Semantic Segmentation with High-Resolution Sentinel-1 SAR Data
Abstract
:1. Introduction
- (1)
- We propose a dataset creation pipeline that can be performed easily;
- (2)
- We train the latest deep learning segmentation models, instead of traditional ones, with the newly created dataset;
- (3)
- We demonstrate the robustness of the proposed pipeline by training and then comparing results against noisy and noise-free versions of our dataset;
- (4)
- We evaluate the performance of deep learning methods with McNemar’s test.
2. Related Works
2.1. Most-Used SAR Datasets
2.2. Common Problems for SAR Image Segmentation
- SAR images have a low resolution for segmentation tasks;
- SAR image noise, backscattering and geometric distortion;
- No easy access to a free, labeled dataset, though some SAR images can be accessed through paid services;
- The numbers of training and test images in the datasets used in experiments are low due to the fact that the labeled dataset is not open source.
2.3. SAR Processing Models
3. Dataset Creation
- Thermal noise removal;
- Application of orbit file;
- Border noise removal;
- Calibration;
- Speckle filter;
- Terrain correction.
Istanbul, Turkey | |
Size | 12,288 × 12,288 px. |
Geo Coordinates West, East | 28.443, 29.546 |
Geo Coordinates South, North | 39.96, 41.063 |
Reference Information | 20210123 036260 0440DA 330D |
Izmir, Turkey | |
Size | 12,228 × 12,228 px. |
Geo Coordinates West, East | 26.604, 27.703 |
Geo Coordinates South, North | 38.654, 39.752 |
Reference Information | 20210128 025357 03051D 2D81 |
Adana, Turkey | |
Size | 12,228 × 12,228 px. |
Geo Coordinates West, East | 34.906, 36.004 |
Geo Coordinates South, North | 36.643, 37.742 |
Reference Information | 20210120 025240 03015D DC9A |
4. Experiments and Models
4.1. Sentinel-1
4.2. Training
4.3. Models
4.4. McNemar’s Test Results
5. Experimental Evaluation and Discussion
5.1. Results
5.2. Segmentation Performance
5.3. McNemar’s Test Results
5.4. Discussion and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.S.; He, C.Y.; Pan, Y.Z.; Li, J. The high spatial resolution RS image classification based on SVM method with the “ulti-source dat”. J. Remote Sens. Beijing 2006, 10, 49. [Google Scholar]
- Zhao, W.; Du, S.; Wang, Q.; Emery, W.J. Contextually guided very-high-resolution imagery classification with semantic segments. ISPRS J. Photogramm. Remote. Sens. 2017, 132, 48–60. [Google Scholar] [CrossRef]
- Longbotham, N.; Chaapel, C.; Bleiler, L.; Padwick, C.; Emery, W.J.; Pacifici, F. Very high resolution multiangle urban classification analysi. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1155–1170. [Google Scholar] [CrossRef]
- Chan, J.C.W.; Bellens, R.; Canters, F.; Gautama, S. An assessment of geometric activity features for per-pixel classification of urban man-made objects using very high resolution Satellite imager. Photogramm. Eng. Remote Sens. 2009, 75, 397–411. [Google Scholar] [CrossRef]
- Pacifici, F.; Chini, M.; Emery, W.J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote. Sens. Environ. 2009, 113, 1276–1292. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y.; Yu, W. SAR Image Classification Based on CRFs With Integration of Local Label Context and Pairwise Label Compatibility. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2013, 7, 300–306. [Google Scholar] [CrossRef]
- Mason, D.; Davenport, I.; Neal, J.; Schumann, G.; Bates, P.D. Nearreal-time flood detection in urban and rural areas using high resolution synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3041–3052. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- González, A.; Pérez, R.; Romero-Zaliz, R. An Incremental Approach to Address Big Data Classification Problems Using Cognitive Models. Cogn. Comput. 2019, 11, 347–366. [Google Scholar] [CrossRef]
- Padillo, F.; Luna, J.M.; Ventura, S. A Grammar-Guided Genetic Programing Algorithm for Associative Classification in Big Data. Cogn. Comput. 2019, 11, 331–346. [Google Scholar] [CrossRef]
- Gou, S.; Zhuang, X.; Zhu, H.; Yu, T. Parallel Sparse Spectral Clustering for SAR Image Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2013, 6, 1949–1963. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, H.; Fan, H.; Liu, D.; Wang, J.; Wan, X.; Zhao, L.; Deng, Y.; Zhao, F.; Wang, R. Forest height retrieval using P-band airborne multi-baseline SAR data: A novel phase compensation metho. ISPRS J. Photogramm. Remote Sens. 2021, 175, 99–118. [Google Scholar] [CrossRef]
- Sun, Y.; Montazeri, S.; Wang, Y.; Zhu, X.X. Automatic registration of a single SAR image and GIS building footprints in a large-scale urban area. ISPRS J. Photogramm. Remote. Sens. 2020, 170, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Corine Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 30 September 2020).
