim. Feed Sci. Technol. 1996, 63, 211–228. [Google Scholar] [CrossRef]
- Kakengi, A.; Kaijage, J.; Sarwatt, S.; Mutayoba, S.; Shem, M.; Fujihara, T. Effect of Moringa oleifera leaf meal as a substitute for sunflower seed meal on performance of laying hens in Tanzania. Livest. Res. Rural Dev. 2007, 19, 446. [Google Scholar]
- Khan, I.; Zaneb, H.; Masood, S.; Yousaf, M.S.; Rehman, H.F.; Rehman, H. Effect of Moringa oleifera leaf powder supplementation on growth performance and intestinal morphologyin broiler chickens. J. Anim. Physiol. Anim. Nutr. 2017, 101, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Wafula, M.C.; Mutisya, M.D.; Malombe, I. Non-volatile chemical composition and botanical extracts from Lippia javanica (Burm. F) Spreng. in control of cowpea aphids. J. Appl. Sci. 2019, 19, 325–330. [Google Scholar]
- Ombito, J.O.; Salano, E.N.; Yegon, P.K.; Ngetich, W.K.; Mwangi, E.M. A review on the chemistry of some species of genus Lippia (Verbenaceae family). J. Sci. Innov. Res. 2014, 3, 460–466. [Google Scholar] [CrossRef]
- Viljoen, A.M.; Subramoney, S.V.; van Vuuren, S.F.; Başer, K.H.C.; Demirci, B. The composition, geographical variation and antimicrobial activity of Lippia javanica (Verbenaceae) leaf essential oils. J. Ethnopharmacol. 2005, 96, 271–277. [Google Scholar] [CrossRef]
- Coopoosamy, R.M.; Naidoo, K.K. An ethnobotanical study of medicinal plants used by traditional healers in Durban, South Africa. Afr. J. Pharm. Pharmacol. 2012, 6, 818–823. [Google Scholar] [CrossRef]
- Maroyi, A. Lippia javanica (Burm. F.) Spreng.: Traditional and commercial uses and phytochemical and pharmacological significance in the african and indian subcontinent. Evid. Based Complem. Altern. Med. 2017, 2017, 1–42. [Google Scholar]
- Mahlangeni, N.T.; Moodley, R.; Jonnalagadda, S.B. Elemental composition of Cyrtanthus obliquus and Lippia javanica used in South African herbal tonic, Imbiza. Arab. J. Chem. 2018, 11, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Chawafambira, A. The effect of incorporating herbal (Lippia javanica) infusion on the phenolic, physicochemical, and sensorial properties of fruit wine. Food Sci. Nutr. 2021, 9, 4539–4549. [Google Scholar] [CrossRef]
- Olivier, D.K.; Shikanga, E.A.; Combrinck, S.; Krause, R.W.M.; Regnier, T.; Dlamini, T.P. Phenylethanoid glycosides from Lippia javanica. S. Afr. J. Bot. 2010, 76, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Pascual, M.E.; Slowing, K.; Carretero, M.E.; Villar, Á. Antiulcerogenic activity of Lippia alba (Mill.) NE Brown (Verbenaceae). Farmaco 2001, 56, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Chagonda, L.S.; Chalchat, J.C. Essential oil composition of Lippia javanica (Burm. f.) spreng chemotype from Western Zimbabwe. J. Essent. Oil-Bear. Plants 2015, 18, 482–485. [Google Scholar] [CrossRef]
- Mpofu, D.A.; Marume, U.; Mlambo, V.; Hugo, A. The effects of Lippia javanica dietary inclusion on growth performance, carcass characteristics and fatty acid profiles of broiler chickens. Anim. Nutr. 2016, 2, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Mnisi, C.M.; Matshogo, T.B.; van Niekerk, R.; Mlambo, V. Growth performance, haemo-biochemical parameters and meat quality characteristics of male Japanese quails fed a Lippia javanica-based diet. S. Afr. J. Anim. Sci. 2017, 47, 661–671. [Google Scholar] [CrossRef]
- Namita, P.; Mukesh, R.; Vijay, K.J. Camellia sinensis (green tea): A review. Glob. J. Pharmacol. 2012, 6, 52–59. [Google Scholar]
- Chen, L.; Zhou, Z.X.; Yang, Y.J. Genetic improvement and breeding of tea plant (Camellia sinensis) in China: From individual selection to hybridization and molecular breeding. Euphytica 2007, 154, 239–248. [Google Scholar] [CrossRef]
- Tai, Y.; Liu, C.; Yu, S.; Yang, H.; Sun, J.; Guo, C.; Huang, B.; Liu, Z.; Yuan, Y.; Xia, E.; et al. Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis). BMC Genom. 2018, 19, 1–13. [Google Scholar] [CrossRef]
