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Abstract: One of the current focuses of modern bioinformatics is the development of hybrid models
to process gene expression data, in order to create diagnostic systems for various diseases. In this
study, we propose a solution to this problem that combines an inductive spectral clustering algorithm,
random forest classifier, convolutional neural network, and alternative voting method for making the
final decision about patient condition. In the first stage, we apply the spectral clustering algorithm
to gene expression profiles using inductive methods of objective clustering, with the calculation of
internal, external, and balance clustering quality criteria. This results in clusters of mutually correlated
and differently expressed gene expression profiles. In the second stage, we apply the random forest
classifier and convolutional neural network to identify the examined objects, containing as attributes
the gene expression values in the allocated clusters. The presented research solves both binary-
and multi-classification tasks. The final decision about the patient’s condition is made using the
alternative voting method, considering the classification results based on the gene expression data in
various clusters. The simulation results showed that the proposed technique was highly effective,
achieving a high accuracy in object identification when both classifiers were used. However, the
convolutional neural network had a significantly higher data processing efficiency than the random
forest algorithm, due to its substantially shorter processing time.

Keywords: gene expression profiles; spectral clustering algorithm; convolutional neural network;
inductive clustering technique; random forest classifier; alternative voting method; hybrid model;
cancer disease

1. Introduction

The modern artificial information processing systems used in various fields of in-
telligent data analysis and machine learning are mostly based on an analogy with the
functioning of corresponding processes in biological organisms. Such processes include
the functioning of gene networks, immune processes, the functioning of neural networks,
and so on. The peculiarity of such systems is their high level of complexity, ability to
learn, parallel processing of information, high level of security, and ability to recognize and
make appropriate decisions. In this context, the development of modern artificial models
for processing big data is possible with the use of a systemic approach, which involves
the comprehensive application of knowledge and methods from various practical fields,
such as molecular biology, mathematics, computer science, physics, and chemistry. Such
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approaches create conditions for increasing the objectivity of processing big data in real
time, through the use of ensembles of methods, hybrid models, and effective quality criteria
for assessing results at the corresponding stage of information processing implementation.

One of the current problems in modern bioinformatics is the processing of the gene
expression data obtained in DNA microchip experiments [1] or the more modern method
of mRNA molecule sequencing [2]. The peculiarities of experimental data include a large
number of genes that determine the state of the corresponding biological organism. As is
well known, the number of expressed (active) genes that make up the human genome is
approximately 25,000. At the same time, the number of each type of gene varies in the range
from zero to hundreds of thousands. Creating medical diagnostic systems or models of
gene regulatory networks using full data is not effective, because the process of interpreting
the obtained results, in this case, is problematic.

Currently, deep learning models are actively used to process large datasets, such
as deep neural networks [3], convolutional neural networks [4], and artificial deep net-
works [5], which allow achieving a satisfactory diagnostic accuracy on large data, but at
the same time, there are problems regarding the training time, network sensitivity, and
verification of obtained models on other similar data. Solutions to the aforementioned
problems are possible through the development and improvement of existing methods,
models, and algorithms for processing large datasets. The implementation of this process
involves the formation of quality experimental data by applying appropriate methods for
normalizing gene expression values and reducing low-expressed genes in the first stage.
The second stage involves the problem of forming subsets of differentially expressed and
mutually correlated expression profiles of genes using hybrid models of high-dimensional
data clustering. The third stage involves the development of a disease diagnostic model
based on the formed clusters of gene expression profiles using deep learning methods, with
corresponding verification of the obtained results.

This manuscript extends the authors’ previous work on gene expression data pre-
processing [6], comparative analysis of gene expression profile proximity metrics [7],
noninformative gene removal using statistical criteria and Shannon entropy [8], and the
formation of subsets of mutually correlated and differently expressed gene expression
profiles through the joint application of various clustering and classification techniques [9].

This manuscript presents the following main contributions:

• We introduce an inductive model of objective clustering, which utilizes a spectral clus-
tering algorithm to generate subsets of gene expression profiles that are differentially
expressed and mutually correlated.

• We propose and practically implement a hybrid model for diagnosing various types
of cancer, which combines the inductive spectral clustering algorithm, the random
forest classifier, a convolutional neural network, and the alternative voting method.
This approach enhances the accuracy and objectivity of identifying an object’s state by
parallelizing the information processing process.

