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Abstract: The improved phase congruency (PC) algorithms have been successfully applied to optical
and synthetic aperture radar (SAR) image registration since they are insensitive to nonlinear radiomet-
ric and geometric differences. However, most of the algorithms are sensitive to large-scale differences
and rotation differences between optical and SAR images. To tackle this, we propose a PC framework
to register optical and SAR images. It is compatible with large-scale and rotation invariance. Firstly,
a multi-scale Harris keypoint extraction method based on the maximum moment of PC (named
PC-Harris) is proposed. The scale space is constructed by combining PC with the log-Gabor filter.
Secondly, we propose a PC model to construct the feature descriptors. The orientation and amplitude
responses are obtained based on the PC model. Meanwhile, the novel descriptor is constructed based
on the polar coordinate system and thus can handle the scale and rotation differences between optical
and SAR images. Finally, outliers are removed by the fast sample consensus (FSC). The experiments
conducted on several optical and SAR images verify the effectiveness of the proposed framework.

Keywords: image registration; optical and synthetic aperture radar (SAR); scale; rotation;
phase congruency (PC)

1. Introduction

With the development of remote sensing techniques and the increasing demand for
aerial remote sensing image processing, multi-sensor information processing technology,
including image registration and fusion, has greatly increased [1,2]. Optical images have
such advantages as easy understanding, rich content, obvious structural features, high
resolution, and a large field of view angle, but they are greatly influenced by illumination,
cloud, season, and shadow. SAR images have the advantages of working all day and
in all weather conditions since they are not easily affected by illumination and weather.
However, SAR images also have disadvantages, such as the ambiguity of target details
and the insufficient detection range. The registration of airborne SAR and optical images
is very important, and it is the foundation of image fusion and image mosaic. Therefore,
multi-sensor image registration as a key technology of multi-sensor image fusion is crucially
important [3,4]. In general, optical-to-SAR image registration has two main categories:
area-based and feature-based methods. Compared with area-based methods, feature-
based methods can successfully solve the scale and rotation differences between multi-
sensor images [5]. Feature-based algorithms can be composed of feature detection and
descriptor building. In the stage of feature detection, points and lines are commonly
used. First, the point-based feature detection methods are more sophisticated. Based on
SIFT [6], SURF [7], and other traditional algorithms, many researchers have achieved scale
invariance in the keypoint detection stage. Ma et al. [8] replaced the traditional gradient
with position, scale, and orientation information on the basis of the SIFT algorithm. It
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was robust to nonlinear intensity transformation, but it was sensitive to geometric and
radiometric differences between optical and SAR images. Fan et al. [9] extended the
nonlinear diffusion method to extract uniformly distributed keypoints. They proposed a
structural descriptor based on the PC information. Xiang et al. [10] proposed a SIFT-like
algorithm for optical and SAR images (OS-SIFT). It used a multi-scale Harris detector
to improve the keypoint repeatability between optical and SAR images. These above
algorithms provided the registration framework based on the keypoint-based method. In
addition, for the line-based method, Zhang et al. [11] proposed the features and spectral
graph theory to perform SAR and optical image registration. The algorithm extracted
line segments, and defined the intersection points between different line segments as
keypoints. However, the algorithm was inapplicable to the situation with little structural
information. At present, the most popular keypoint extraction method is to extract corner
points from the image composed solely of edge information. In optical and SAR images,
the edge features obtained by the PC maximum moment are consistent, so the corner
point detection methods based on the PC maximum moment are popular with researchers.
Ye et al. [12] used the orientation histogram based on the PC model to deal with the
nonlinear radiometric difference between optical and SAR images. It used PC information
to reflect the structural properties. However, it was sensitive to scale and geometric
differences. Li et al. [13] proposed a radiation-variation insensitive feature transform
method. It replaces the image intensity values with the PC information to extract keypoints,
which improves the compatibility with the radiometric difference between optical and
SAR image pairs. However, the algorithm does not consider the scale invariance, so it
cannot match the optical and SAR images with large-scale differences. Xie et al. [14] used
the complexity analysis method to obtain keypoints, and combined the PC maximum
moment with the binary mode to build the novel descriptor. Although the porposed
algorithm can overcome the geometric and radiometric differences between optical and
SAR images, it is only compatible with small-scale and rotation differences. Wang et al. [15]
proposed a 3D descriptor based on the oriented gradients, and it improved the robustness
of the registration results. However, it cannot solve large-scale and rotation differences.
Meanwhile, Jia et al. [16] used the novel nonlinear diffusion scale space to obtain the
keypoints, and it improved the computational efficiency by optimizing the number of
matching correspondences.