- Abdo, Z.M.A.; Hassan, R.A.; Amal, A.E.; Shahinaz, A.H. Effect of adding Camellia sinensis and its aqueous extract as natural antioxidants to laying hen diet on productive, reproductive performance and egg quality during storage and its content of cholesterol. Egypt. Poult. Sci. J. 2010, 30, 1121–1149. [Google Scholar]
- Wang, Y.; Ho, C.T. Polyphenolic chemistry of tea and coffee: A century of progress. J. Agric. Food Chem. 2009, 57, 8109–8114. [Google Scholar] [CrossRef]
- Reygaert, W.C. The antimicrobial possibilities of green tea. Front. Microbiol. 2014, 5, 434. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, J.; Zhao, H.; Guo, H.; Li, J. Functional mechanism on stem cells by tea (Camellia sinensis) bioactive compounds. Food Sci. Hum. Wellness 2022, 11, 579–586. [Google Scholar] [CrossRef]
- Chen, D.; Ding, Y.; Chen, G.; Sun, Y.; Zeng, X.; Ye, H. Components identification and nutritional value exploration of tea (Camellia sinensis L.) flower extract: Evidence for functional food. Int. Food Res. J. 2020, 132, 109100. [Google Scholar] [CrossRef]
- Chen, G.J.; Yuan, Q.X.; Saeeduddin, M.; Ou, S.Y.; Zeng, X.X.; Ye, H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr. Polym. 2016, 153, 663–678. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D.; Korczak, J.; Helak, B.; Dziedzic, K.; Górecka, D. Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chem. 2016, 211, 448–454. [Google Scholar] [CrossRef]
- Mahlake, S.K.; Mnisi, C.M.; Lebopa, C.K.; Kumanda, C. The effect of green tea (Camellia sinensis) leaf powder on growth performance, selected haematological indices, carcass characteristics and meat quality parameters of Jumbo quail. Sustainability 2021, 13, 7080. [Google Scholar] [CrossRef]
- Al-Kayali, K.K.; Razooqi, B.M.; Mtaab, A.S. Antibacterial activity of aqueous extract of green tea on bacteria isolated from children with impetigo. Diyala J. Med. 2011, 1, 37–43. [Google Scholar]
- Friesen, N.; Fritsch, R.M.; Blattner, F.R. Phylogeny and new intrageneric classification of Allium L. (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 2002, 22, 372–395. [Google Scholar] [CrossRef]
- Morales-González, J.A.; Madrigal-Bujaidar, E.; Sánchez-Gutiérrez, M.; Izquierdo-Vega, J.A.; Valadez-Vega, M.D.C.; Álvarez-González, I.; Morales-González, Á.; Madrigal-Santillán, E. Garlic (Allium sativum L.): A brief review of its antigenotoxic effects. Foods 2019, 8, 343. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, A.; Mengesha, W. Traditional uses, phytochemistry and pharmacological properties of garlic (Allium Sativum) and its biological active compounds. Int. J. Sci. Res. Eng. Technol. 2015, 1, 142–148. [Google Scholar]
- Indrasanti, D.; Indradji, M.; Hastuti, S.; Aprilliyani, E.; Rosyadi, K. The administration of garlic extract on Eimeria stiedai oocysts and the hematological profile of the Coccidia infected rabbits. Media Peternak. 2017, 3, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Milosevic, N.; Stojcic, M.D.; Stanacev, V.; Peric, L.; Veljic, M. The performance and carcass traits of broilers feed with garlic (Allium sativum) additive. Eur. Poult. Sci. 2013, 77, 254–259. [Google Scholar]
- Ogbuewu, I.P.; Mbajiorgu, C.A.; Okoli, I.C. Antioxidant activity of ginger and its effect on blood chemistry and production physiology of poultry. Comp. Clin. Pathol. 2019, 28, 655–660. [Google Scholar] [CrossRef]
- Clement, F.; Pramod, S.N.; Venkatesh, Y.P. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins. Int. Immunopharmacol. 2010, 10, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Țigu, A.B.; Moldovan, C.S.; Toma, V.A.; Farcaș, A.D.; Moț, A.C.; Jurj, A.; Fischer-Fodor, E.; Mircea, C.; Pârvu, M. Phytochemical analysis and in vitro effects of Allium fistulosum L. and Allium sativum L. extracts on human normal and tumor cell lines: A comparative study. Molecules 2021, 26, 574. [Google Scholar] [CrossRef]
