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Abstract: Wireless communication greatly contributes to the evolution of new technologies, such
as the Internet of Things (IoT) and edge computing. The new generation networks, including 5G
and 6G, provide several connectivity advantages for multiple applications, such as smart health
systems and smart cities. Adopting wireless communication technologies in these applications is still
challenging due to factors such as mobility and heterogeneity. Predicting accurate radio environment
maps (REMs) is essential to facilitate connectivity and improve resource utilization. The construction
of accurate REMs through the prediction of reference signal received power (RSRP) can be useful
in densely distributed applications, such as smart cities. However, predicting an accurate RSRP in
the applications can be complex due to intervention and mobility aspects. Given the fact that the
propagation environments can be different in a specific area of interest, the estimation of a common
path loss exponent for the entire area produces errors in the constructed REM. Hence, it is necessary
to use automatic clustering to distinguish between different environments by grouping locations
that exhibit similar propagation characteristics. This leads to better prediction of the propagation
characteristics of other locations within the same cluster. Therefore, in this work, we propose using
the Kriging technique, in conjunction with the automatic clustering approach, in order to improve the
accuracy of RSRP prediction. In fact, we adopt K-means clustering (KMC) to enhance the path loss
exponent estimation. We use a dataset to test the proposed model using a set of comparative studies.
The results showed that the proposed approach provides significant RSRP prediction capabilities for
constructing REM, with a gain of about 3.3 dB in terms of root mean square error compared to the
case without clustering.

Keywords: automatic clustering; edge computing; K-means clustering; Kriging technique; radio
environment map; reference signal received power

1. Introduction

In recent years, radio environment map (REM) technology has gained great attention in
the field of wireless communication [1–7]. The generation and use of REM improve several
aspects, such as wireless quality and efficiency. REM is considered to be an important
tool, since it contributes to improving the spectral resources in wireless networks [8,9].
Hence, much effort has been expended in expanding the use of REM due to its potential in
telecommunication for distributed applications.

REM provides key information about the behavior of wireless channels. It also has
the capability of making decisions related to different wireless communication applica-
tions. For instance, REM improves the optimization of coverage tasks. It improves the
predictability of wireless coverage and its associated analysis. Additionally, it contributes
to the minimization of drive tests (MDT), which is critical in wireless networks [10–13].
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Furthermore, it improves decision making and analysis in cognitive radio systems, espe-
cially in aspects related to resource allocation [14]. It also improves interference analysis
and predictability of coverage opportunities in heterogeneous networks [5,15,16]. With
regard to REM types, the proposed models in the literature are categorized into two types.
The first type uses available prior knowledge of the environment, while the second type is
based on measurement-based predictions [17]. As is evident, REM greatly contributes to
the improvement of wireless communication.

Edge computing is one of the most promising fields in next-generation technologies.
It is considered to be a new paradigm that aims at addressing several challenges currently
encountered by the traditional cloud computing paradigm (e.g., latency, scalability) [18].
It addresses scalability and latency limitations [19,20]. It also addresses computation
challenges, since edge computing aims at minimizing the process delay by bringing compu-
tation closer to data sources. Edge computing greatly depends on connectivity, especially
wireless communication. Technologies such as 5G and 6G are considered essential to the
continued progress of edge computing. This is due to the ability of wireless technologies
to provide ubiquitous data access. Additionally, wireless technologies provide great sup-
port for heterogeneous devices and equipment, which is a key factor in enabling broader
data exchange capabilities. Therefore, maximizing wireless capabilities and addressing
coverage issues are much considered in research to improve the performance of distributed
applications and edge computing [21].

Geolocalized radio measurements can be retrieved with the help of the MDT fea-
ture [10]. This has been possible since user equipment (UE) began including global
positioning system information. Geolocalized measurements can be used with spatial
interpolation techniques to construct an REM, which is measured by exploiting the col-
lected readings gathered in a radio environment. The collected measurements are utilized
to build an REM to characterize wireless channels. This is achieved through multiple
propagation mechanisms [22–28]. In fact, these mechanisms affect the reference signal
received power (RSRP), and may also affect the construction process for REMs.