For the optical and SAR remote sensing image registration, PC-based algorithms are
more robust to nonlinear radiometric and geometric differences. However, most of them
are sensitive to scale and rotation differences between optical and SAR images. To solve this
problem, we propose an algorithm based on the PC framework, which takes the scale and
rotation differences between optical and SAR images into account. The main contributions
of the proposed algorithm are as follows:

(1) To solve the problem that the scale invariance is not considered in the PC-based
algorithms, we propose a novel multi-scale space based on the PC algorithm, which
is constructed by the convolution of the maximum moment map and log-Gabor
filter. Then, the Harris detector is used to extract keypoints in the novel multi-scale
space and we name the method PC-Harris. PC-Harris is compatible with large-scale
differences between optical and SAR images.

(2) In order to solve the problem that most of the descriptor construction methods based
on the PC algorithm are not suitable for large-scale and rotation differences between
optical and SAR images, we propose a PC-based descriptor (named PCLG), which
combines the PC maximum moment and the log-Gabor filter.

The remainder of this paper is organized as follows: Section 2 describes the PC-
based feature detector and the novel descriptor. Section 3 analyzes the performance of
the proposed algorithm. Section 4 presents the conclusion and the recommendations for
future work.
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2. Proposed Method

This section first introduces the PC algorithm [17] and then illustrates the proposed
PC-Harris detector and the proposed PCLG descriptor. Figure 1 shows the framework of
the proposed algorithm.
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2.1. Review of PC Theory

The 2D log-Gabor filter plays an important role in the PC theory, and it can be defined
as follows:

LG(w, θ) = exp(
−(ln(w/w0))

2

2(ln(σ/w0))
2 ) · exp(

−(θ − θ0)
2

2σ2
θ

) (1)

where w0 is the centre frequency of the 2D log-Gabor filter; σ is the bandwidth; σ/w0 is
a constant; θ0 is the filtering orientation; and σθ is the standard deviation of the Gaussian
function. In the spatial domain, the 2D log-Gabor filter can be represented as follows:

LG(x, y) = LGeven
s,o (x, y) + i× LGodd

s,o (x, y) (2)

where LGeven
s,o and LGodd

s,o stand for the even-symmetric and the odd-symmetric log-Gabor
wavelets in s scale and o orientation, respectively.

Assuming that I(x, y) is an image, convolving I(x, y) with LGeven
s,o and LGodd

s,o yields
the response components es,o(x, y) and os,o(x, y) as follows:

[es,o(x, y), os,o(x, y)] = [I(x, y) ∗ LGeven
s,o (x, y), I(x, y) ∗ LGodd

s,o (x, y)] (3)

Then, the amplitude component As,o(x, y) and the phase component φs,o(x, y) of I(x, y)
at scale s and orientation o can be obtained by the following:

As,o(x, y) =
√

es,o(x, y)2 + os,o(x, y)2 (4)

φs,o(x, y)= arctan(os,o(x, y)/es,o(x, y)) (5)

where As,o(x, y) is the function that will be used in the descriptor construction process.
Finally, the 2D PC model PC(x, y) can be defined as follows:
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PC(x, y) =
∑
s

∑
o

w0(x, y)bAs,o(x, y)∆Φs,o(x, y)− Tc

∑
s

∑
o

As,o(x, y) + ξ
(6)

where w0(x, y) is the weighting factor; b·c refers to the fact that the enclosed quantity is
equal to zero when its value is negative; T denotes the noise threshold; ∆Φs,o(x, y) is a
phase deviation on the scale s and orientation o; and ξ is a small value.

The PC maximum moment M to be used in the proposed algorithm is calculated
as follows:

a = ∑
θ

(PC(θ)cosθ)2 (7)

b = 2∑
θ

(PC(θ)cosθ)(PC(θ) sin θ) (8)

c = ∑
θ

(PC(θ)sinθ)2 (9)

M =
1
2
(c + a +

√
b2 + (a− c)2) (10)

Thus, the PC maximum moment M and the amplitude component As,o(x, y) that will
be used in the process of keypoint detection and descriptor construction are all obtained.