2. Review of Literature

Many scientific works are currently devoted to applying intelligent data analysis and
machine learning methods, including deep learning, for processing gene expression data
to create diagnostic systems for various diseases. According to the findings in [10], the
authors introduced a method called an extremal learning machine (ELM) for categorizing
gene expression data. This approach employs correlation analysis to identify helpful gene
expression profiles. The authors achieved a binary classification accuracy of 79%. The
study used 60 central nervous system tumors (including other types of tumor). However, it
should be noted that a small dataset was used in the experiment, which may have affected
the adequacy of the obtained results. Moreover, the effectiveness of the proposed model
was evaluated based on only one dataset, which also does not contribute to the adequacy
of the results. The accuracy of the obtained results was also not high, which is undoubtedly
one of the drawbacks of the presented research results.
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The research presented in [11] explored using five distinct machine learning techniques
for classifying gene expression data: the random forest algorithm, support vector machine,
naive Bayes classifier, C4.5 decision trees, and k-nearest neighbor method. The study em-
ployed gene expression data from 358 patients with varying degrees of somatic mutations,
sourced from The Cancer Genome Atlas (TCGA) database, to predict breast cancer. Among
the methods used, the random forest algorithm achieved the highest accuracy of 70%, while
the other machine learning techniques were found to be less precise.

In [12], the authors explored the classification of two lung cancer subtypes, adenocar-
cinoma (AC) and squamous cell carcinoma (SCC), using classifiers based on the random
forest algorithm and support vector machines (SVM). To identify informative genes, they
employed Monte Carlo feature selection (MCSF) and incremental feature selection methods.
The gene expression arrays used for modeling contained 20,502 genes from the Affymetrix
GeneChip [13], sourced from the Gene Expression Omnibus (GEO GSE43580) database.
These data comprised 77 AC lung cancer samples and 73 SCC lung cancer samples. The
results indicated that SVM achieved a higher accuracy when using 1100 optimal features
(genes) for classification, compared to the 43 informative features (genes) obtained through
MCSF. The accuracy rates dropped from 0.96 to 0.86 with SVM and from 0.93 to 0.88 with
the random forest method. These findings highlight the significance of selecting informative
gene expression profiles.

The findings of a study involving gene expression data obtained from lung adenocar-
cinoma samples, precisely 86 tumor samples and ten nontumor samples sourced from the
Kent Ridge Biomedical Data Repository (available from [14]), are presented in [15]. The
data comprised 7129 genes, and a subset of informative genes was formed using the mutual
information estimation method. The model was trained using 70% of the samples, with
the remaining 30% used for testing. Three binary classification methods were employed
to detect the presence of tumors after identifying candidate genes directly related to lung
cancer. Several selected genes were evaluated for their biological significance in lung cancer
pathology, leading to the identification of six genes with high information gain that may be
associated with lung cancer. These genes were then used as biomarkers for lung cancer
classification in the proposed model using three classification methods: multi-layer per-
ceptron (MLP), random sub-space (RSS), and sequential minimal optimization (SMO). The
classification accuracy achieved with these methods was 87%, 68%, and 92%, respectively.
However, it should be noted that the classification accuracy obtained in this study was also
deemed unsatisfactory, which can be attributed to the model’s inability to perfectly form
subsets of informative gene expression profiles.

The authors of [16] introduced a feature selection strategy and a multigrain cascade
forest classifier (gcForest) to predict four breast cancer subtypes. The modeling process
employed RNA-Seq gene expression data from The Cancer Genome Atlas (TCGA). The
proposed method aimed to enhance the classification accuracy and reduce the training
time by selecting informative genes. To evaluate the effectiveness of gcForest, the classifica-
tion results were compared with those of three well-known classifiers (KNN, SVM, and
MLP). In the first stage of the study, the thirty most informative genes were selected. The
modeling results revealed the higher efficiency of the gcForest algorithm compared to the
other classifiers, with an accuracy of 0.92 achieved. However, a drawback of gcForest is
that it requires discrete data, resulting in the loss of information and a decrease in data
classification accuracy. Additionally, external data were not used to assess the adequacy of
the proposed model in the presented studies.

In recent years, the growth of computing resources and their application in processing
gene expression data has led to the widespread use of artificial intelligence methods
based on deep learning (DL) [17–19]. DL is a branch of machine learning that creates
a structure with multiple levels, where the output of one level is the input of the next
level. The DL network structure aims to emulate the mechanisms of the human brain in
interpreting different types of data, such as sound, text, and images. DL uses principles
similar to linear regression, where each neuron has a weighted value updated using the
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backpropagation algorithm, to minimize the global loss function. The application of DL has
helped to overcome challenges in predicting cancer, by providing high accuracy in disease
identification and faster analysis. The most common architectures of deep neural networks
include convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
artificial neural networks (ANNs).