Multiple research works have used the well-known Kriging technique [29] for geo-
statistical interpolation [16,30,31]. The Kriging technique depends on exploiting shadowing
and median path loss. It is assumed that the fast-fading communication signal is averaged
out at the receiver [32]. The REM can be employed to enhance the quality of service (QoS)
for UEs in 5G, and beyond, networks. It builds the whole coverage map along the UE
paths by interpolating measurements made in different places. A Bayesian Kriging spatial
interpolation technique [33,34] was initially proposed for 3G. It targeted the prediction
of the received signal code coverage [34]. It also initially worked for long-term evolution
(LTE) RSRP coverage analysis [5].

Several research works have studied the main shortcomings in mobile and wireless
networks. For example, the work in [35] showed that the relationship between logarithmic
distance and RSRP values had an error of 8–9 dB in urban environments. It also showed
that the error increased to around 15 dB in rural areas. This work assumed a single path
loss trend for the whole area of interest, as is the case with the majority of the models
available in the literature [36]. The assumptions may not provide accurate results, since the
behavior of wireless communication is unpredictable.

The precise prediction of REM can be a challenging task, especially in large-scale and
unstable environments [8]. This is due to several external factors, such as mobility and
spectrum interference. Currently, many traditional learning-based models depend on a
lengthy training process to predict an accurate REM. However, this can be challenging,
since the learning algorithms are often complex, and require a significant amount of train-
ing sets [34,37]. Given these issues, this work proposes a dynamic approach that aims
at improving REM construction in distributed applications. In the approach proposed,
automatic clustering-based KMC is integrated with the Kriging technique. This integration
process is proposed for several reasons. First, KMC is a flexible and efficient clustering
algorithm, which enhances the efficiency of the clustering process. This is critical, due to
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the challenges that are being faced in wireless environments (e.g., mobility, instability) [38].
Second, KMC supports scalability as it reduces the calculation of the pairwise distance
among different points in a given dataset. Additionally, KMC does not induce complexity,
which is a key concern in most distributed applications, due to the large number of com-
municating entities. On the other hand, the Kriging technique provides several estimation
advantages, including measuring errors and uncertainty in sample results. It also considers
direct and dependent relationships. Furthermore, the Kriging technique is not restricted in
terms of the range of observations. In fact, combining KMC with the Kriging technique not
only improves prediction accuracy, but also promotes the efficiency of RSRP prediction.

The overall objective is to improve both the efficiency and accuracy of the construction
process of REM. More specifically, we summarize the contributions of this work as follows:

• An automatic clustering approach using KMC in conjunction with the Kriging tech-
nique is proposed. In our proposal, two steps (i.e., clustering using KMC technique
and the RSRP prediction using the Kriging technique) are needed to produce more
accurate REMs. To the best of our knowledge, this is the first work that uses KMC
to improve the accuracy of RSRP prediction. This justifies the novelty of the paper,
since combining these two technologies proved to be significant, based on the results
provided in this work. The proposed work in this paper also enhances the path loss
exponent estimation through the distinction between different environments existing
in the area of interest. This is considered to be a key contribution due to the impor-
tance of path loss exponent estimation in the field of wireless communication and
REM construction.

• A comparative study with the proposed approach is performed, in which the Kriging
technique, considered with only one cluster, is utilized as a benchmark. Here, the
performance of the proposed REM construction technique using KMC is investigated
and evaluated with the root mean square error (RMSE) metric. Multiple simulation
tests were carried out to prove the superiority of our proposed work.

• The proposed approach is evaluated, in regard to its potential as a technique for
constructing REMs, using KMC with R2. This further proved the viability of the ap-
proach, because the method measures the variance of dependent variables in relation
to independent variables in a dataset. In fact, using both RMSE and R2 indicated the
effectiveness of the proposed REM construction technique.

Given the above discussion, Table 1 provides the list of abbreviations to simplify the
readability of the paper.

Table 1. List of abbreviations.