- Kimura, S.; Tung, Y.C.; Pan, M.H.; Su, N.W.; Lai, Y.J.; Cheng, K.C. Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal. 2017, 25, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Sobolewska, D.; Michalska, K.; Podolak, I.; Grabowska, K. Steroidal saponins from the genus Allium. Phytochem. Rev. 2016, 15, 1–35. [Google Scholar] [CrossRef]
- Pagrut, N.; Ganguly, S.; Tekam, S.; Bhainsare, P. Effect of supplementation of garlic extract on the productive performance of broiler chicks. Ratio 2018, 11, 12. [Google Scholar]
- Eltazi, S.; Ka, M.; Ma, M. Effect of using garlic powder as natural feed additive on performance and carcass quality of broiler chicks. Assiut. Vet. Med. J. 2014, 60, 45–53. [Google Scholar] [CrossRef]
- Brewster, J.L. Onions and Other Vegetable Alliums, 2nd ed.; CABI: Wallingford, UK, 2008. [Google Scholar]
- Sami, R.; Elhakem, A.; Alharbi, M.; Benajiba, N.; Almatrafi, M.; Helal, M. Nutritional values of onion bulbs with some essential structural parameters for packaging process. Appl. Sci. 2021, 11, 2317. [Google Scholar] [CrossRef]
- Mahmood, N.; Muazzam, M.A.; Ahmad, M.; Hussain, S.; Javed, W. Phytochemistry of Allium cepa L. (Onion): An overview of its nutritional and pharmacological importance. Sci. Inq. Rev. 2021, 5, 41–59. [Google Scholar] [CrossRef]
- Goodarzi, M.; Nanekarani, S. Effect of onion extract in drink water on performance and carcass traits in broiler chickens. IERI Procedia 2014, 8, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Pareek, S.; Sagar, N.A.; Sharma, S.; Kumar, V. Onion (Allium cepa L.). In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; Yahia, E.M., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2018; Volume 2, pp. 1145–1162. [Google Scholar]
- Metrani, R.; Singh, J.; Acharya, P.K.; Jayaprakasha, G.S.; Patil, B. Comparative metabolomics profiling of polyphenols, nutrients and antioxidant activities of two red onion (Allium cepa L.) cultivars. Plants 2020, 9, 1077. [Google Scholar] [CrossRef]
- Kothari, D.; Lee, W.D.; Niu, K.M.; Kim, S.K. The genus Allium as poultry feed additive: A review. Animals 2019, 9, 1032. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.X.; Lin, F.J.; Li, H.; Li, H.B.; Wu, D.T.; Geng, F.; Gan, R.Y. Recent advances in bioactive compounds, health functions, and safety concerns of onion (Allium cepa L.). Front. Nutr. 2021, 8, 669805. [Google Scholar] [CrossRef]
- Guo, A.; Bao, K.; Sang, S.; Zhang, X.; Shao, B.; Zhang, C.; Yang, X. Soft-chemistry synthesis, solubility and interlayer spacing of carbon nano-onions. RSC Adv. 2021, 11, 6850–6858. [Google Scholar] [CrossRef]
- Goodarzi, M.; Nanekarani, S.; Landy, N. Effect of dietary supplementation with onion (Allium cepa L.) on performance, carcass traits and intestinal microflora composition in broiler chickens. Asian Pac. J. Trop. Dis. 2014, 4, S297–S301. [Google Scholar] [CrossRef]
- Slavin, J.L. Carbohydrates, dietary fiber, and resistant starch in white vegetables: Links to health outcomes. Adv. Nutr. 2013, 4, 351S–355S. [Google Scholar] [CrossRef]
- Aditya, S.; Ahammed, M.; Jang, S.H.; Ohh, S.J. Effects of dietary onion (Allium cepa) extract supplementation on performance, apparent total tract retention of nutrients, blood profile and meat quality of broiler chicks. Asian-Australas. J. Anim. Sci. 2017, 30, 229–235. [Google Scholar] [CrossRef]
- Ibrahiem, I.A.; Elam, T.A.; Mohamed, F.F.; Awadalla, S.A.; Yousif, Y.I.; Ibrahim, I.A.; Elam, T.A.; Mohamed, F.F.; Awadalla, S.A.; Yousif, Y.I. Effect of onion and/or garlic as feed additives on growth performance and immunity in broiler muscovy ducks. In Proceedings of the First Scientific Conference of Faculty of Veterinary Medicine, Moshtohor, Egypt, 1–4 September 2004; pp. 1–4. [Google Scholar]
