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Abstract: Non-destructive detection of the in-plane waviness of carbon fiber-reinforced plastic (CFRP)
laminates is of interest in a wide variety of industries, as wrinkles and other fiber alignment defects
significantly impact the mechanical performance of the composites. This work demonstrates a method
to detect in-plane wrinkles on a 5-ply unidirectional CFRP laminate with a customized eddy current
testing (ECT) system. The results show that the ECT system is effective in detecting and quantifying
in-plane waviness, and the results are compared to conventional X-ray computed tomography (CT)
and ultrasonic testing (UT) methods. Using the anisotropic conductive nature of the aligned CFRP
lamina, the ECT system was able to clearly detect throughout the part changes in the local fiber
orientation, wave tangent angle, and wrinkle width.

Keywords: non-destructive testing; eddy current testing; in-plane wrinkle; carbon fiber composite

1. Introduction

Carbon fiber-reinforced plastic (CFRP) is widely used in aerospace, automobile, ship-
ping, sporting goods, and other industries due to its excellent strength to weight ratio,
wear, and corrosion-resistant properties [1]. However, a defect in the manufacturing stage
of CFRP composites can lead to premature failure during its service time [2]. In-plane
waviness is one such defect that can significantly reduce the mechanical properties such as
tensile and compressive strength and stiffness of CFRP composites [3]. In-plane waviness
is difficult to observe visually during manufacturing and will be impossible to see once a
surface coating is present or if the defect occurs below the surface lamina. Thus, rigorous
detection and evaluation of in-plane waviness requires the use of non-destructive testing
(NDT) and non-destructive evaluation (NDE) techniques.

Many NDT methods for inspecting CFRPs exist, and each has unique strengths and
weaknesses for certain applications and types of defects. NDT methods that have shown
success at detecting fiber orientation in CFRPs include ultrasonic testing (UT) [4], eddy
current testing (ECT) [5], optical microscopy, X-ray computed tomography (CT), and mi-
crowave synthetic aperture radar (SAR) polarimetry [6]. Except for microwave polarimetry,
these methods typically use high-resolution imaging and post-processing based on trans-
forms such as the Fast Fourier Transform (FFT) or the Discrete Radon Transform (DRT) to
determine the dominate fiber orientation in one or more laminae.

Previously, researchers used high resolution pulse/echo UT and the 2D FFT to detect
the ply orientation within ±3◦ for each lamina in a 20-ply cross-weave laminate, with the
exception of the top three laminae [4]. ECT imaging has also been developed by Hughes
et al. to determine the fiber orientations and stacking sequence of unidirectional laminates
using the FFT and DRT [7]. Because of its high precision and accuracy, CT scanning has also
been applied to CFRPs as a comparison for error analyses and verification of other methods.
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In-plane waviness refers to a defect within woven or unidirectional CFRPs where the
fiber orientation has unwanted variations throughout the part. A common variation of
this defect is an in-plane wrinkle, which can be characterized by the parameters width,
amplitude, and maximum angle. The literature contains many successful approaches
to detecting fiber orientation and ply layup order, whereas fewer methods have been
developed for fiber waviness detection and quantification. The existing CFRP NDT methods
struggle with scanning this type of defect for a variety of reasons. To detect in-plane
waviness, a scanning method must identify changes in the fiber direction at multiple points
in the scanning area.

Generally, the existing imaging methods have been optimized to detect a single dom-
inant fiber orientation over the entire scan area and thus do not have the resolution to
accurately determine the changing fiber’s orientation throughout an image. One counterex-
ample is in the work of Kosukegawa et al., where edge detection techniques were used to
obtain angle changes at the edges of the waviness section [8]; however, this was not applied
to quantify the waviness, as datapoints were only extracted at the strongest identifiable
edges, not the entire part or the waviness region.

Non-imaging methods have shown promise in efficiently and accurately determining
varying fiber orientation in CFRP. These methods rely on the directionality of ECT probes
and include detection [9,10], estimation [11], and visualization [12] of in-plane waviness.
The consistent and reliable quantification of fiber waviness, however, is still a sought-
after goal for the NDT toolbox, as most of the existing methods focus on detection or
parameter estimation.