2.2. The Proposed Algorithm
2.2.1. The Feature Detector PC-Harris

At present, the feature detectors based on the PC maximum moment of the edge
images become more prevalent since the PC-based algorithms are not sensitive to the
geometric and radiometric differences between optical and SAR images. However, PC-
based feature detectors are not compatible with the scale differences. Thus, to solve the
scale difference problem between optical and SAR images, we propose a scale-insensitive
feature detection method. It convolves the PC maximum moment with the log-Gabor filter
to construct the scale space.

First, the PC maximum moment M of the optical or SAR image I(x, y) is calculated.
Second, the response map A′s,o(x, y) in the orientation o and the scale s is calculated by
combining the log-Gabor filter and M according to Formulas (3) and (4). The response map
A′si (x, y) of the maximum moment M on the scale si is obtained as follows:

A′si (x, y) =
o

∑
j=1

A′si ,oj(x, y) (11)

where the scale factor is si ∈ [1, s]. The gradient amplitude D(si) and orientation θ(si) are
calculated by the gradient components DX(x, y) and DY(x, y) as follows:

D(si) =

√
DX(x, y)2 + DY(x, y)2 (12)

θ(si)= tan−1(DY(x, y)/DX(x, y)2) (13)

The proposed PC-based Harris scale space is obtained by DX(x, y) and DY(x, y)
as follows:

Msi (x, y) = g√2si
∗
[

(DX(x, y))2 DX(x, y)DX(x, y)
DY(x, y)DX(x, y) (DY(x, y))2

]
(14)

Rsi (x, y)= det(Msi (x, y))− d · tr(Msi (x, y))2 (15)
where g stands for a Gaussian kernel; ∗ represents the convolution operator; d is an arbitrary
parameter; and det and tr denote the values of the matrix determinant and the matrix
trace, respectively.

Here, experiments are conducted to analyze the performance of the proposed PC-
Harris between the optical and SAR images. Figure 2 and Table 1 show the quantitative
results of the keypoint repeatability based on the multi-scale Harris [12] and the proposed
PC-Harris. Among them, the scale factor s is set to 4 and the threshold between repeatable
keypoints is set to 3. On the premise that the two detectors extract similar numbers of
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keypoints, Table 1 shows that the proposed PC-Harris gains approximately 2% of points
compared with the multi-scale Harris. Therefore, the proposed PC-Harris can improve the
keypoint repeatability between optical and SAR images.
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Table 1. Comparisons on repeatability rates.

Method Multi-Harris PC-Harris

γ (%) 13.62 15.71

2.2.2. Feature Description

It is well known that the PC-based descriptor is prevalent because of its robustness to
nonlinear radiation. However, most of them are sensitive to scale and rotation differences.
Thus, we propose a novel PC-based descriptor, which is compatible with large-scale and
rotation differences between optical and SAR images. Here, we use the previously calcu-
lated response map As,o(x, y), which contains both orientation and amplitude information,
to construct a novel descriptor. Above all, the amplitude and orientation are calculated
under the condition that s and o are set to 4 and 6, respectively. The calculated 24 response
maps as shown in Figure 3. We sum the response map value Asi ,oj(x, y) in each scale sj,
and obtain the response map Aoj(x, y) in each orientation oj as follows:

Aoj(x, y) =
4

∑
i=1

Asi ,oj(x, y) (16)

Ao(x, y)= {Ao1(x, y), . . . , Aoj(x, y), . . . , Ao6(x, y)} (17)

As for each keypoint (x, y), we obtain the maximum response map Amax
oi

(x, y) as
follows, and the index value oi(x, y) represents the orientation of Amax

oi
(x, y):

Amax
oi

(x, y)= max{Ao1(x, y), . . . , Aoj(x, y), . . . , Ao6(x, y)} (18)

Then, we construct the descriptor vectors based on the above method. On the one hand,
we expect that the descriptor is unique. On the other hand, it is better to be insensitive to the
geometric and radiometric differences between optical and SAR images. However, the two
aspects are contradictory. To solve this problem, we use the novel descriptor construction
framework to obtain the orientation histogram. As shown in Figure 4, the inner circle
improves the descriptor uniqueness by the histogram statistic of the six orientations based
on the four location bins, and the outer circle reduces the sensitivity to nonlinear differences
by mapping the six orientations to three orientations. In detail, the steps of the proposed
descriptor are as follows:

Step 1: The descriptor framework is constructed in the polar coordinate system, and the
main orientation is obtained in the region where one keypoint is located. The framework
is rotated to the main orientation to ensure the rotation invariance of the framework.
Among them, the main orientation is statistically obtained from the θ(x, y) corresponding
to Formula (13).
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Step 2: As shown in Figure 4, two radial areas are composed of 4 and 8 orientation bins,
respectively. oi(x, y) ∈ [1 6] and the amplitude of each location bin is counted up in the six
orientations. Each location bin corresponds to a 6-dimensional orientation histogram, and
12 groups of 6-dimensional vectors are obtained totally.

Step 3: For the rotation invariance of the elements in one eigenvector, the orientation
histogram in each location bin is rotated to the main orientation Θ by the process in Figure 5
to ensure the rotation invariance of the elements.
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Step 4: In the outer circle, the 6-dimensional orientation is mapped to the 3-dimensional
orientation. In detail, the amplitudes in two orientations are added together to form the
outer circle vector. It is a 24-dimensional vector which consists of 8 location bins and
3 orientations. In the inner circle, a 24-dimensional vector is counted up from the 4 location
bins and 6 orientations. The two vectors are concatenated into a 48-dimensional descriptor.

In Figure 6a,b, the yellow circles represent the local regions used for the descriptor
construction, and the size is set to 153× 153 pixels. Note that the dimension of the proposed
descriptor is 48, which is smaller than the descriptor of OS-SIFT. Therefore, only the first
48-dimensional vectors are displayed in Figure 6c,d. It can be seen that the two curves
of the optical and SAR images in Figure 6d have a higher fitting degree. Meanwhile,
the dimension of the proposed descriptor is smaller than that of the OS-SIFT. It is more
conducive to the subsequent calculation efficiency.
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3. Experiments

In this Section, to estimate the optical-to-SAR image registration capability of the
proposed algorithm, we use the proposed algorithm to compare with OS-SIFT [12] and
RIFT [15]. Both of the two comparison algorithms display a good performance for optical
and SAR image registration. All methods in this paper are conducted via MATLAB
R2020b software.

3.1. Parameter Settings

In the experiments, the thresholds used for the keypoint detection are set to 0.01 and
0.02, respectively. In the process of descriptor construction, to obtain more information, the
circle radius of the support region is empirically set to 30sj. Settings of the parameters in
the two comparison algorithms are the same as described by their authors’ instructions.
At the same time, in order to obtain a similar number of keypoints, we fine-turned the
thresholds of the keypoint detection.

3.2. The Performance of the Proposed Algorithm

The proposed algorithm is carried out on more than 30 image pairs, and the perfor-
mance is evaluated using four optical and SAR image pairs that have significant intensity
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and geometric differences. Table 2 lists the details of the four test image pairs, and Figure 7
shows the matching results of the test images. The four SAR images are from the 23rd insti-
tute of the second Academy of China Aerospace Science and Industry Corporation, and the
four optical images are from Google Earth.

Table 2. Details of the test images.

Pair Image Source Resolution/m Date Size/Pixel

A Google Earth 2 m 25 July 2020 1707 × 1321
A Airborne SAR 2 m 5 November 2019 1724 × 1384
B Google Earth 2 m 25 July 2020 1853 × 979
B Airborne SAR 2 m 5 November 2019 1612 × 925
C Google Earth 1 m 9 May 2021 789 × 696
C Airborne SAR 1 m 1 October 2020 785 × 679
D Google Earth 1 m 9 May 2021 1454 × 643
D Airborne SAR 1 m 1 October 2020 1460 × 608
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Four pairs of images describe the suburbs with geometric and intensity differences.
Note that the scale and rotation differences of the test image pairs are small. Therefore, the
scale factor is set to one. In particular, it is a challenging task since there are roofs and a
mountain in Pair B. The side-looking mechanism of SAR sensors makes the roof regions
suffer from shadows and strong scattering. The buildings in optical and SAR images
have significant geometric and radiometric differences, which leads to a low structural
information consistency of the homonymy points. In sum, for the optical and SAR images
with small-scale and rotation differences, the matching points of the four image pairs are
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all located in the correct locations. The proposed algorithm obtains the ideal numbers of
matching point pairs, and it achieves the most satisfactory matching results among the
three algorithms.