- Dosoky, W.M.; Zeweil, H.S.; Ahmed, M.H.; Zahran, S.M.; Shaalan, M.M.; Abdelsalam, N.R.; Abdel-Moneim, A.M.E.; Taha, A.E.; El-Tarabily, K.A.; Abd El-Hack, M.E. Impacts of onion and cinnamon supplementation as natural additives on the performance, egg quality, and immunity in laying Japanese quail. Poult. Sci. 2021, 100, 101482. [Google Scholar] [CrossRef]
- Mainasara, M.M.; Bakar, M.F.A.; Waziri, A.H.; Musa, A.R. Comparison of phytochemical, proximate and mineral composition of fresh and dried peppermint (Mentha piperita) leaves. J. Sci. Technol. 2018, 10, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, S.C.C.; Menezes, A.P.P.; Barbalho, S.M.; Guiguer, É.L. Properties of Mentha piperita: A brief review. World J. Pharm. Med. Res. 2017, 3, 309–313. [Google Scholar]
- Farnad, N.; Heidari, R.; Aslanipour, B. Phenolic composition and comparison of antioxidant activity of alcoholic extracts of peppermint (Mentha piperita). J. Food Meas. Charact. 2014, 8, 113–121. [Google Scholar] [CrossRef]
- Sujana, P.; Sridhar, T.M.; Josthna, P.; Naidu, C.V. Antibacterial activity and phytochemical analysis of Mentha piperita L.(Peppermint)—An important multipurpose medicinal plant. Sci. Res. J. 2013, 4, 77–83. [Google Scholar]
- Badal, R.M.; Badal, D.; Badal, P.; Khare, A.; Shrivastava, J.; Kumar, V. Pharmacological action of Mentha piperita on lipid profile in fructose-fed rats. Iran. J. Pharm. Res. 2011, 10, 843–847. [Google Scholar]
- Uribe, E.; Marín, D.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Rodríguez, A. Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants. Food Chem. 2016, 190, 559–565. [Google Scholar] [CrossRef]
- Beigi, M.; Torki-Harchegani, M.; Ghasemi Pirbalouti, A. Quantity and chemical composition of essential oil of peppermint (Mentha× piperita L.) leaves under different drying methods. Int. J. Food Prop. 2018, 21, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Dorman, H.D.; Koşar, M.; Başer, K.H.C.; Hiltunen, R. Phenolic profile and antioxidant evaluation of Mentha x piperita L.(peppermint) extracts. Nat. Prod. Commun. 2009, 4, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Khempaka, S.; Pudpila, U.; Molee, W. Effect of dried peppermint (Mentha cordifolia) on growth performance, nutrient digestibility, carcass traits, antioxidant properties, and ammonia production in broilers. J. Appl. Poult. Res. 2013, 22, 904–912. [Google Scholar] [CrossRef]
- Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G.; Mohammadrezaei, M. Growth performance, serum biochemistry and blood hematology of broiler chicks fed different levels of black seed (Nigella sativa) and peppermint (Mentha piperita). Livest. Sci. 2010, 129, 173–178. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.; Kehraus, S.; Südekum, K.H. Peppermint and its respective active component in diets of broiler chickens: Growth performance, viability, economics, meat physicochemical properties, and carcass characteristics. Poult. Sci. 2019, 98, 3850–3859. [Google Scholar] [CrossRef]
- Dagne, E.; Bisrat, D.; Viljoen, A.; Van Wyk, B.E. Chemistry of Aloe species. Curr. Org. Chem. 2000, 4, 1055–1078. [Google Scholar] [CrossRef]
- Minjares-Fuentes, R.; Rodríguez-González, V.M.; González-Laredo, R.F.; Eim, V.; González-Centeno, M.R.; Femenia, A. Effect of different drying procedures on the bioactive polysaccharide acemannan from Aloe vera (Aloe barbadensis Miller). Carbohydr. Polym. 2017, 168, 327–336. [Google Scholar] [CrossRef]
- Boudreau, M.D.; Mellick, P.W.; Olson, G.R.; Felton, R.P.; Thorn, B.T.; Beland, F.A. Clear evidence of carcinogenic activity by a whole-leaf extract of aloe barbadensis miller (Aloe vera) in F344/n rats. Toxicol. Sci. 2013, 131, 26–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Bao, Z.; Ye, X.; Xie, Z.; He, K.; Mergens, B.M.; Zheng, Q.B. Chemical investigation of major constituents in Aloe vera leaves and several commercial Aloe juice powders. J. AOAC Int. 2018, 101, 1741–1751. [Google Scholar] [CrossRef]