- Feng, J.; Cao, Z.; Pi, Y. Multiphase SAR Image Segmentaion with G0-statiscal-model-based active contours. IEEE Trans. Geosci. Remote Sens 2013, 51, 4190–4199. [Google Scholar] [CrossRef]
- Jiao, L.; Gong, M.; Wang, S.; Hou, B.; Zheng, Z.; Wu, Q. Natural and Remote Sensing Image Segmentation Using Memetic Computing. IEEE Comput. Intell. Mag. 2010, 5, 78–91. [Google Scholar] [CrossRef]
- Henry, C.; Azimi, S.M.; Merkle, N. Road Segmentation in SAR Satellite Images With Deep Fully Convolutional Neural Networks. IEEE Geosci. Remote. Sens. Lett. 2018, 15, 1867–1871. [Google Scholar] [CrossRef]
- Wu, W.; Li, H.; Li, X.; Guo, H.; Zhang, L. PolSAR Image Semantic Segmentation Based on Deep Transfer Learning—Realizing Smooth Classification With Small Training Sets. IEEE Geosci. Remote Sens. Lett. 2019, 16, 977–981. [Google Scholar] [CrossRef]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Gill, E.; Molinier, M. A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem. Int. Soc. Photogramm. Remote Sens. 2019, 151, 223–236. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar] [CrossRef]
- Ma, F.; Gao, F.; Sun, J.; Zhou, H.; Hussain, A. Attention Graph Convolution Network for Image Segmentation in Big SAR Imagery Data. Remote. Sens. 2019, 11, 2586. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, F.; Yin, Q.; Xiang, D.; Zhou, Y. Fast SAR Image Segmentation with Deep Task-Specific Superpixel Sampling and Soft Graph Convolution. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Kwak, Y.; Song, W.-J.; Kim, S.-E. Speckle-Noise-Invariant Convolutional Neural Network for SAR Target Recognition. IEEE Geosci. Remote. Sens. Lett. 2018, 16, 549–553. [Google Scholar] [CrossRef]
- Singh, P.; Shree, R. A new SAR image despeckling using directional smoothing filter and method noise thresholding. Eng. Sci. Technol. Int. J. 2018, 21, 589–610. [Google Scholar] [CrossRef]
- Bostanci, B.; Bostanci, E. An Evaluation of Classification Algorithms Using Mc Nemar’s Test. In Proceedings of the Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), India, 14–16 December 2012; Bansal, J.C., Singh, P.K., Deep, K., Pant, M., Nagar, A.K., Eds.; Springer: New Delhi, India, 2013; pp. 15–26, ISBN 978-81-322-1038-2. [Google Scholar]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote. Sens. 2019, 57, 37–48. [Google Scholar] [CrossRef]
- Wang, X.; Cavigelli, L.; Eggimann, M.; Magno, M.; Benini, L. HR-SAR-Net: A Deep Neural Network for Urban Scene Segmentation from High-Resolution SAR Data. In Proceedings of the IEEE Sensors Applications Symposium, SAS, Kuala Lumpur, Malaysia, 9–11 March 2020. [Google Scholar]
- Huang, L.; Liu, B.; Li, B.; Guo, W.; Yu, W.; Zhang, Z.; Yu, W. OpenSAR-Ship: A Dataset Dedicated to Sentinel-1 Ship Interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 195–208. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.X. The SARptical Dataset for Joint Analysis of SAR and Optical Image in Dense Urban Area. In Proceedings of the IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6840–6843. [Google Scholar]
- Scepanovic, S.; Antropov, O.; Laurila, P.; Rauste, Y.; Ignatenko, V.; Praks, J. Wide-Area Land Cover Mapping With Sentinel-1 Imagery Using Deep Learning Semantic Segmentation Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 10357–10374. [Google Scholar] [CrossRef]
- Meng, Q.; Wen, X.; Yuan, L.; Xu, H. Factorization-Based Active Contour for Water-Land SAR Image Segmentation via the Fusion of Features. IEEE Access 2019, 7, 40347–40358. [Google Scholar] [CrossRef]
- Shang, R.; Lin, J.; Jiao, L.; Li, Y. SAR Image Segmentation Using Region Smoothing and Label Correction. Remote. Sens. 2020, 12, 803. [Google Scholar] [CrossRef]
- Natteshan, N.; Kumar, N.S. Effective SAR image segmentation and classification of crop areas using MRG and CDNN techniques. Eur. J. Remote. Sens. 2020, 53, 126–140. [Google Scholar] [CrossRef]
- Shang, R.; Chen, C.; Wang, G.; Jiao, L.; Okoth, M.A.; Stolkin, R. A thumbnail-based hierarchical fuzzy clustering algorithm for SAR image segmentation. Signal Process. 2020, 171, 107518. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [Google Scholar] [CrossRef]
- Soumekh, M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms; Wiley: New York, NY, USA, 1999. [Google Scholar]
- European Space Agency (ESA) Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 10 March 2021).