In [20], the authors presented the results of their research on early cancer diagnosis
using a deep neural network (DNN). The proposed model was tested on 37 different types
of cancer using data from The Cancer Genome Atlas (TCGA), which contained the expres-
sion of 10,000 genes in 10,663 samples (9807 tumors and 856 normal samples). The authors
investigated three different structures of deep neural network model: 3NN, 5NN, and
9NN. The performance of the proposed DNN model was compared to that of a support
vector machine (SVM) model by calculating their accuracy of classifying the samples. The
modeling results showed that the 5NN model achieved the highest diagnostic accuracy.
However, it is worth noting that the disease identification accuracy was not high, and
the model’s sensitivity to certain types of cancer was also limited, indicating that further
refinement is necessary.

The findings of a study on cancer diagnosis using an ensemble of deep learning models
are presented in [21]. The authors investigated the use of gene expression data from The
Cancer Genome Atlas (TCGA) to diagnose lung, breast, and stomach cancers. The study
included 162 lung cancer samples, 878 breast cancer samples, and 271 stomach cancer
samples. The model achieved a diagnostic accuracy of 98% for all datasets. Despite this
impressive result, there are significant drawbacks to the proposed model. First, it is highly
complex and requires substantial time and computational resources for training. Second,
interpreting this ensemble-based deep learning model is challenging.

After analyzing the research in this area, it can be concluded that there is currently no
definitive solution to the problem of high-quality processing of gene expression data, for
creating a diagnostic system for various diseases. However, we believe that this problem can
be solved by employing a complex approach that combines modern methods of intelligent
data analysis and machine learning with advanced information technologies for processing
big data. In our research, we propose an approach to address this issue.

3. Material and Methods
3.1. Experimental Dataset Formation and Preprocessing

During the simulation process, gene expression data from The Cancer Genome Atlas
(TCGA) [22], obtained by applying RNA sequencing on the Illumina platform [23], were
used. Each initial data sample contained 19,947 types of genes as attributes, where the
expression of each gene was determined by its activity level, which was proportional to the
amount of the corresponding gene type. The experimental dataset contained nine types
of data, eight of which corresponded to eight types of cancer, while the ninth type of data
corresponded to samples for which no cancerous tumor was identified based on clinical
trials. The total number of samples studied was 3269. Thus, at the initial stage of modeling,
the gene expression matrix had the following form: E = (3269 × 19,947). The classification
of the experimental data used in the modeling process is presented in Table 1.

At the initial stage, we removed uninformative gene expression profiles based on
their absolute expression values, variance, and Shannon entropy, as outlined in [24]. This
process resulted in the removal of 4814 gene expression profiles, resulting in a filtered gene
expression value matrix in the following form: E = (3269 × 14,451). These data were used
in our research.
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Table 1. The classification of experimental gene expression data used in the modeling process

No Type of Cancer Number of Samples

1 Adrenocortical carcinoma—ACC 79
2 Glioblastoma multiforme—GBM 169
3 Sarcoma—SARC 263
4 Lung squamous cell carcinoma—LUSC 502
5 Lung adenocarcinoma—LUAD 541
6 Stomach adenocarcinoma—STAD 415
7 Kidney renal clear cell carcinoma—KIRC 542
8 Brain lower-grade glioma—LGG 534
9 Normal 224

3.2. Application of an Objective Clustering Inductive Model Based on the Spectral Clustering
Algorithm for Forming Subsets of Differentially Expressed and Mutually Correlated Gene
Expression Profiles

We believe that the objectivity of identifying the object state can be enhanced by
parallelizing the process of processing gene expression data. This can be achieved by
forming subsets of differentially expressed and mutually correlated gene expression profiles,
followed by classifying objects containing gene expression data in the selected clusters.
The final decision is reached by analyzing the classification results of all clusters using an
alternative voting system. Figure 1 shows a structural block diagram for implementing
this procedure.

Figure 1. Structural block diagram illustrating the step-by-step procedure for processing gene
expression data in the diagnostic system of the investigated object.