- Christaki, E.V.; Florou-Paneri, P.C. Aloe vera: A plant for many uses. J. Food Agric. Environ. 2010, 8, 245–249. [Google Scholar]
- Aida, P.U.I.A.; Cosmin, P.U.I.A.; Emil, M.O.I.Ș.; Graur, F.; Fetti, A.; Florea, M. The phytochemical constituents and therapeutic uses of genus Aloe: A review. Not. Bot. Horti Agrobot. Cluj Napoca 2021, 49, 12332. [Google Scholar]
- Darabighane, B.; Zarei, A.; Shahneh, A.Z.; Mahdavi, A. Effects of different levels of Aloe vera gel as an alternative to antibiotic on performance and ileum morphology in broilers. Ital. J. Anim. Sci. 2011, 10, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Dai, B.S.; Jiang, L.; Chen, S.X. Effects of medicinal herb and polysaccharide from Aloe on gut microflora, immune function and growth performance in broiler. China Poult. 2007, 29, 21–24. (In Chinese) [Google Scholar]
- Darabighane, B.; Zarei, A. The effects of the different levels of Aloe vera gel on oocysts shedding in broilers with coccidiosis. Planta Med. 2012, 78, 496. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Mahrose, K. Seaweeds, intact and processed, as a valuable component of poultry feeds. J. Mar. Sci. Eng. 2020, 8, 620. [Google Scholar] [CrossRef]
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotech. Adv. 2011, 29, 483–501. [Google Scholar] [CrossRef] [PubMed]
- van Hal, J.W.; Huijgen, W.J.J.; López-Contreras, A.M. Opportunities and challenges for seaweed in the biobased economy. Trends Biotechnol. 2014, 32, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Lee, S.R.; Oh, J.W. Effects of dietary fermented seaweed and seaweed fusiforme on growth performance, carcass parameters and immunoglobulin concentration in broiler chicks. Asian-Australas. J. Anim. Sci. 2014, 27, 862–870. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Okab, A.B.; Aljumaah, R.S.; Samara, E.M.; Abdoun, K.A.; Al-Haidary, A.A. Nutritional value of green seaweed (Ulva lactuca) for broiler chickens. Ital. J. Anim. Sci. 2013, 12, 177–181. [Google Scholar] [CrossRef]
- Nhlane, L.T.; Mnisi, C.M.; Mlambo, V.; Madibana, M.J. Nutrient digestibility, growth performance, and blood indices of Boschveld chickens fed seaweed-containing diets. Animals 2020, 10, 1296. [Google Scholar] [CrossRef]
- Mohammadigheisar, M.; Shouldice, V.L.; Sands, J.S.; Lepp, D.; Diarra, M.S.; Kiarie, E.G. Growth performance, breast yield, gastrointestinal ecology and plasma biochemical profile in broiler chickens fed multiple doses of a blend of red, brown and green seaweeds. Brit. Poult. Sci. 2020, 61, 590–598. [Google Scholar] [CrossRef]
- El-Deek, A.A.; Brikaa, M.A. Nutritional and biological evaluation of marine seaweed as a feedstuff and as a pellet binder in poultry diet. Int. J. Poult. Sci. 2009, 8, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Berry, E.M. The concept of food security. Encycl. Food Sec. Sustain. 2019, 2, 1–7. [Google Scholar]
- Ogundeji, A.A.; Danso-Abbeam, G.; Jooste, A. Climate information pathways and farmers’ adaptive capacity: Insights from South Africa. Environ. Dev. 2022, 44, 100743. [Google Scholar] [CrossRef]
- Mthiyane, D.M.N.; Mhlanga, B.S. The nutritive value of marula (Sclerocarya birrea) seed cake for broiler chickens: Nutritional composition, performance, carcass characteristics and oxidative and mycotoxin status. Trop. Anim. Health Prod. 2017, 49, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Meat Market Review: Emerging Trends and Outlook. Available online: https://www.fao.org/publications/card/en/c/CB2423EN/#:~:text=World%20meat%20production%20in%202020,import%20demand%20from%20East%20Asia (accessed on 1 December 2020).