- Contributors, M. MMSegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark. Available online: https://github.com/open-mmlab/mmsegmentation (accessed on 12 October 2020).
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid Attention Network for Semantic Segmentation. arXiv 2018, arXiv:1805.10180. [Google Scholar]
- Sun, K.; Zhao, Y.; Jiang, B.; Cheng, T.; Xiao, B.; Liu, D.; Mu, Y.; Wang, X.; Liu, W.; Wang, J. High-Resolution Representations for Labeling Pixels and Regions. arXiv 2019, arXiv:1904.04514. [Google Scholar]
- McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Laurin, G.V.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.; Valentini, R. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. Int. J. Appl. Earth Observ. Geoinf. 2013, 21, 7–16. [Google Scholar]
- Antropov, O.; Rauste, Y.; Lönnqvist, A.; Häme, T. PolSAR Mosaic Normalization for Improved Land-Cover Mapping. IEEE Geosci. Remote. Sens. Lett. 2012, 9, 1074–1078. [Google Scholar] [CrossRef]
- Lonnqvist, A.; Rauste, Y.; Molinier, M.; Hame, T. Polarimetric SAR Data in Land Cover Mapping in Boreal Zone. IEEE Trans. Geosci. Remote. Sens. 2010, 48, 3652–3662. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery. Remote Sens. 2018, 10, 1119. [Google Scholar] [CrossRef]
- Dahhani, S.; Raji, M.; Hakdaoui, M.; Lhissou, R. Land Cover Mapping Using Sentinel-1 Time-Series Data and Machine-Learning Classifiers in Agricultural Sub-Saharan Landscape. Remote. Sens. 2022, 15, 65. [Google Scholar] [CrossRef]
- Hu, B.; Xu, Y.; Huang, X.; Cheng, Q.; Ding, Q.; Bai, L.; Li, Y. Improving Urban Land Cover Classification with Combined Use of Sentinel-2 and Sentinel-1 Imagery. ISPRS Int. J. Geo-Inf. 2021, 10, 533. [Google Scholar] [CrossRef]
- Tzepkenlis, A.; Marthoglou, K.; Grammalidis, N. Efficient Deep Semantic Segmentation for Land Cover Classification Using Sentinel Imagery. Remote. Sens. 2023, 15, 2027. [Google Scholar] [CrossRef]
Z-Score | One-Tailed Prediction | Two-Tailed Prediction |
---|---|---|
1.645 | 95% | 90% |
1.960 | 97.5% | 95% |
2.326 | 99% | 98% |
2.576 | 99.5% | 99% |
U-Net | PSPNet | HRNet | |
---|---|---|---|
mIoU (%) | 62.87 | 65.99 | 70.6 |
MA Value (%) | 73.41 | 75.33 | 80.47 |
Overall PA (%) | 88.59 | 90.74 | 92.23 |
HRNet | PSPNet | U-Net | |
---|---|---|---|
HRNet | X | ← 3536 | ← 18,685 |
PSPNet | X | X | ← 15,423 |
U-Net | X | X | X |
Number of Image | HRNet PA Value | PSPNet PA Value | U-Net PA Value | HRNet-PSPNet | |
---|---|---|---|---|---|
A(1,0) | A(0,1) | ||||
1 | 1.000 | 1.000 | 1.000 | 0 | 0 |
2 | 0.921 | 0.770 | 0.766 | 1 | 0 |
3 | 0.892 | 0.847 | 0.768 | 1 | 0 |
4 | 0.800 | 0.829 | 0.741 | 0 | 1 |
5 | 0.967 | 0.967 | 0.964 | 0 | 1 |
6 | 0.986 | 0.997 | 1.000 | 0 | 1 |
7 | 1.000 | 1.000 | 1.000 | 0 | 0 |
8 | 0.898 | 0.903 | 0.868 | 0 | 1 |
9 | 1.000 | 1.000 | 1.000 | 0 | 0 |