3.3. Experiment Analysis

In Table 3, the correct matching number (CMN) and the root mean square error (RMSE)
are used to quantitatively evaluate the performances of the three algorithms. We used
FSC [18] to obtain CMNs by removing the outliers from the initial correspondences and
obtain CMN. RMSE is calculated as follows:

RMSE =

√
1
m

m

∑
i=1

[
(xo1

i − xs
i )

2
+ (yo1

i − ys
i )

2
]

(19)

Table 3. CMNs and RMSEs of several methods for test images.

Method
P-A P-B P-C P-D

CMN RMSE CMN RMSE CMN RMSE CMN RMSE

OS-SIFT 6 9.2547 11 7.6965 8 6.3563 22 5.0750
RIFT 26 5.7254 43 4.7385 32 4.6788 40 3.7918

Proposed 75 2.0676 36 4.3173 64 2.5721 54 2.1136

We manually selected 20 checkpoint pairs from each set of correspondences to evaluate
the matrix H based on the affine transformation model. (xo

i , yo
i ) and (xs

i , ys
i ) are the coordi-

nates of the ith correspondence. (xo1
i , yo1

i ) represents the transformed coordinates of (xo
i , yo

i )
through the transformation matrix H, and m denotes the number of the correspondences in
optical and SAR images after FSC.

Table 3 shows the quantitative analysis of the three comparison algorithms. Since the
geometric information is obvious and there are almost no dense regions, it is relatively
easy to register Pair A. The OS-SIFT algorithm describes the image information based
on the gradient. The gradient orientations corresponding to Pair A are single, and the
representativeness and uniqueness of the descriptors are poor. Therefore, the number of
correspondences is few. Both the RIFT and the proposed algorithm use PC to describe
the structural information, and the PC-based information of the homonymous regions
is consistent between optical and SAR images. Thus, the proposed algorithm and RIFT
perform better than OS-SIFT. However, RIFT only extracts corner points from the maximum
and minimum moment maps, while the proposed algorithm uses the convolution of the
maximum moment map and log-Gabor filter to extract keypoints, which reduces the
interference of the speckle noises in SAR images. Therefore, the proposed algorithm has a
larger CMN and smaller RMSE than RIFT.

Pair B contains fields, roads, buildings, and mountains, where the structural informa-
tion is dense and unevenly distributed. In the regions where buildings and mountains are
located, OS-SIFT only obtains a few correspondences with low matching accuracy due to
the obvious gradient differences and scattering in SAR images. Since the RIFT uses the
PC method to capture structural information, RIFT performs better than OS-SIFT. RIFT
is insensitive to radiometric differences because it is based on the PC maximum moment
information. Although the number of correspondences obtained by RIFT is superior to
the proposed algorithm, the proposed descriptor framework is unique and has a better
discrimination ability for the farmland with single structural features. Therefore, the pro-
posed algorithm has a more uniform correspondences distribution and a smaller RMSE
than RIFT.

For Pair C with a time differences, the corresponding field is divided into two by a
road. The cars on the road can be clearly seen in the optical image, which are not present in
the corresponding SAR image. The gradient difference between optical and SAR images
is not obvious. Thus, the correspondences obtained by OS-SIFT are few, and they are
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concentrated in the areas where the gradient differences are significant. Since the proposed
descriptor is representative, the proposed algorithm is superior to RIFT in both CMN
and RMSE.

Pair D corresponds to rural areas which consist of roads and fields. Although the
intensity difference is significant, the structural features are rich and the radiometric
difference is small. The three compared algorithms can overcome the intensity difference
and achieve ideal matching results. The RMSE of the proposed algorithm is above two
pixels. However, it is superior to OS-SIFT and RIFT both in CMN and RMSE. Note that
there are obvious geometric distortions between optical and SAR images, and the affine
transformation model used cannot effectively solve these distortions. Therefore, the RMSEs
in Table 3 are relatively large. In sum, the experiments show that the proposed algorithm
performs best among the three state-of-the-art algorithms.