In this work, we apply rotational eddy current testing to measure the fiber angle
throughout a unidirectional CFRP laminate. This approach differs from those found in the
literature in several ways. The approach does not rely on imaging or image processing,
which in turn, depends on the resolution of the scan. Furthermore, because of the rotational
scanning pattern, we are directly measuring the fiber orientation instead of providing a
calculated estimation, the accuracy of which is reflected by the presented error analysis.
The presented method allows for accurate 2D visualization and quantification of the fiber’s
waviness while being flexible in the spatial resolution, scan pattern, and scan region.
Because the method measures relative amplitudes at individual points, it is also insensitive
to lift-off. This work is an extension of the early study published by Newton et al. [13].

2. Materials and Methods
2.1. Manufacturing the CFRP Sample with in-Plane Waviness

The test sample used in this study is a 5-layer [0◦]5 pre-impregnated unidirectional
laminate. Coupons were fabricated with “prepreg” material obtained from Rockwest
Composites using a Toray T700 unidirectional fiber in an epoxy resin system. The procedure
to produce the in-plane waviness was performed following the same general technique as
presented in other locations in the literature [14,15].

During the layup process, the five 13.5× 18.5 cm laminae are laid on an aluminum tool
over a glass rod lying perpendicular to the fiber direction, as shown in Figure 1a. Using a
heat gun to soften the resin, the laminae on either side of the rod are pressed down, forming
an out-of-plane wrinkle supported by the glass rod. The glass rod is then removed from the
clamped fiber and the out-of-plane wrinkle is rolled flat to form the in-plane wave depicted
in Figure 1b. Finally, the part is vacuum-bagged and cured according to the manufacturer’s
recommended cure cycle.

While the defect itself is highly reproducible with this technique, it is difficult to
control and reproduce wrinkle parameters such as maximum angle and wrinkle width.
However, the part was scanned on the tool side to avoid any potential issues introduced by
inconsistency in the fabrication, such as lift-off errors.
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Figure 1. Manufacturing of in-plane waviness in CFRP sample (a) forming wrinkle in transverse 
direction and (b) wrinkle rolled flat to form in-plane wave. 

2.2. Manufacturing the Custom ECT Probe 
The horizontally displaced transmit-receive probe topology, shown in Figure 2, is 

chosen for the present study due to its inherent directionality and electronic simplicity. 
To implement this, two identical coils are fabricated with 10 turns of coated copper wire 
around a 2.5 mm diameter rod. These coils are placed in M33 pot core ferrites with a height 
of 3.7 mm and an outer diameter of 5.6 mm. Finally, the coil–ferrite assemblies are sol-
dered to custom PCBs, which route solder pads to UMCC connectors and are glued inside 
a brass tubing housing for structural integrity, additional shielding, and rigid coil separa-
tion. UMCC to SMA cables route the coils directly to the waveform generator and IQ de-
modulator. 

 
Figure 2. Construction of custom ECT probe (a) without brass shielding/support and (b) with brass 
shielding/support. 

2.3. Experimental ECT System 
The custom-built ECT probe assembly is mounted onto the rotary table of a motor-

ized 4-axis stage via telescoping brass rods for automated translation and rotation. This 
motorized stage is controlled by two Velmex VXM-2 controllers that receive commands 
from a laboratory PC running custom MATLAB scripts. A coaxial cable connects the trans-
miĴer coil to a BK Precision 4064 dual channel arbitrary waveform generator to act as an 
AC voltage source operating at 𝑓 = 15 MHz. Likewise, the receiver coil is connected to 
an AD8333 I/Q demodulator chip, which acts as a low-cost lock-in amplifier. In this case, 
the AD8333 chip is implemented using the AD8333-EVALZ evaluation board, which con-
tains all the necessary amplification, biasing, and connections for immediate use in the 
system. The reference signal for the AD8333, operating at 4 × 𝑓 = 60 MHz, is supplied 
by the second channel of the BK Precision waveform generator. Section 2.4 describes the 
mathematics behind the IQ demodulation and its relation to our study in more detail. 
Finally, the in-phase and quadrature output channels of the demodulator are sampled by 
the A/D inputs of an NI 6009 USB DAQ unit for processing by the computer in a MATLAB 
environment. Figure 3 shows the block diagram of the entire hardware system. 