- Andretta, I.; Hickmann, F.M.W.; Remus, A.; Franceschi, C.H.; Mariani, A.B.; Orso, C.; Kipper, M.; Létourneau-Montminy, M.P.; Pomar, C. Environmental impacts of pig and poultry production: Insights from a systematic review. Front. Vet. Sci. 2021, 8, 750733. [Google Scholar] [CrossRef]
- Lovatto, P.A.; Hauschild, L.; Hauptli, L.; Lehnen, C.R.; Carvalho, A.A. Modelagem da ingestão, retenção e excreção de nitrogênio e fósforo pela suinocultura Brasileira. J. Ver. Bras. Zootec. 2005, 34, 2348–2354. [Google Scholar] [CrossRef] [Green Version]
- Russ, A.; Schaeffer, E. Ammonia Emissions from Broiler Operations Higher Than Previously Thought. 2. Environmental Integrity Project. Available online: https://www.environmentalintegrity.org/wp-content/uploads/2017/02/Ammonia-Report.pdf (accessed on 22 January 2018).
- Glibert, P.M. From hogs to HABs: Impacts of industrial farming in the US on nitrogen and phosphorus and greenhouse gas pollution. Biogeochemistry 2020, 150, 139–180. [Google Scholar] [CrossRef]
- de Mesquita Souza Saraiva, M.; Lim, K.; do Monte, D.F.M.; Givisiez, P.E.N.; Alves, L.B.R.; de Freitas Neto, O.C.; Kariuki, S.; Júnior, A.B.; de Oliveira, C.J.B.; Gebreyes, W.A. Antimicrobial resistance in the globalized food chain: A One Health perspective applied to the poultry industry. Braz. J. Microbiol. 2022, 53, 465–486. [Google Scholar] [CrossRef]
- Torres, A.G. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar]
- Forgetta, V.; Rempel, H.; Malouin, F.; Vaillancourt, R., Jr.; Topp, E.; Dewar, K.; Diarra, M.S. Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken. Poult. Sci. 2012, 91, 512–525. [Google Scholar] [CrossRef]
- IFAH. The Costs of Animal Disease; White Paper; Oxford Analytica: Oxford, UK, 2012. [Google Scholar]
- Soetan, K.O.; Oyewole, O.E. The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: A review. Afr. J. Food Sci. 2009, 3, 223–232. [Google Scholar]
- Emiola, I.A.; Ologhobo, A.; Akinlade, J.; Adedeji, S.O.; Bamgbabe, O. Effect of inclusion of differently processed Mucuna utilis seed meal on performance characteristics of broilers. Trop. Anim. Health Prod. 2003, 6, 13–21. [Google Scholar]
- Erdaw, M.M.; Wu, S.; Iji, P.A. Growth and physiological responses of broiler chickens to diets containing raw, full-fat soybean and supplemented with a high-impact microbial protease. Asian-Australas. J. Anim. Sci. 2017, 30, 1303–1313. [Google Scholar] [CrossRef]
- Kavoi, B.M.; Gakuya, D.W.; Mbugua, P.N.; Kiama, S.G. Effects of dietary Moringa oleifera leaf meal supplementation on chicken intestinal structure and growth performance. J. Morphol. Sci. 2016, 33, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.F.; Ru, F.; Song, S.Y.; Choct, M. The effect of cassava chips, pellets, pulp and maize based diets on performance, digestion and metabolism of nutrients for broilers. J. Anim. Vet. Adv. 2014, 11, 1332–1337. [Google Scholar]
- Akapo, A.O.; Oso, A.O.; Bamgbose, A.M.; Sanwo, K.A.; Jegede, A.V.; Sobayo, R.A.; Idowu, O.M.; Fan, J.; Li, L.; Olorunsola, R.A. Effect of feeding cassava (Manihot esculenta Crantz) root meal on growth performance, hydrocyanide intake and haematological parameters of broiler chicks. Trop. Anim. Health Prod. 2014, 46, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Jelveha, K.; Rasoulia, B.; Seidavia, A.; Diarra, S.S. Comparative effects of Chinese green tea (Camellia sinensis) extract and powder as feed supplements for broiler chickens. J. Appl. Anim. Res. 2018, 46, 1114–1117. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.M. Effects of Guar meal, Guar gum and saponin rich Guar meal extract on productive performance of starter broiler chicks. Afr. J. Agric. Res. 2013, 8, 2464–2469. [Google Scholar]