3.4. Scale and Rotation Variations Experiments of the Proposed Algorithm

We tested the compatibility of the proposed algorithm with the scale and rotation
differences between optical and SAR images.

Figure 8 and Table 4 show the registration results under the several scale differences
for Pair A. We can see that when the scale difference increases, the value of CMN gradually
decreases. We verified that the algorithm in this paper is well-behaved with scale differences
in the range of 0.3–1.8 times between optical and SAR images.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 14 
 

 

obvious geometric distortions between optical and SAR images, and the affine transfor-
mation model used cannot effectively solve these distortions. Therefore, the RMSEs in 
Table 3 are relatively large. In sum, the experiments show that the proposed algorithm 
performs best among the three state-of-the-art algorithms. 

3.4. Scale and Rotation Variations Experiments of the Proposed Algorithm 
We tested the compatibility of the proposed algorithm with the scale and rotation 

differences between optical and SAR images. 
Figure 8 and Table 4 show the registration results under the several scale differences 

for Pair A. We can see that when the scale difference increases, the value of CMN gradu-
ally decreases. We verified that the algorithm in this paper is well-behaved with scale 
differences in the range of 0.3–1.8 times between optical and SAR images. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 8. Registration results of optical and SAR images under several scale differences. (a) 0.3. (b) 
0.4. (c) 0.6. (d) 0.8. (e) 1.0. (f) 1.2. (g) 1.4. (h) 1.6. (i) 1.8. 

Table 4. CMNs with different scale factors between optical and SAR image pair. 

Scale 0.3 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
CMN 7 12 26 56 75 32 23 19 8 

In addition, for the optical and SAR image pairs with rotation differences, Table 5 
and Figure 9 show the registration results under the various rotation differences for Pair 
A. From Table 5, excepting the fact that the CMN with the 90° rotation difference is larger 
than that of the 60° rotation difference, CMN decreases with the increase in the rotation 
difference. As can be seen from Figure 9, there are many correspondences between optical 
and SAR images with different rotation angles. Table 5 shows that the proposed algorithm 
can be compatible with the rotation differences between optical and SAR images, ranging 
from −150° to 150°. 

Figure 8. Registration results of optical and SAR images under several scale differences. (a) 0.3.
(b) 0.4. (c) 0.6. (d) 0.8. (e) 1.0. (f) 1.2. (g) 1.4. (h) 1.6. (i) 1.8.

Table 4. CMNs with different scale factors between optical and SAR image pair.

Scale 0.3 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

CMN 7 12 26 56 75 32 23 19 8
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In addition, for the optical and SAR image pairs with rotation differences, Table 5
and Figure 9 show the registration results under the various rotation differences for Pair
A. From Table 5, excepting the fact that the CMN with the 90◦ rotation difference is larger
than that of the 60◦ rotation difference, CMN decreases with the increase in the rotation
difference. As can be seen from Figure 9, there are many correspondences between optical
and SAR images with different rotation angles. Table 5 shows that the proposed algorithm
can be compatible with the rotation differences between optical and SAR images, ranging
from −150◦ to 150◦.

Table 5. CMNs with different rotation angles between optical and SAR image pair.

Rotation Angle/◦ −150 −120 −90 −60 −30 0 30 60 90 120 150

CMN 16 18 19 23 35 75 43 32 42 26 20
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In summary, the proposed algorithm is insensitive to geometric and radiometric
differences, and can successfully register optical and SAR images with large-scale and
rotation differences. However, the proposed algorithm in this paper has not fully covered
the full-scale and full-angle differences between optical and SAR images, and we will focus
on solving this deficiency in future work.
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4. Conclusions and Future Work

This paper proposed an optical and SAR image registration algorithm based on the PC
framework, which is novel and insensitive to scale and rotation differences between optical
and SAR image pairs. The multi-scale PC-Harris is constructed based on the log-Gabor filter
and the PC maximum moment. Furthermore, we constructed a discriminative descriptor
based on the PC model. Experiments verify that the proposed algorithm is compatible with
large-scale and rotation differences between optical and SAR images. It effectively solved
the problem that the traditional PC-based registration algorithms cannot be compatible
with large-scale and rotation differences between optical and SAR images. The limitations
are that it has not fully covered the full-scale and full-angle differences, and the matching
accuracy needs to be further improved. In the future, we will combine the local and global
PC information to improve the matching performance.
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