Figure 1. Manufacturing of in-plane waviness in CFRP sample (a) forming wrinkle in transverse
direction and (b) wrinkle rolled flat to form in-plane wave.

2.2. Manufacturing the Custom ECT Probe

The horizontally displaced transmit-receive probe topology, shown in Figure 2, is
chosen for the present study due to its inherent directionality and electronic simplicity.
To implement this, two identical coils are fabricated with 10 turns of coated copper wire
around a 2.5 mm diameter rod. These coils are placed in M33 pot core ferrites with a
height of 3.7 mm and an outer diameter of 5.6 mm. Finally, the coil–ferrite assemblies are
soldered to custom PCBs, which route solder pads to UMCC connectors and are glued
inside a brass tubing housing for structural integrity, additional shielding, and rigid coil
separation. UMCC to SMA cables route the coils directly to the waveform generator and
IQ demodulator.
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Figure 2. Construction of custom ECT probe (a) without brass shielding/support and (b) with brass
shielding/support.

2.3. Experimental ECT System

The custom-built ECT probe assembly is mounted onto the rotary table of a motor-
ized 4-axis stage via telescoping brass rods for automated translation and rotation. This
motorized stage is controlled by two Velmex VXM-2 controllers that receive commands
from a laboratory PC running custom MATLAB scripts. A coaxial cable connects the
transmitter coil to a BK Precision 4064 dual channel arbitrary waveform generator to act as
an AC voltage source operating at f = 15 MHz. Likewise, the receiver coil is connected
to an AD8333 I/Q demodulator chip, which acts as a low-cost lock-in amplifier. In this
case, the AD8333 chip is implemented using the AD8333-EVALZ evaluation board, which
contains all the necessary amplification, biasing, and connections for immediate use in the
system. The reference signal for the AD8333, operating at 4× f = 60 MHz, is supplied
by the second channel of the BK Precision waveform generator. Section 2.4 describes the
mathematics behind the IQ demodulation and its relation to our study in more detail.
Finally, the in-phase and quadrature output channels of the demodulator are sampled by
the A/D inputs of an NI 6009 USB DAQ unit for processing by the computer in a MATLAB
environment. Figure 3 shows the block diagram of the entire hardware system.
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2.4. IQ Demodulation

Given a sinusoidal input voltage Vi provided by the BK Precision 4064 into the transmit
coil, a sinusoidal output voltage Vo can be read on the receiver coil. In the ideal case, these
voltages can be defined as

Vi(t) = Ai cos(2π f t), and (1)

Vo(t) = Ao cos(2π f t + φ). (2)

The BK 4064 also generates a reference signal

Vr(t) = Ar cos(2π4 f t), (3)

which is down-converted by the AD8333 to the quadrature pair

Vr,I(t) = Ar cos(2π f t), and (4a)

Vr,Q(t) = Ar cos(2π f t + 90◦) = −Ar sin(2π f t). (4b)

Signals (4a) and (4b) are multiplied with (2), and with the use of product-to-sum
trigonometric identifies, one can obtain

Vo (t)×Vr,I(t) =
Ao Ar

2
cos(4π f t + φ) +

Ao Ar

2
cos(φ), and (5a)

Vo(t)×Vr,I(t) = −
Ao Ar

2
sin(4π f t + φ) +

Ao Ar

2
sin(φ). (5b)

A low-pass filter removes the high-frequency (2 f ) component and thus eliminates the
time dependency, providing the commonly known “I” and “Q” DC signals:

VI =
Ao Ar

2
cos(φ), (6a)

VQ =
Ao Ar

2
sin(φ). (6b)

Finally, the complex signal response that is used in this work, r, is defined as

r = VI + jVQ. (7)

where j =
√
−1 is the imaginary unit. When recorded against changing angle, r[n] refers

to the value of r at the nth angle measurement. After compensating for scaling and the
reference signal amplitude Ar, this signal relates the magnitude Ao and phase φ from the
physical phenomena by

Ao = |r| =
√

V2
I + V2

Q, and (8a)
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φ = ∠r = tan−1 VQ