The initial stage of the procedure illustrated in Figure 1 involves forming subsets of
mutually correlated and differentially expressed gene expression profiles, by applying the
inductive spectral clustering algorithm. The algorithm’s effectiveness for high-dimensional
gene expression profiles clustering was demonstrated in [9]. To evaluate the proximity
of gene expression profiles and clusters within the current modeling framework, we
used a hybrid metric of gene expression profile proximity, based on mutual information
maximization using various entropy calculation methods. The modified proximity metric
is described in [7]. The minimum value obtained using this metric corresponds to the
minimum distance between the corresponding gene expression profiles. Additionally,
we employed this modified metric to estimate the closeness of gene expression profiles,
clusters, and gene expression profiles and clusters.
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The internal quality criterion used for clustering gene expression profiles considered
the distribution within individual clusters in relation to the corresponding cluster’s median
and the distribution of individual clusters (medians) in the feature space. The formula used
to calculate the internal quality criterion for clustering in this case is given by:

QCint =
ADW

K · ADB
(1)

where K is the number of clusters that form the cluster structure; ADW (average distance
within) is the average distance between gene expression profiles and the medians of the
clusters in which these profiles are located:

ADW =
1
m

√√√√ K

∑
k=1

mk

∑
i=1

MI(ei, MK)2 (2)

where m is the total number of gene expression profiles; mk is the number of gene expression
profiles in the k-th cluster; Mk is the median of the k-th cluster; ei is the vector of expression
values for the i-th gene; and MI(·) is the value of mutual information (a higher value of
mutual information corresponds to a smaller distance between gene expression profiles).

The second component of the criterion (1) is calculated as the average distance between
all pairs of cluster medians that make up the cluster structure:

ADB =
2

K · (K− 1)

√√√√K−1

∑
i=1

K

∑
j=i+1

MI(Mi, Mj)2 (3)

It is worth mentioning that a smaller value of criterion (1) indicates a better clustering
based on this particular quality criterion. The methodology presented in [25] was used to
calculate the external and balance criteria.

The methodology for implementing the clustering algorithm within the inductive
objective clustering framework, as presented in [9,25], involves the formation of two
equivalent subsets of gene expression profiles using a corresponding distance metric. In
this study, a modified distance metric, based on a complex application of different methods
for maximizing mutual information, was used. The optimal cluster structure was formed
by simultaneously applying the spectral clustering algorithm to equivalent subsets of gene
expression profiles. The next stage involved forming the cluster structures, with the number
of clusters ranging from 2 to 7. In each step, the internal quality criteria for clustering
were calculated using Formulas (1)–(3), as mentioned earlier. The external quality criterion
was calculated as the normalized difference between the internal criteria at each step of
this procedure.

QCext =
|QCA

int −QCB
int|

QCA
int + QCB

int
(4)

The reproducibility error that occurs during the process of forming the cluster structure
was minimized with a smaller value of criterion (4). The balance criterion, which combines
both internal and external quality criteria, was evaluated using Harrington’s desirability
function, based on Algorithm 1 presented in [9].
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Algorithm 1: Balance quality criterion value calculation
Initialization:
Calculate the vectors of QCint and QCext for each obtained clustering within the
range of the clustering algorithm parameters;

create the empty vector of QCbal ;
set the iteration counter of t and the iteration counter of the used criteria to m = 1;
determine the length of the vectors QCint or QCext as n;
transform the scales of both QCint and QCext into an index scale Y using the

appropriate dependence type, which is given by:{
Y = a + b ·QCint;
Y = a− b ·QCext.

(5)

while t ≤ n do
while m ≤ 3 do

Calculation of Ym value for each of the used criteria by the Equation (5);
Calculation of the private desirabilities for each of the criteria:

dm = exp(−exp(−Ym)) (6)

m = m + 1;
end
Calculation of the QCbal as geometric average of all partial desirabilities:

QCbalt =
3

√√√√ 3

∏
m=1

dm (7)

t = t + 1;
end
Return the vector of QCbal criterion values.

Figure 2 displays the simulation outcomes related to the identification of the most
suitable cluster configuration.