BS base station

GoB grid of beams

KMC K-means clustering

LOS line-of-sight

LTE long-term evolution

MDT minimization of drive tests

M2M machine-to-machine

QoS quality of service

REM radio environment map

RMSE root mean square error

RSRP reference signal received power

SN sensor node

UE user equipment
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To provide clarification in understanding the expressions in this paper, Table 2 de-
fines the notations throughout the paper; lowercase letters in bold represent vectors and
uppercase letter in bold indicate the matrices.

Table 2. List of notations.

(·)T transpose operation

(·)−1 inverse operation

IN N × N identity matrix

card(S) cardinality of the set S

The rest of this paper is organized as follows: Section 2 describes the work on improv-
ing wireless coverage and wireless prediction models. It also describes the importance
of wireless communication in multiple applications and domains, such as IoT and edge
computing. Section 3 describes the related work and where this work fits in the literature.
Section 4 describes the main approach for optimizing REM and RSRP predictions. Section 5
describes the utilized algorithm and how it is used in the clustering process to improve
prediction models. Section 6 provides the research outcomes according to the proposed
approach. Finally, Section 7 concludes the work with a brief discussion on future work.

2. Wireless Requirements and Applications

This section describes the requirements for improving new generation wireless tech-
nologies, such as those in 5G and 6G networks. It also describes the great benefits of
multiple applications, such as IoT and edge computing, which have become possible due
to new and improved wireless technologies.

2.1. Improving Wireless Coverage

One of the main challenges in the next generation of wireless technologies is the
accuracy of the prediction models used in REM construction. It is essential to predict an
accurate REM in order to determine several aspects that contribute to the quality of wireless
communication. For example, predicting an accurate map contributes to determining the
median of the relationship between RSRP and logarithmic distance in a wireless environ-
ment. Currently, most of the work done in improving RSRP has focused on single path loss
in the considered range of communication. The single path approach is considered simple
since it does not depend on complex mathematical operations. However, this approach
does not provide accurate results, since it does not consider all communication factors in a
wireless environment. For instance, the single path model does not capture the essential
components in computing the path, such as the exponent of path loss [35].

Due to the challenges with a single path approach, multiple research works have
considered other approaches to improve RSRP prediction. For example, the multiple-
trend path loss model was explored to improve RSRP prediction capabilities. Some works
targeted double-trend models where line-of-sight (LOS) possibilities were considered
before and after the clearance distance. Other approaches looked at the median of RSRP
values in the prediction process. This is because the median might be different, even with
the same distance, mainly due to differences in environmental aspects, such as varying
shadowing [39]. Clustering approaches have also been considered as a means to improve
RSRP prediction. All these works, either on single or multiple approaches, emphasize the
importance of finding an accurate prediction model and lowering the complexity of the
prediction process at the same time.

2.2. Wireless Communication in New Applications

Several emerging technologies, such as IoT and edge computing, greatly depend on
wireless communication [40,41]. Wireless communication systems are built with great
consideration for aspects such as heterogeneity and mobility. For instance, consider the
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great benefits of machine-to-machine (M2M) communication in IoT applications where
multiple devices (e.g., sensors and data aggregation units) need to directly communicate
with each other. This advance has been possible due to the improved capabilities of new
wireless technologies, such as 5G networks. Wireless connectivity improves other aspects of
communicating applications. For example, due to wireless connectivity, M2M communica-
tion contributes not only to data connectivity but also to other quality factors, such as data
availability, redundancy, and reliability. In IoT applications, wireless connectivity allows
for bidirectional communications between field devices and equipment to control and data
centers [42], which improves domain knowledge and promotes pervasive data aggregation.