VI
. (8b)

2.5. Scanning Methodology

The fundamental property of CFRP that enables our method of detecting fiber direc-
tionality is its anisotropic conductivity. A unidirectional CFRP has a significantly higher
conductivity in the direction of the fiber than in the transverse direction, by as much as
several orders of magnitude [16]. To test and observe this basic principle, we perform an
ECT rotational scan (herein referred to as an “r-scan” for brevity). An r-scan is simply a
rotational sweep of the eddy current probe over the surface of the part while recording coil
response as a function of angle, as depicted in Figure 4. A greater response is produced in
the receiver coil when the coils are aligned with the fiber direction, i.e., when θ = 0◦, 180◦

in Figure 4a, as compared to when the coil orientation is transverse to the fiber alignment,
such as when θ = 90◦, 270◦ for the configuration shown in Figure 4a. This observation is
similar to that shown by Li in [17]. In such a configuration, it is common to plot angular
data on polar axes, as shown in Figure 4b, where the radial axis is the magnitude of the
complex ECT response on the receiver coil, r, normalized between 0 and 1. When the fiber
direction is constant throughout the entire part, this method can be used to determine the
dominant fiber orientations quickly and accurately in the laminate [5].
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and receive (Rx) coils, versus fiber orientation (blue), and (b) ECT normalized response of signal
amplitude |r| as a function of rotation angle θ.

When the fiber direction changes throughout the part (as is the case when in-plane
waviness is present), the process of rotating the probes to obtain the local alignment is
performed at multiple locations. For repeatability and standardization, we create a grid
over the surface of the part where angular “r-scan” data are collected at each vertex. The
resulting data take the form of a 3D matrix representing the coil response in the spatial
dimensions (x, y) and the rotation θ space. The time required to perform the scan depends
on both the desired resolution in the rotational space θ and the spatial resolution of the
(x, y) grid. These resolutions also determine the optimal scanning order of operations. For
example, for high rotational resolution and low spatial resolution, it is optimal to sweep
the rotational axis (i.e., “r-scan”) first, and then move to the next (x, y) point. Conversely, if
low angular resolution and high spatial resolution are desired, the optimal order is to scan
the entire surface of the part (i.e., “c-scan”) before incrementing the probe angle. When
scanning for in-plane waviness, as is the case in this study, a high spatial resolution is
desired to properly quantify the wrinkle parameters. Furthermore, we show here that it is
possible to increase the effective angular resolution of the scan by signal processing against
the known rotational pattern in Figure 4b.
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Given a single high-resolution (e.g., ≤ 1◦) r-scan rh, we can calculate the angular
offset of low-resolution data rl to determine the dominant fiber orientation. In the present
study, a final angular resolution of ≤1◦ can be obtained from a rotational resolution of 15◦.
The offset calculation is accomplished using circular cross-correlation of a high-resolution
zero-centered angular scan data rh[n] against the up-sampled low-resolution data rl,up[n]
with n ∈ {1, 2, . . . , N} according to Equation (9). The up-sampled low-resolution data
rl,up[n] is obtained by zero-stuffing the low-resolution data rl [m] where m ∈ {1, 2, . . . , M}
and M < N. The fiber offset is simply the angle corresponding to the maximum of the
cross correlation, as shown in Equation (10). A demonstration of this process is given in
Figure 5, showing the original high-resolution signal with the low-resolution signal for some
angular offset, their convolution, and the resulting shift calculation on the polar axes. This
calculation is repeated at every point in the (x, y) grid, resulting in a direction field θ(x, y)
representing the fiber direction over the surface of the part, such as that shown in Figure 6.

(
rh ⊗ rl,up

)
[n] =

N

∑
m=1

rh[m] · rl,up[m− n] (9)

θ f iber = ∆θ · arg max
n∈[1,N]

(
rh ⊗ rl,up

)
[n] (10)
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Due to the non-negligible depth penetration of magnetic fields into CFRPs [18], our
method detects fiber orientations not just on the surface of the part but into the part itself (as
shown in [5]), differentiating our work from other methods that can only assess waviness
in the top laminae of a CFRP (see, e.g., [6]). This ability could present the opportunity to
look at the waviness of each layer in a lamina where the layup contains more than one
nominal orientation. Furthermore, because correlation works independently of whether
the signal is real or complex, this method takes advantage of the complex nature of ECT
data while still remaining flexible enough to be applied to only real data.