- Farhadi, D.; Karimi, A.; Sadeghi, G.; Sheikhahmadi, A.; Habibian, M.; Raei, A.; Sobhani, K. Effects of using eucalyptus (Eucalyptus globulus L.) leaf powder and its essential oil on growth performance and immune response of broiler chickens. Iran. J. Vet. Res. 2017, 18, 60–62. [Google Scholar]
- Kulshreshtha, G.; Rathgeber, B.; Stratton, G.; Thomas, N.; Evans, F.; Critchley, A.; Prithiviraj, B. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poult. Sci. 2014, 93, 2991–3001. [Google Scholar] [CrossRef]
- Nduku, X.P.; Mabusela, S.P.; Nkukwana, T.T. Growth and meat quality of broiler chickens fed Moringa oleifera leaf meal, a probiotic and an organic acid. S. Afr. J. Anim. Sci. 2020, 50, 710–718. [Google Scholar] [CrossRef]
- Igwilo, I.O.; Okonkwo, J.C.; Ugochukwu, G.C.; Ezekwesili, C.N.; Nwenyi, V. Comparative studies on the nutrient composition and anti-nutritional factors in different parts of Moringa oleifera plant found in Awka, Nigeria. Bioscientist 2017, 5, 1–12. [Google Scholar]
- Narzarya, H.; Basumatary, S. Amino acid profiles and anti-nutritional contents of traditionally consumed six wild vegetables. Curr. Chem. Lett. 2019, 8, 137–144. [Google Scholar] [CrossRef]
- Mahlake, S.K.; Mnisi, C.M.; Kumanda, C.; Mthiyane, D.M.N.; Montso, P.K. Green tea (Camellia sinensis) products as alternatives to antibiotics in poultry nutrition: A Review. Antibiotics 2022, 11, 565. [Google Scholar] [CrossRef]
- Salawu, K.; Owolarafe, T.A.; Ononamadu, C.J.; Ihegboro, G.O.; Lawal, T.A.; Aminu, M.A.; Oyekale, A.J. Phytochemical, nutritional composition and heavy metals content of Allium cepa (Onion) and Allium sativum (Garlic) from Wudil Central Market, Kano State, Nigeria. Biokemistri 2019, 33, 311–317. [Google Scholar]
- Nalimu, F.; Oloro, J.; Kahwa, I.; Ogwang, P.E. Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. Future J. Pharm. Sci. 2021, 7, 1–21. [Google Scholar] [CrossRef]
- Trendafilova, A.; Moujir, L.M.; Sousa, P.M.C.; Seca, A.M.L. Research advances on health effects of edible Artemisia species and some sesquiterpene lactones constituents. Foods 2021, 10, 65. [Google Scholar] [CrossRef]
- Castañeda-Loaiza, V.; Placines, C.; Rodrigues, M.J.; Pereira, C.; Zengin, G.; Uysal, A.; Jeko, J.; Cziáky, Z.; Reis, C.P.; Gaspar, M.M. If you cannot beat them, join them: Exploring the fruits of the invasive species Carpobrotus edulis (L.) N.E. Br as a source of bioactive products. Ind. Crop. Prod. 2020, 144, 112005. [Google Scholar] [CrossRef]
- Nnenna, A.O.; Okwudil, A.; Kelechi, A.K.; Kenechukwu, O.C.; Izuchukwu, U.I.; Mayer, E.M. Nutritional profile, bioactive compound content and antioxidant activity of ethanol leaf extract of Eucalyptus tereticornis. Eur. J. Biomed. Pharm. Sci. 2020, 7, 61–73. [Google Scholar]
- Feng, Y.; Carroll, A.R.; Addepalli, R.; Fechner, G.A.; Avery, V.M.; Quinn, R.J. Vanillic acid derivatives from the green algae (Cladophora socialis) as potent protein tyrosine phosphatase 1B inhibitors. J. Nat. Prod. 2007, 70, 1790–1792. [Google Scholar] [CrossRef]
- Lizardi-Jimenez, M.A.; Hernandez-Martınez, R. Solid state fermentation (SSF): Diversity of applications to valorize waste and biomass. 3 Biotech 2017, 7, 1–9. [Google Scholar] [CrossRef]
- de Pereira, G.V.M.; de Coelho, B.O.; Júnior, A.I.M.; Thomaz-Soccol, V.; Soccol, C.R. How to select a probiotic? A review and update of methods and criteria. Biotechnol. Adv. 2018, 36, 2060–2076. [Google Scholar] [CrossRef]
- Olukomaiya, O.O.; Adiamo, O.Q.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem. 2020, 315, 126238. [Google Scholar] [CrossRef]
- Shi, H.; Su, B.; Chen, X.; Pian, R. Solid state fermentation of Moringa oleifera leaf meal by mixed strains for the protein enrichment and the improvement of nutritional value. PeerJ 2020, 8, e10358. [Google Scholar] [CrossRef] [PubMed]