Edge computing is a new computation paradigm, by means of which computation is
brought closer to data sources to reduce latency and improve response time [19]. Wireless
communication significantly contributes to the evolution of edge computing. This is
because new wireless technologies provide multiple benefits, such as ultra-low latency and
large throughput capabilities. Additionally, wireless communication supports mobility,
which is a key factor in edge computing. Wireless communication also improves the
management of applications that adopt the edge computing paradigm. For example,
wireless network slicing allows an application to create different management layers
based on exchanged data and communicating devices [43]. Figure 1 shows how wireless
communication contributes to moving data among different domains in a smart city. The
figure shows that different domains are managed through network slicing, where data is
managed and controlled differently at each network tier. The slicing also enables edge
computing to create sub-networks to manage the heterogeneity of devices and services.

wireless

 connection

User 

&  

Field Devices

Remote

 Communication

Management

Edge 

Computing 

Servers

Cloud 

& 

Data Centers

services 

& 

data

 storage

computation 

& 

data 

aggregation

Figure 1. Multi-layer communication in edge computing-enabled applications.

3. Related Work

REMs play an important role in enhancing the QoS for UEs in 5G and IoT environ-
ments [44]. This was first introduced by [45], and aimed to spatially interpolate geolocation
measurements to construct a whole coverage map. Interpolation techniques are mainly
divided into deterministic and statistical approaches [46]. For deterministic interpolation,
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the geolocated measurements are combined to predict the corresponding value at a target
location. In fact, larger weights are attributed to the measurements that are closest to the lo-
cation of interest. However, this approach does not differentiate between the contributions
of different measurements taken at the same distance from the target location.

Several research works have proposed improvements to the construction of REMs
as they are key features for network planning and optimization of radio resources [32].
However, most of the proposed prediction techniques aim to construct only one model
to construct an REM for the whole area of interest. Various works use the Kriging tech-
nique [47] as a prediction technique. This approach aims at observing the weights of the
attributes in relation to neighboring observations. The overall objective of the observation
is to enhance the prediction of the RSRP at an unobserved location. A Bayesian Kriging
spatial interpolation technique [33] was first utilized in older generation wireless networks.
It was used in 3G for predicting the received signal code power coverage [34]. It was also
used in LTE for RSRP analysis of the wireless coverage [5]. The performance of the fixed
rank Kriging technique has been studied for cellular networks. In fact, this later technology
was also applied in these networks [3,48].

The use of Kriging and its derivatives showed good performance in terms of prediction
accuracy. With the arrival of 5G, the use of narrow beams, steered simultaneously to differ-
ent UEs, improves spectral efficiency through spatial multiplexing. To this end, a grid of
beams (GoB) focused toward UEs is generated with the deployed antenna elements in both
vertical and horizontal directions [49]. To construct an accurate REM in the context of 5G,
and in different contexts and environments in the area of interest, being able to distinguish
between heterogeneous environments is required. In fact, estimating a common path loss
exponent for an entire area produces errors in the constructed REM. Hence, it is necessary
to use automatic clustering to distinguish between different environments by grouping
locations that exhibit similar propagation characteristics. This leads to better prediction of
the propagation characteristics of other locations within the same cluster. In this work, we
aimed to show the gains offered to RSRP prediction by the use of automatic clustering.

In [37], the authors propose a clustering mechanism to classify different wireless signal
coverage based on a fixed threshold. This latter requires human intervention for each
propagation environment. In practice, this involves a considerable amount of time, which
results in additional deployment costs. To solve the problem, an automatic clustering
technique can be deployed at the edge computing unit. A variety of clustering techniques
are proposed in the literature. The KMC is a very popular method as it is simple to
implement and has been applied in various applications [50].

Given the above reviews, it can be seen that the process of building REM can be
challenging. It can also be seen that even if the above works address REM building
issues, they involve a trade off between complexity and scalability. On the other hand,
the proposed work in this paper provides a low-complexity approach to construct more
accurate REM, based on an automatic clustering technique. The approach also considers
scalability, as it reduces the REM computation process. In fact, one of the key differences
is that our proposed approach has the capability to construct a more accurate REM for an
area containing two heterogeneous environments.