The simulation results for determining the optimal cluster structure are depicted in
Figure 2. The findings confirmed the possible inconsistency between the internal and
external clustering criteria in the process of creating the optimal cluster structure. The
minimum value of the internal criterion corresponds to a five-cluster structure in subset A
of gene expression profiles and a seven-cluster structure in subset B, as shown in Figure 2a,b.
However, it should be emphasized that the difference between the values of the internal
criteria within the range of the number of clusters from 4 to 7 is negligible. This finding
indicates the complexity of selecting an optimal cluster structure based on the analysis of
internal clustering quality criteria. The best structure in terms of reproducibility error is
the three-cluster structure, since it has the minimum value of the external criterion, but
the four- and six-cluster structures are also acceptable, according to the external criterion.
The analysis of the balance criterion values, which include both internal and external
clustering quality criteria components, suggests that the optimal structures are the four-
and six-cluster structures, which correspond to the maximum value of the balance criterion.
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Figure 2. Simulation results for determining the optimal cluster structure using the inductive
algorithm of spectral clustering: (a,b) internal clustering quality criteria values depending on the
number of clusters calculated on equivalent subsets A and B, respectively; (c) external clustering
quality criterion; (d) balance criterion.

The obtained results were validated by performing an object classification procedure
using gene expression values and examining the three-, four-, five-, and six-cluster struc-
tures. Figure 3 depicts the distribution of gene expression profiles across the formed clusters.

Figure 3. Distribution pattern of gene expression profiles in clusters using the inductive spectral
clustering algorithm.

Figure 3 reveals that the four- and six-cluster structures demonstrated an approx-
imately uniform distribution of gene expression profiles in the formed clusters. This
observation suggests a higher quality of distribution of the gene expression profiles in the
clusters based on the criteria employed in the proposed model.
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In the next stage, a convolutional neural network (CNN) was employed to analyze the
gene expression data in the formed clusters. To correctly apply the CNN, the expression
matrices were augmented with gene expression profiles containing zero values. The number
of additional profiles was adjusted to make the total number of profiles a multiple of fifty,
which is one of the parameters of the CNN filter.

4. Applying Convolutional Neural Network (CNN) to Gene Expression Data in
Formed Clusters

Within the framework of the simulation process, we utilized a one-dimensional two-
layer convolutional neural network to classify objects using gene expression data attributes
in the formed clusters. The structure of the network and hyperparameter values were
chosen based on the authors’ previous studies, as presented in [26]. The kernel size was
set to 8, and the dense layer density was 256. The filter parameters for different cluster
structures of the gene expression data are shown in Table 2. Similarly to their previous
model, the authors divided the set of objects under investigation (3269) into three subsets.
Whereby, 65% of the objects (2125) were used for training and validation, while 35% (1144)
were used for testing. In this case, 70% of the objects from the first subset (1487) were used
for network training, and 30% (638) were used for model validation.

Table 2. Parameters of the filters used in the one-dimensional two-layer CNN.

Layer Three-cluster structure Four-cluster structure
Cl.1 Cl.2 Cl.3 Cl.1 Cl.2 Cl.3 CL.4

1 108× 50 133× 50 49× 50 102× 50 71× 50 49× 50 69× 50

2 216× 25 266× 25 98× 25 204× 25 142× 25 98× 25 138× 25

Layer Five-cluster structure
Cl.1 Cl.2 Cl.3 CL.4 CL.5

1 96× 50 12× 50 89× 50 54× 50 40× 50

2 192× 25 24× 25 198× 25 108× 25 80× 25

Layer Six-cluster structure
Cl.1 Cl.2 Cl.3 CL.4 CL.5 CL.6

1 58× 50 60× 50 54× 50 34× 50 31× 50 55× 50

2 116× 25 120× 25 108× 25 68× 25 62× 25 110× 25

Quality assessment of the model was performed by evaluating the nature of the
changes in classification accuracy and loss function during the CNN training process,
which were calculated with subsets of gene expression data used directly for training and
validating the model. The adequacy of the model was evaluated by applying test data,
with the calculation of classification quality criteria. Figures 4–6 depicts the distribution
characteristics of the respective classification quality criteria for samples calculated during
modeling, when identifying the presence or absence of the corresponding disease using the
gene expression data located in the highlighted clusters.
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Figure 4. Distribution diagrams of classification quality criteria values for samples of patients with
ACC and GBM cancer, when using gene expression data from different clusters

Figure 5. Distribution diagrams of classification quality criteria values for samples of patients with
KIRC, LGG, LUAD, and LUSC cancer, when using gene expression data from different clusters.
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Figure 6. Distribution diagrams of classification quality criteria values for samples of patients with
SARC, STAD cancer, healthy patients (NORMAL), and classification accuracy of test data subsets,
when using gene expression data from different clusters.