10 | 0.809 | 0.764 | 0.846 | 1 | 0 |
11 | 1.000 | 1.000 | 1.000 | 0 | 0 |
12 | 0.884 | 0.684 | 0.730 | 1 | 0 |
13 | 1.000 | 1.000 | 1.000 | 0 | 0 |
14 | 1.000 | 1.000 | 0.996 | 0 | 0 |
15 | 0.975 | 0.979 | 0.979 | 0 | 1 |
1329 | 0.843 | 0.875 | 0.843 | 0 | 1 |
1330 | 0.872 | 0.817 | 0.723 | 1 | 0 |
1331 | 0.943 | 0.777 | 0.777 | 1 | 0 |
1332 | 0.764 | 0.742 | 0.876 | 1 | 0 |
1333 | 0.662 | 0.641 | 0.629 | 1 | 0 |
1334 | 0.855 | 0.860 | 0.773 | 0 | 1 |
1335 | 1.000 | 1.000 | 1.000 | 0 | 0 |
1336 | 0.971 | 0.971 | 0.971 | 0 | 0 |
1337 | 0.974 | 1.000 | 1.000 | 0 | 1 |
1338 | 0.885 | 0.901 | 0.900 | 0 | 1 |
1339 | 0.974 | 0.972 | 0.982 | 1 | 0 |
1340 | 0.767 | 0.789 | 0.767 | 0 | 1 |
1341 | 0.872 | 0.872 | 0.777 | 1 | 0 |
1342 | 1.000 | 1.000 | 1.000 | 0 | 0 |
1343 | 1.000 | 1.000 | 1.000 | 0 | 0 |
1344 | 0.834 | 0.836 | 0.733 | 0 | 1 |
1345 | 0.948 | 0.981 | 0.980 | 0 | 1 |
Classes | UNet | PSPNet | HRNet | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Images with Noise | Images with Noise Free | Images with Noise | Images with Noise Free | Images with Noise | Images with Noise Free | |||||||
IoU (%) | Acc (%) | IoU (%) | Acc (%) | IoU (%) | Acc (%) | IoU (%) | Acc (%) | IoU (%) | Acc (%) | IoU (%) | Acc (%) | |
Urban Areas | 12.29 | 25.21 | 18.06 | 34.84 | 14.86 | 27.91 | 15.20 | 32.06 | 21.13 | 39.77 | 27.13 | 44.27 |
Agricultural Areas | 57.57 | 65.12 | 58.64 | 67.74 | 62.41 | 68.94 | 64.32 | 71.23 | 71.54 | 83.24 | 74.47 | 85.2 |
Forest Areas | 69.09 | 80.34 | 71.35 | 83.46 | 73.87 | 84.04 | 77.43 | 87.92 | 72.33 | 82.74 | 74.06 | 84.71 |
Peatland, Bogs and Marshes | 70.67 | 83.78 | 72.17 | 85.42 | 74.45 | 86.63 | 78.36 | 89.53 | 74.49 | 86.21 | 79.59 | 89.67 |
Water | 92.67 | 94.15 | 94.15 | 95.58 | 92.11 | 94.21 | 94.66 | 96.90 | 93.51 | 95.56 | 97.78 | 98.49 |
Summary (Average) | 60.46 | 69.72 | 62.87 | 73.41 | 63.54 | 72.34 | 65.99 | 75.53 | 66.6 | 77.50 | 70.60 | 80.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erten, H.; Bostanci, E.; Acici, K.; Guzel, M.S.; Asuroglu, T.; Aydin, A. Semantic Segmentation with High-Resolution Sentinel-1 SAR Data. Appl. Sci. 2023, 13, 6025. https://doi.org/10.3390/app13106025
Erten H, Bostanci E, Acici K, Guzel MS, Asuroglu T, Aydin A. Semantic Segmentation with High-Resolution Sentinel-1 SAR Data. Applied Sciences. 2023; 13(10):6025. https://doi.org/10.3390/app13106025
Chicago/Turabian StyleErten, Hakan, Erkan Bostanci, Koray Acici, Mehmet Serdar Guzel, Tunc Asuroglu, and Ayhan Aydin. 2023. "Semantic Segmentation with High-Resolution Sentinel-1 SAR Data" Applied Sciences 13, no. 10: 6025. https://doi.org/10.3390/app13106025
APA StyleErten, H., Bostanci, E., Acici, K., Guzel, M. S., Asuroglu, T., & Aydin, A. (2023). Semantic Segmentation with High-Resolution Sentinel-1 SAR Data. Applied Sciences, 13(10), 6025. https://doi.org/10.3390/app13106025