4. Proposed Coverage Prediction Method using the Kriging Technique in Conjunction
with Automatic Clustering

In this work, we apply the Kriging technique to predict the RSRP for heterogeneous
environments differentiated by automatic clustering. In this section, we first present the
Kriging technique. Then, we demonstrate how to perform automatic clustering to improve
prediction accuracy.
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Kriging Technique

To estimate the RSRP of UE located at g ∈ R2 and served by a base station (BS), we
use the Kriging geostatistical approach. The purpose here is to build a map allowing the
estimation of the RSRP given by

z(g) = pBS + 10µ log10(d(g)) + s(g)︸ ︷︷ ︸
q(g)

+ ε(g), (1)

where PBS is the BS transmission power, d(g) is the geometrical distance between BS and
UE, and µ is the path loss exponent. The value s(g) represents the effect of shadowing in a
wireless environment. It is modeled through a log-normal distribution. It is also associated
with the stationary covariance matrix Mα, where α is the set of parameters. Finally, ε(g)
represents the error of measurements and is modeled by means of a centered uncorrelated
Gaussian process with variance σ2. In this study, we realize a lognormal random process.
This is performed using a standard deviation of 6 dB to model the shadowing. With this
setting, we consider a Non-LOS Urban Macro-cell environment [51], where the shadowing
decorrelation distance is equal to 20 m [52]. Furthermore, we assume that s(g) and ε(g) are
independent processes. We also assume that the RSRPs are collected by K sensor nodes
(SNs) located at gk, k = 1, 2, . . . , K. Here, the wireless sensor network is modeled using
a connectivity graph G(S, L), in which the SNs are denoted as S = {1, 2, . . . , K} and the
links are defined by L ∈ {Ln, m}K×K(n, m ∈ V). The spatial location of SNk is denoted
by gk = (xk, yk) and SNk measures the RSRP value at gk. Thereafter, the collected RSRP
values are transferred to the edge cloud. Next, the edge cloud builds an REM with the
collected RSRPs.

The reported RSRP measurements by the K SNs can be defined as

r = Fv + s + e, (2)

where r = (r(g1), . . . , r(gK))
T represents a K × 1 vector, F ∈ RK×2 represents a deter-

ministic matrix, in which the first column contains "1s", while the second is filled with
10 log10(d(gk)). v = (pBS, µ)T represents a 2× 1 vector, and s = (s(g1), . . . , s(gK))

T and
e = (ε(g1), . . . , ε(gK))

T are K× 1 vectors. The RSRP vector, r ∈ RK×1, is considered to be
a multivariate Gaussian random variable, characterized by the mean Fv and covariance
matrix M(α,σ) = Mα + σ2IK. In this work, we use the Kriging technique to interpolate the

RSRP at a location in the area of interest g0 /∈ {g1, . . . , gK}. As (q(g0), r)T is a Gaussian vec-
tor, the predicted RSRP value using the Kriging method at g0 is the conditional expectation
of q(g0), given the measurement vector r. It can be expressed as [53]

q̂(g0) = f(g0)v̂ + mα̂M−1
(α̂,σ̂)(r− Fv̂), (3)

where f(g0) is the drift function vector at the location g0, (v̂, α̂, σ̂) represents the estimated
value of (v, α, σ) and mα̂ represents the vector of covariance between the target and the
measurement values.

In this work, we use the method of moments of Matheron [24,54–57] to estimate the
Kriging parameters. It can be described by

γ̂(h) =
1

2Nh
∑

gi−gj=h

[
r
(
gj
)
− r(gi)

]2∀gi, i = 1, 2, . . . , K, (4)

where Nh is the number of pairs of points distant of h.
In Figure 2, we present the three principal parameters of a variogram. The first param-

eter is the nugget. It represents the discontinuity at the origin caused by the measurement
error. The second parameter is the sill. It represents the maximum semivariance value. It is
equal to the process variance. Finally, the last parameter is the range, which represents the
distance of decorrelation where the two samples become decorrelated and, consequently,
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the variogram reaches the sill. It is also shown that, at the same location, the semivariance
value is equal to zero, i.e., γ(0) = 0.

In this work, we propose using automatic clustering to improve the RSRP prediction
accuracy by enhancing the path loss exponent estimation used in (3). In the following, we
describe our selected automatic clustering method.

sill

nugget

range

empirical

fitted function

0

Figure 2. Variogram parameters.