Analysis of the obtained results allowed us to identify a high convergence of the
clustering quality criteria, the distribution of which for the obtained cluster structures is
presented in Figure 2. It should be noted that, in almost all cases, the accuracy of sample
classification was quite high, while in each cluster structure, one cluster of gene expression
profiles could be distinguished, the application of which resulted in a lower classification
accuracy compared to the other cases. According to the clustering criteria presented in
Figure 2, the four- and six-cluster structures are optimal. According to the classification
quality criteria, the four-cluster structure was the most stable for all types of sample studied.
When using a six-cluster structure, five clusters provided a high classification accuracy
according to the criteria used, while the fifth cluster yielded significantly lower results in
sample classification. This fact indicates the adequacy of the distribution of gene expression
profiles into clusters when forming the cluster structure. The results of sample classification
using the four-cluster structure were the most stable for all types of data. However, it should
be noted that the worst results for sample classification were obtained when using samples
with ACC cancer. This can be explained by the smaller number of samples compared to the
other types of data, which could undoubtedly have affected the model’s sensitivity. The
best results were obtained when classifying samples for which cancer was not detected
(NORMAL). The obtained results also indicated the feasibility of using an alternative voting
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system as the last step when making the final decision on the presence or absence of the
corresponding disease, since decisions based on applying one set of gene expression data
are not objective.

5. Application of an Alternative Voting System for Making the Final Decision about
the State of the Examined Patients

The feasibility of using an alternative voting system in the stage of making a final
decision regarding a patient’s health status was proven by the fact that the classification
results obtained from different subsets of gene expression profiles formed during the
clustering procedure could contradict each other. The clustering procedure involves the
formation of subsets of gene expression profiles that are similar to each other based on
corresponding metrics, and it is possible to form clusters of gene expression profiles that
determine biological organism functional processes that are not directly related to the
corresponding disease. Based on the simulation results presented in the previous section,
when each clustering structure was applied, in most cases, the classification results of
samples containing gene expression values of one of the clusters were lower compared to
the results obtained when using data from other clusters; that is, the third cluster in three-
and four-cluster structures, and the fifth cluster in five- and six-cluster structures. Obviously,
this cluster can be disregarded when making a final decision regarding the patient’s
condition. However, in this case, it is necessary to conduct a deep cluster analysis in each
case when analyzing new data. Moreover, when using three- and four-cluster structures,
the classification results obtained from the gene expression data of the third cluster were
also quite high and may have affected the final decision regarding the presence or absence
of the disease. The use of an alternative voting system involves using classification results
obtained from all clusters, eliminating the need to choose the most informative clusters
based on the disease’s discriminatory ability. This decision is made based on the consistency
of the classification results from most clusters. In this instance, there are two possible cases:

1. The sample belongs to the corresponding class (a corresponding type of cancer has
been unambiguously identified or the patient has been recognized as healthy).

2. The patient requires additional examination to determine their health status.

In the current modeling framework, the experimental gene expression data of patients
results in an object classification belonging to the corresponding class when using data
from two out of three clusters. For four- and five-cluster structures, the results must match
based on the gene expression data from three out of any four clusters. In the case of a
six-cluster structure, the number of such clusters must be at least four. If the classifier
identifies different patient states based on gene expression data from different clusters, the
patient’s condition is identified as undefined, indicating the need for further clinical studies.

It should be noted that increasing the number of clusters contributes to increasing
the objectivity of making an adequate decision regarding the patient’s health status, by
parallelizing the process of processing gene expression data, on the one hand, and increasing
the number of possible alternatives, on the other.

5.1. Practical Implementation of the Binary Classification Model of Patient Health Status Based on
a Multi-Cluster Structure of Gene Expression Data Using the Alternative Voting Method

The results of the binary classification of samples containing gene expression data
using different cluster structures are presented in Figure 7.
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Figure 7. Simulation results regarding the use of the random forest (RF) algorithm for binary
classification of samples containing gene expression data from different cluster structures.

The random forest (RF) classification algorithm was used at this stage. The feasibility
of using this type of algorithm was confirmed by the fact that the initial data were divided
into subgroups during binary classification, and the number of samples in each group
(considering the type of disease) was significantly less than the total number of samples.
For such limited data, using a convolutional neural network is not reasonable. In addition,
the feasibility of using the RF algorithm for the binary classification of samples based on
gene expression data was demonstrated in [27]. The simulation procedure was carried out
with the following steps:

1. Formation of subsets of data, with samples corresponding to one type for each cluster
structure. At this stage, nine subsets were formed, eight of which corresponded to
different types of cancer, and the ninth subset contained gene expression data of
patients for whom no disease was detected.