2.6. Reference/Ground Truth Data Collection
2.6.1. X-ray Computed Tomography

In order to verify the accuracy of our method, we scanned the test specimen using a
North-Star Imaging X3000 X-ray CT (computed tomography). The fabricated part shown in
Figure 1 contained a small amount of warpage because of its narrow thickness; thus, the CT
reconstruction data had to be shifted to account for the warpage of the part when looking
at individual slices of the CT data set corresponding to a single lamina. The alignment
was performed using 3D morphology to extract the part surface, which was then fit to a
2D polynomial. The depth values were then shifted according to the offset given by the
fitted plane.

After this alignment in the z-direction, a grid the same size and location as the ECT
grid was setup over the surface of the part, and the Radon Transform was applied to a
circular window around each point in the grid, giving the dominant texture direction
for that point. This was applied to each layer in the z-direction, producing a direction
field for each lamina in the part. For a direct comparison with the eddy current data, we
averaged the direction field for all five laminae to obtain a single direction field θCT for
error analysis. Figure 7a shows that the density field of the first five laminae averaged in
the z direction. Figure 7b shows the flowlines of the averaged direction field overlayed
with the raw direction data. The waviness region can be seen to be roughly located at
25 mm < x < 45 mm and was consistent between the two images.
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2.6.2. Pulse/Echo Ultrasonic Testing

In order to compare against leading NDE methods, the part was scanned with
pulse/echo UT. The UT system was setup using an in-house immersion system presented
in previous work (see, e.g., [4,19]). Here, an Olympus Focus PX with a 100 MHz sampling
frequency was connected to a 10 MHz spherical focused immersion transducer with a
nominal focal length of 1.5 inches operating in the pulse/echo configuration. This trans-
ducer was mounted on a 3-axis motorized gantry system for 3D translation throughout the
immersion tank. Raw a-scans were taken over a 50 × 50 mm area on the surface of the part
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at a spatial resolution of 0.1 mm, and the results are shown in Figure 8. These results are
from the same UT dataset presented in [13].
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Detection of in-plane waviness in a unidirectional CFRP is difficult for pulse/echo
UT, and currently, the methods for such a defect with pulse/echo UT are very limited,
if existent at all. One reason for the ineffectiveness of pulse/echo UT at characterizing
in-plane waviness is that the defect is orthogonal to the acoustic waveform transmission
path. Out-of-plane waviness can be effectively characterized with UT (see, e.g., [19]) for
the opposite reason. In order to detect in-plane waviness using pulse/echo UT, the scan
resolution would have to be small enough to enable accurate image processing on the
waviness region. However, the width of the narrow region of the ultrasonic beam is a
limiting factor to the effective resolution from UT scanning. For the scan shown in Figure 8,
the resolution of 0.1 mm provides that the general location of the in-plane wave can be
observed, but we have been unsuccessful in the development of automated algorithms for
consistent quantification of the local orientation, nor were we successful in finding any in
the literature. This is a path for future research in ultrasound development.

3. Results

The vector field in Figure 6b shows the spatially varying fiber orientation as recon-
structed by the ECT method described in this work, which we herein refer to as an “rc-scan”.
A spatial resolution of 1 mm in the x direction and 1 mm in the y direction was used with an
angular resolution of 15 degrees. At each location in the raster grid, the principal direction
and magnitude, such as shown in Figure 6a, are generated. Upon close inspection of the
quiver plot, one can see the area of waviness by the suddenly changing fiber orientation. A
more intuitive method of visualizing this data uses flow lines, which we accomplish here
with MATLAB’s streamline function. The resulting flow plot in Figure 9 shows the area of
waviness as a representation of the fiber paths themselves.

To obtain the quantitative error analysis, we compare the ECT results with the results
from the CT scanning and subsequent image processing over the same region of the
fabricated part. Figure 10a shows both direction fields displayed as quiver plots on the
same axes. Figure 10b displays the streamlines from ECT testing overlaying the top-down
mean X-ray CT data to show the alignment of the two testing methods.
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Figure 10. (a) Comparison of direction fields from CT and ECT testing; (b) ECT streamlines overlayed
with CT scan to show alignment.