Figure 3 illustrates the flow of the framework in this paper. Graph (a) describes the
general workflow without clustering, while Graph (b) shows the flow of our approach
using KMC clustering, described in Section 5. As seen here, in our approach we aggregate
the predicted RSRP values for the two clusters built. This latter offers a gain in the RSRP
prediction as the model parameters are better estimated for each cluster. In fact, this clus-
tering approach greatly improves the efficiency of the training process, which contributes
to accurate prediction results.

Training 
using Kriging

End

Begin

Testing

Learning DB

RSRP prediction

Select UE coordinates from testing set

Aggregate predicted RSRPs
 to obtain the REM

Training 
using Kriging

Begin

Testing

Learning DB

RSRP prediction

Select UE coordinates from testing set

Training
using Kriging

End

Testing

Learning DB

RSRP prediction

Select UE coordinates from testing set

Apply KMC

Aggregate predicted RSRPs to obtain the REM

Cluster 1 Cluster 2

(a) (b)

Figure 3. RSRP prediction comparison between the two approaches (a) without clustering,
(b) with clustering.
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5. K-Means Clustering Algorithm

In this work, we adopt the KMC algorithm to address our clustering prediction prob-
lem. Distributed applications, such as smart cities and smart transportation systems,
require efficient and scalable technical solutions, which are low in complexity, to address
communication challenges [58,59]. KMC is a clustering method that supports these require-
ments. As compared to other clustering approaches, such as Monte Carlo and Gillespie
algorithms, KMC is an ideal candidate, specifically for unstable wireless environments. For
instance, KMC is computationally efficient, as compared to the Monte Carlo and Gillespie
algorithms [60]. This is a key concern in wireless environments, due to the large volume
of data generated from various communicating entities. Additionally, the Monte Carlo
algorithm greatly depends on the quality of the parameters and constraints. In contrast,
KMC accounts for errors and uncertainty in clustering results. Based on the advantages of
KMC, the model was adopted to perform clustering prediction in pour work.

The following describes the approach with KMC. Let D be the dataset that contains
N quadri-dimensional normalized observations, i.e., D = {on | n = 1, . . . , N}, where on

is in quadri-dimensional space (on =

 x∗n︸︷︷︸
on1

, y∗n︸︷︷︸
on2

, r∗n︸︷︷︸
on3

, d∗n︸︷︷︸
on4

 ∈ R4 ). x∗n, y∗n, r∗n and d∗n

are the normalized values of the x-coordinate, y-coordinate, RSRP and distance to BS,
respectively. Here, we apply min–max normalization, and, hence, the normalized values of
the x-coordinate, y-coordinate, RSRP, and distance to BS are respectively given by

x∗n =
xn −min(x)

max(x)−min(x)
, (5)

y∗n =
yn −min(y)

max(y)−min(y)
, (6)

r∗n =
rn −min(r)

max(r)−min(r)
, (7)

d∗n =
dn −min(d)

max(d)−min(d)
, (8)

where x = [x1, . . . , xn], y = [y1, . . . , yn], r = [r1, . . . , rn] and d = [d1, . . . , dn] are the real x-
and y-coordinates, RSRPs, and distances to BS, respectively (before the normalization).
For a given D and a predefined number of clusters U, the clustering operation aims to
divide the N observations into U clusters Cu, u = 1, . . . , U, where the cluster centroid is
considered the mean of the collected observations in the cluster. Note that the complexity
of KMC is significantly lower in comparison with the complexity of an exhaustive search.
The KMC process is summarized in Algorithm 1. The KMC procedure starts by randomly
selecting a number of U observations from the dataset D , and considering them to be the
U initial set of centroids, denoted by cu, u = 1, . . . , U. In step 2, the Euclidean distance is
considered to determine the distance between each observation and the cluster centroids.
It is expressed for two observations, o and o′ as

doo′ =

√√√√ 4

∑
i=1

(
oi − o′i

)2. (9)

The next step consists of assigning each observation on to the cluster having a centroid
closest to it. Then, it determines the new centroids of all the U clusters. In KMC, an
iterative process is used to change the positions of the U cluster centroids until the positions
remain unchanged.
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Algorithm 1: KMC algorithm.
inputs :Number of clusters: U

Dataset: D = {on | n = 1, . . . , N}
outputs :Clusters: Cu, u = 1, . . . , U

1 init: Randomly select U observations from D , and consider them to be the U
initial set of centroids, denoted by cu, u = 1, . . . , U.