2. Combination of subsets of gene expression data corresponding to different types of
disease with the gene expression data of healthy patients. At this stage, eight subsets
of gene expression data were formed for each cluster structure.
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3. Division of each data group into two subsets in a ratio of 0.65/0.35, with the first
being used for model training and the second for model testing.

4. Training the model by applying the RF algorithm to the first subset of data.
5. Application of the model to test data. Calculation of binary classification quality criteria.
6. Analysis of the obtained results.

The analysis of the obtained results allowed us to conclude that in all cases, the
accuracy of binary classification of samples was quite high (ranging from 98 to 100 percent).
More detailed analysis showed the higher effectiveness of the model when applying four-
and six-cluster structures, which was consistent with the results of evaluating the quality
of cluster structure based on the use of internal and external criteria for clustering quality.
Analysis of the simulation results also allowed us to conclude that the best results were
obtained when applying the six-cluster structure, which confirmed the feasibility of using
the model to parallelize the gene expression data processing flow and to make a final
decision on the object’s status by applying the alternative voting method. In this case, the
importance of the previous stage of removing noninformative expression profiles based on
statistical and entropy criteria and forming clusters of mutually correlated and differentially
expressed gene expression profiles should be noted.

5.2. Practical Implementation of a Multiclass Model for Identifying the Health Status of Patients
Based on a Multi-Cluster Structure of Gene Expression Data Using the Method of
Alternative Voting

The practical implementation of a multiclass model for identifying the health status of
patients (identification of the presence or absence of a particular type of cancer) based on
the data presented in Table 1 was carried out by applying two types of classifier: a classifier
based on the RF algorithm, and a convolutional neural network (CNN). The procedure for
implementing this process involved the following steps:

1. Formation of experimental data for each cluster structure in the form of a matrix,
where the rows were samples under investigation, and the columns were the gene
expression values of the corresponding cluster profiles. When using the data in Table 1,
the total number of samples was 3269.

2. Splitting the data into two subsets, also in a ratio of 0.65/0.35.
3. Applying the classifier to the data used to train the model (65% of the total number

of samples).
4. Testing the model by applying test data. Forming generalized classification results for

each cluster structure in the form of a matrix, where the rows were the samples that
made up the test subset of data, and the columns were the classification results for
each cluster of the current cluster structure.

5. Forming the final classification result by applying the alternative voting method to
the resulting matrix. According to the procedure described in the previous section,
sample identification was based on the consistency of classification results using gene
expression data from most clusters. If there was a discrepancy in the classification
results, the sample was identified as undefined, requiring further clinical research for
its objective identification.

6. Calculation of classification quality criteria based on unambiguously identified samples.
7. Analysis of the obtained results.

5.2.1. Results of Patient State Diagnosis Based on the Use of the Random Forest Algorithm

Figure 8 presents the simulation results using the random forest algorithm applied to
gene expression data from different cluster structures.
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Figure 8. Simulation results regarding the use of the random forest algorithm to solve the multi-class
problem of identifying the health status of patients investigated for different types of cancer.

As mentioned above, the classification results were evaluated on test datasets. Analysis
of the results allowed concluding that, based on the classification quality criteria, the four-
and six-cluster structures are more attractive than the three- and five-cluster structures.
This is consistent with the spectral clustering algorithm results (Figure 2). However, it
should be noted that, out of the 1140 samples used to test the model, the state of 31 and
21 samples in the case of using the four- and six-cluster structures, respectively, was
identified as undefined. This means that, in these patients, the type of cancer was not
identified unambiguously, requiring further clinical studies to identify the disease type.

The analysis of the simulation results also indicated the higher effectiveness of using
the four-cluster structure for identifying the type of cancer. Analysis of the classification
quality criteria values for samples corresponding to different types of cancer and the health
state of patients (Figure 8a–c) suggested higher values and a better stability of these criteria
when using the four-cluster structure compared to using other cluster structures. However,
it should be noted that, when using the four-cluster structure, the state of a relatively large
number of objects (31 out of 1140) was identified as undefined, which is undoubtedly a
drawback of the RF-based model. Another significant drawback was the large amount of
time required to train the model. The current training of data for each model (when using
each cluster structure), took about 80 h.