It is worth noting that the regions of higher error are associated with variations in
the CT reference data from the normal trend of the waviness. Furthermore, the total
variation of the CT reference data is higher than the variation of the ECT data. We recognize
that there are difficulties in determining the “ground truth” fiber direction; even our CT
approach contains some errors due to the limitations of image processing. As such, the
actual error of our method could be different than what is given in Table 1. Figure 11
illustrates the width calculation and shows the detected waviness region plotted over the
CT and ECT streamlines.

Table 1. Error and variance results.

θCT θect θerr=θCT−θECT

Average max angle, θmax 12.68◦ 10.40◦ -
Average width 1 24.22 mm 26.80 mm -
Total variance 6◦ 4.4◦ 3◦

Total RMSE - - 3◦

1 Width is calculated as the interval of x where θmin/e ≤ θ ≤ θmax/e and e ∼= 2.7.
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4. Discussion

The presented ECT method provides some advantages over traditional imaging meth-
ods for the detection of in-plane waviness. One such advantage is the lack of reliance
on spatial resolution for accurate angular measurements. This provides flexibility for
defining the scan region and allows for effective measurements using larger probes. A
disadvantage with our method is the extended scanning time; where an imaging technique
only requires one raster (or c-scan) over the surface, we must raster over the surface (albeit
at a lower resolution) once for each angular datapoint. However, this disadvantage is
hardware-based, and methods are being developed in-house to mitigate this limitation.
One possible solution is through the use of multiple coils on the probe to measure several
directions simultaneously, thereby reducing the number of passes (and thus scan time) by
a factor of the number of simultaneous measurement angles in the probe. Such a probe
is proposed in [20,21]. Further refinement of the data processing algorithm could also
reduce the number of necessary datapoints, specifically by further capitalizing on the
complex nature of the ECT data. While outside the scope of this work, these measures
could potentially reduce the scanning time to a single pass.

The second primary disadvantage of this method in its current configuration is its
limitation to tracking only one dominant fiber orientation. When multiple nominal orienta-
tions are present, e.g., a [0/45/90] unidirectional laminate or a woven CFRP laminate, each
nominal direction can have its own independent waviness. Thus, woven CFRP laminates
could be scanned with this method only if the waviness is not independent in both nominal
orientations. Methods of discerning between multiple orientations and their associated
depths are under investigation [5].

Mitigating or resolving these limitations would increase the commercial potential of
the proposed technique. In a commercial application, this method could be used exactly
like other NDT scanning methods, such as UT, where a probe is mounted on a robotic
arm or gantry system for scanning surfaces of various shapes. Instead of measuring depth
data, this method would map the fiber direction across the surface of the object, thereby
detecting in-plane waviness that could negatively impact the mechanical performance of
the object under examination.

5. Conclusions

The contribution of this work is the development of a straightforward yet highly
reliable ECT method for determining the local changes in the fiber orientation of a CFRP as
it varies throughout the test specimen. This ability enables the detection and quantification
of defects, such as in-plane waviness and in-plane wrinkles, in CFRP to within 3◦ of the
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local orientation quantified using a high-resolution X-ray CT. Furthermore, the developed
method provides reliable evaluation for a defect type that is difficult for traditional UT,
X-ray CT, and other imaging methods to quantify, thereby giving it a unique role in the
NDT/NDE arsenal.

Even with the difficulty in obtaining ground truth fiber direction data, the current
error analysis suggests a high level of reliability and accuracy, even when only considering
the aspect ratios in wrinkles. Other methods of detecting in-plane waviness in CFRP can
typically only measure the top surface, provide estimations of fiber angle, or are limited to
a single cross-section of the wrinkle.

Further research will expand on and refine this method, exploring techniques for
reducing the scan time via probe design and data processing. Sample fabrication with
control over the defect parameters would also enable a more accurate error analysis. The
application of this method to different types of CFRP composites is also of interest, as is
associating waviness with specific layers when multiple orientations are present.
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