2 Calculate the distance between each observation on and the cluster centroids
using (9).

3 Assign each observation on to the cluster whose centroid is the closest to it.
4 Determine the new centroids cu, k = 1, . . . , U of all the U clusters.
5 Repeat steps 2–4 until the positions of the centroids remain unchanged.

Given the above description, we explain the complexity of the proposed framework in
terms of the number of iterations and the number/size of clusters. The time complexity
of the framework is given in Table 3. In the table, I represents the number of iterations.
The number of clusters is represented by U. The size of the whole dataset is described by
N. The training set for each observation is represented by K. The Kriging technique has a
complexity ofO

(
K3) [6]. On the other hand, KMC has a complexity ofO(UNI) [61]. Based

on these definitions, the complexity is defined in terms of the numbers of clusters that are
distinguished in this work. Since the Kriging technique is applied for each cluster, and since
we have two clusters, then the framework’s complexity can be defined as: O

(
UNI + 2K3).

Table 3. Time complexity of our framework.

KMC O(UNI)

Kriging O
(
K3)

Framework O
(
UNI + 2K3)

6. Numerical Results

In this study, our dataset is generated through simulation and consists of simulated
RSRPs, having the network parameters summarized in Table 4. The collected RSRPs are
used as the ground-truth for the coverage in the area of interest since they can be considered
realistic field measurements. In fact, they represent the received pilot power, as defined by
the LTE standard, in the two different environments (i.e., urban and rural), as shown in
Figure 4. These measurements are calculated over a uniform grid of size 1 km × 1 km.

Table 4. BS parameters and channel characteristics.

BS Parameters

Number 1

Transmit power 46 dBm

Bandwidth 20 MHz

Channel Characteristics

Thermal noise per Hertz −174 dBm/Hz

Path Loss for urban area (d in km) 128.1 + 37.6 log10(d)dB

Path Loss for rural area (d in km) 100.54 + 34.1 log10(d)dB

Shadowing Log-normal 6 dB

Decorrelation distance 20 m
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Figure 4. Real coverage map.

Here, we consider that the antenna is omnidirectional for this area. Given a resolution
of 5 m× 5 m, we have a total of 40,000 RSRP samples. In Figure 4, we present the RSRP map
corresponding to the values computed based on (3). As shown on the map, a remarkable
difference in the RSRP values can be clearly observed in two different areas of the map.
This can be explained by the presence of two different environments in the simulated area.
To measure the accuracy of the proposed approach, we examined its ability to distinguish
between different clusters based on their environments. The differences represent different
attributes for each cluster. For example, clusters may be different in terms of geographical
area or behavior of wireless channels. Regardless of the type of differences, a key testing
element is to measure the ability of the model to differentiate designated clusters. Therefore,
we assigned ‘Cluster 1’ to the area with buildings and ‘Cluster 2’ to the open area with
gardens and parks. We applied the KMC method to split the dataset into two parts based
on these defined clusters. At this stage of the test, the target was to clearly define the two
different rural and urban environments. Figure 5 illustrates the performance of the model
based on KMC. It is seen that the model correctly and clearly distinguished between the
two different environments.

To assess the benefit of the clustering, we performed multiple steps. We first evaluated
the performance of the Kriging prediction with the target dataset. Then, we modeled
the measurement error using Gaussian noise with a zero mean and 3 dB variance. The
generated noise was added to the RSRP measurements. Furthermore, we split the resulting
RSRP dataset into learning and testing sets. Here, we used the learning set to estimate the
predictor parameters, and the testing set to evaluate the performance of the predictor. It is
worth mentioning that the learning set consisted of 10% of the whole dataset, wherein the
points were uniformly selected over the area. To evaluate the performance of prediction,
the RMSE was used as the performance metric. It is given by:

RMSE =
( 1

card(T ) ∑
g0∈T

(
q̂(g0)− q(g0)

)2
) 1

2
. (10)
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where T is the testing set. q̂(g0) and q(g0) are the estimated and the real RSRP at g0,
respectively. We also used the R2 metric expressed as

R2 = 1− ∑
g0∈T

(
q(g0)− q̂(g0)

)2(
q(g0)− q̄

)2 , (11)

where q̄ is the mean of RSRP values. In the following, we evaluate the benefit of using
clustering in RSRP map construction. To this end, we carried out a comparative study
between the following two cases: (i) without clustering, and (ii) with two clusters. For
the first case, we estimated the predictor parameters using a learning set that considered
the entire area of interest, while for the second case, for each cluster, we estimated the
predictor parameters using a learning set that considered the area covered by the cluster.
The results of the prediction when considering the first case are presented in Figure 6. Here,
the performance of the RSRP prediction when considering the entire area as one cluster is
shown. As seen from this result, one can clearly see that there was a difference with the
real coverage presented in Figure 4. In fact, an RMSE of 6.70 dB was observed in this case
(i.e., without clustering).

For the second case, we estimated the predictor parameters of each cluster using its
associated learning set. Then, the prediction for each testing set, associated with each
cluster, was performed, based on the related estimated parameters. By combining the
results for individual testing sets, we obtained the performance of the prediction for the
entire testing set. The results of the prediction for each cluster are presented in Figure 7.
In fact, we show, in Figure 7a,b, the constructed REMs for the first and second clusters,
respectively. By substituting the two sub-REMs in Figure 7c, we obtain the REM for the
whole area of interest. In Table 5, we present the comparison between the two cases, i.e.,
with and without clustering, in terms of RMSE. As seen from these results, the clustering
offered a gain of about 3.3 dB and, consequently, led to a more accurately constructed map.
Here, the standard deviation (std) of the RMSE was about 0.009 dB. To further examine the
approach, we used R2. Similarly, we compared the two cases with and without clustering.
The R2 of the generated model using the proposed approach achieved significant prediction
results. Table 6 shows results of about 98%, which indicated high accuracy in terms of
REM construction.
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Figure 5. Clustering of the environment.
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Figure 6. Predicted map without clustering.

Table 5. Comparison of the prediction error in terms of RMSE.

Without Clustering With Clustering

RMSE in the whole
area (dB) 6.703674 3.422388

1st cluster 2nd cluster

RMSE per cluster (dB) 3.413063 3.431735

std of the RMSE (dB) 0.009336

Table 6. Comparison of the proposed approach with the case without clustering using R2.

Without Clustering With Clustering

R2 0.921 0.979

1st cluster 2nd cluster

R2 per cluster 0.980 0.979
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Figure 7. Prediction of the: (a) first cluster, (b) second cluster (c) both clusters.
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7. Conclusions

In this work, we presented an approach to improve the prediction process for REMs.
The objective of this work was to improve wireless connectivity in densely distributed
applications, such as smart cities. In our approach, we first improve the prediction accuracy
of RSRP through applying the K-means clustering technique. The aim of this clustering
approach is to enhance the estimation of the path loss exponent. The proposed cluster-
ing technique contributes to distinguishing the different wireless environments, which
enhances the prediction process. We then categorize each resulting cluster. For each cluster
in our model, we use the Kriging technique to construct the accumulated results. This is
performed in order to improve the overall prediction accuracy for the entire dataset. To test
the viability of the approach, we carried out a set of comparative studies. In each test, we
compared the prediction accuracy with clustering and then retested it without clustering.
We observed the RMSE in each test to measure the progress of the prediction accuracy. The
results showed that the proposed approach provided accurate predictions with a gain of
about 3.3 dB in terms of RMSE compared to the case without clustering. In future work,
we plan to test the approach with other trending models, such as the multiple-trend path
loss model. We also plan to generalize the clustering approach using other techniques to
test the performance of different algorithms. In fact, we target test the approach with a
large number of heterogeneous clusters to cope with communication demands in several
distributed applications.
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