5.2.2. Results of Patient State Diagnosis Based on the Use of Convolutional
Neural Network

In the current modeling to identify the type of cancer or patient state, a one-dimensional
two-layer convolutional neural network (CNN) was used. The kernel size was set at 8, and
the density of the dense layer was set to 256. The parameters of the filters used when using
gene expression data from different cluster structures are presented in Table 2. The data
distribution for training and testing the model was the same as in the previous models:
65% of the data were used for network training, and 35% (1140 samples) were used for
testing. The simulation results regarding the application of CNN for classifying samples
that made up the test data subset are presented in Figure 9.
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Figure 9. The simulation results regarding the application of CNN for solving the multi-class problem
of identifying the state of patients studied for different types of cancer.

The analysis of the simulation results allowed us to conclude that using four- and
six-cluster structures when applying the CNN is also more attractive for identifying the
type of cancer compared to three- and five-cluster structures. However, the difference in the
sample identification results in the case of using CNN was significantly smaller compared
to using the random forest algorithm classifier. Moreover, it should be noted that the
training time for the CNN model was significantly shorter compared to the random forest
algorithm classifier. The analysis of the simulation results also allowed us to conclude that
using the six-cluster data structure when applying CNN allowed for better and more stable
classification results for all samples and corresponding to all types of cancer, including
samples from patients in whom cancer was not detected. However, it should be noted that,
in the case of using the six-cluster structure, the state of 31 samples out of 1140, which made
up the test data, was identified as undefined, which means that the results of applying
different gene expression data clusters may contradict each other when determining the
type of cancer. In this case, additional clinical research is necessary to determine the
patient’s state or type of cancer unambiguously.

The results obtained regarding using a CNN for identifying the state of the investigated
object based on gene expression data indicated the high effectiveness of the diagnostic
system utilizing a CNN as a classifier. The use of the complete set of gene expression
data also allowed obtaining a high accuracy of data classification, but questions may arise
regarding the objectivity of the results. The formation of clusters of differentially expressed
and mutually correlated gene expression profiles increases the objectivity of decision-
making regarding the state of the object, by parallelizing the information flow, forming
intermediate decisions based on gene expression data from different clusters, and making
a final decision on the state of the corresponding object using an alternative voting method.

A comparative analysis of the simulation results obtained using the random forest
algorithm and the CNN for gene expression data allowed us to conclude that both models
were highly effective, but as mentioned above, the CNN’s training time was significantly
shorter. If the random forest model was trained on the data for approximately 70 h, then the
CNN model was trained for approximately 10 min. However, in terms of the classification
accuracy and criteria values determining the first and second types of errors, the four-cluster
structure when using the random forest algorithm allowed for better object identification
results compared to the six-cluster structure when using the CNN. In both cases, 31 objects
were identified as undefined.
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6. Conclusions

In this study, we have presented the research results of creating a model for a diagnostic
system used to assess the state of patients with various types of cancer. Gene expression
data obtained through RNA sequencing on the Illumina platform were used as experimental
data. Each sample of the initial data contained 14,451 types of genes as attributes. The
experimental dataset consisted of nine types of data, eight of which corresponded to eight
types of cancer, and the ninth corresponded to samples for which cancer was not identified
based on clinical trials. The total number of studied samples was 3269.

We have proposed a hybrid inductive model for forming differentially expressed
and mutually correlated gene expression profiles based on a spectral clustering algorithm.
It was shown that internal and external clustering quality criteria did not allow us to
adequately form the cluster structure. As a result, a balance clustering quality criterion
was proposed, which includes both internal and external quality criteria as components.
It was shown that four- and six-cluster structures were optimal according to the balance
criterion. Assessment of the model adequacy for forming clusters of differentially expressed
and mutually correlated gene expression profiles was performed by applying a classifier
to samples containing gene expression data in the formed clusters as attributes. The
random forest algorithm and convolutional neural network solved binary classification
and multiclass identification tasks, respectively. In both cases, the clustering results were
confirmed in terms of identifying optimal cluster structures in the previous stage of step-
by-step data processing of gene expression profiles.

The results presented of the practical implementation of a hybrid model for diagnosing
different types of cancer based on joint application of the inductive spectral clustering
algorithm, the random forest algorithm, a convolutional neural network, and the alternative
voting method allowed increasing the accuracy and objectivity of object identification, by
parallelizing the information processing process. It was shown that a high accuracy of object
identification was achieved when both classifiers were used, but the convolutional neural
network had a significantly higher data processing efficiency compared to the random
forest algorithm, due to a significantly shorter time for data processing.

The future prospects of the authors’ research include applying the proposed model to
other datasets containing the results of the investigation of various types of disease.
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MLP Multilayer Perceptron
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