- Ijarotimi, O.S.; Adeoti, O.A.; Ariyo, O. Comparative study on nutrient composition, phytochemical, and functional characteristics of raw, germinated, and fermented Moringa oleifera seed flour. Food Sci. Nutr. 2013, 1, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, W.K. Dietary application of tannins as a potential mitigation strategy for current challenges in poultry production: A Review. Animals 2020, 10, 2389. [Google Scholar] [CrossRef] [PubMed]
- Batista, K.A.; Pereira, K.W.J.; Moreira, B.R.; Silva, C.N.S.; Fernandes, K.F. Effect of autoclaving on the nutritional quality of hard-to-cook common beans (Phaseolus vulgaris). Int. J. Environ. Agric. Biotechnol. 2020, 5, 22–30. [Google Scholar] [CrossRef]
- Tarimbuka, L.I.; Yusuf, H.B.; Wafar, R.J. Response of weaner rabbits fed toasted sickle pod (Senna occidentilis) seed meal. Asian J. Agric. Res. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Hwang, I.G.; Shin, Y.J.; Lee, S.; Lee, J.; Yoo, S.M. Effects of different cooking methods on the antioxidant properties of red pepper (Capsicum annuum L). Prev. Nutr. Food Sci. 2012, 17, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Dosković, V.; Bogosavljević-Bosković, S.; Pavlovski, Z. Enzymes in broiler diets with special reference to protease. World Poult. Sci. J. 2013, 69, 343–360. [Google Scholar] [CrossRef]
- Costa, M.M.; Pestana, J.M.; Carvalho, P.; Alfaia, C.M.; Martins, C.F.; Carvalho, D.; Mourato, M.; Gueifão, S.; Delgado, I.; Coelho, I.; et al. Effect on broiler production performance and meat quality of feeding Ulva lactuca supplemented with carbohydrases. Animals 2022, 12, 1720. [Google Scholar] [CrossRef]
- Abou-Arab, A.A.; Abu-Salem, F.M. Nutritional quality of Jatropha curcas seeds and effect of some physical and chemical treatments on their anti-nutritional factors. Afr. J. Food Sci. 2010, 4, 93–103. [Google Scholar]
Phytogenics | Anti-Nutritional Factors | References |
---|---|---|
Moringa | Tannins, oxalates, phytate, saponins, cyanogenic glycosides, alkaloids, flavonoids | [156] |
Lippia | Tannins, oxalates, saponins, phytate, alkaloids | [157] |
Camellia sinensis | Flavonoids, phenolics | [158] |
Garlic | Alkaloids, tannins, saponins | [159] |
Onion | Alkaloids, tannins, flavonoids, total phenolics | [159] |
Peppermint | Alkaloids, saponins, glycosides, tannins, flavonoids | [108] |
Aloe | Flavonoids, tannins, alkaloids | [160] |
Artemisia afra | Flavonoids, alkaloids, phenolic acids, lignans, proanthocynidins | [161] |
Carpobrotus edulis | Saponins, flavonoids, alkaloids, cyanogenic glycosides, tannins | [162] |
Eucalyptus | Tannins, phytate, oxalates, saponins | [163] |
Seaweeds | Flavonoids, phlorotannins | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mnisi, C.M.; Mlambo, V.; Gila, A.; Matabane, A.N.; Mthiyane, D.M.N.; Kumanda, C.; Manyeula, F.; Gajana, C.S. Antioxidant and Antimicrobial Properties of Selected Phytogenics for Sustainable Poultry Production. Appl. Sci. 2023, 13, 99. https://doi.org/10.3390/app13010099
Mnisi CM, Mlambo V, Gila A, Matabane AN, Mthiyane DMN, Kumanda C, Manyeula F, Gajana CS. Antioxidant and Antimicrobial Properties of Selected Phytogenics for Sustainable Poultry Production. Applied Sciences. 2023; 13(1):99. https://doi.org/10.3390/app13010099
Chicago/Turabian StyleMnisi, Caven M., Victor Mlambo, Akho Gila, Allen N. Matabane, Doctor M. N. Mthiyane, Cebisa Kumanda, Freddy Manyeula, and Christian S. Gajana. 2023. "Antioxidant and Antimicrobial Properties of Selected Phytogenics for Sustainable Poultry Production" Applied Sciences 13, no. 1: 99. https://doi.org/10.3390/app13010099
APA StyleMnisi, C. M., Mlambo, V., Gila, A., Matabane, A. N., Mthiyane, D. M. N., Kumanda, C., Manyeula, F., & Gajana, C. S. (2023). Antioxidant and Antimicrobial Properties of Selected Phytogenics for Sustainable Poultry Production. Applied Sciences, 13(1), 99. https://doi.org/10.3390/app13010099