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Abstract: The world’s high-resolution images are supplied by a radar system named Synthetic
Aperture Radar (SAR). Semantic SAR image segmentation proposes a computer-based solution to
make segmentation tasks easier. When conducting scientific research, accessing freely available
datasets and images with low noise levels is rare. However, SAR images can be accessed for free.
We propose a novel process for labeling Sentinel-1 SAR radar images, which the European Space
Agency (ESA) provides free of charge. This process involves denoising the images and using an
automatically created dataset with pioneering deep neural networks to augment the results of the
semantic segmentation task. In order to exhibit the power of our denoising process, we match the
results of our newly created dataset with speckled noise and noise-free versions. Thus, we attained
a mean intersection over union (mIoU) of 70.60% and overall pixel accuracy (PA) of 92.23 with the
HRNet model. These deep learning segmentation methods were also assessed with the McNemar test.
Our experiments on the newly created Sentinel-1 dataset establish that combining our pipeline with
deep neural networks results in recognizable improvements in challenging semantic segmentation
accuracy and mIoU values.

Keywords: SAR; SAR segmentation; deep learning; semantic segmentation; Sentinel-1

1. Introduction

Land Cover Maps characterize essential information about the earth’s surface and
land usage. It helps to observe the subjects of some of the most critical topics of today’s
world, such as deforestation, urban and environmental monitoring and climate change.
Namely, these maps give us tips about the future of our world. Generally, satellite optical
imagery is used for land-cover mapping studies. Because several remote sensing platforms
create representations with very high-resolution optical images, and detect all details about
land, such as edge, shape and texture, and in very high-resolution images, resolution range
is between submeter-scale and several meters [1–5].

Besides optical images, radar images are also used for mapping, and SAR is one of
the most popular. SAR is an active sensor that transmits microwave signals to the earth
and recovers signals that return or scatter from the earth’s surface. SAR can be mounted on
manned/unmanned aerial vehicles or satellites and is capable of high-resolution imaging,
target detection in all weather conditions, including rainy or cloudy conditions, and pro-
vides images day and night. With these capabilities, SAR provides a wide range of uses due
to its high-resolution images (some of which are exact and quickly processed) [6], target
detection, images of the earth, evaluation of agricultural areas and forests and mass control
of glaciers. With the increase in high-resolution SAR images [7], big SAR datasets have
begun to form. Some frameworks help to label each pixel with different classifiers [8–10].
However, labeling SAR images still needs to be clarified and made easier. Thus, SAR images
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have too much noise due to its imaging procedure [11], complex backscattering [12] and
geometrically-significant distortion [13]. When collecting data, soil moisture, vertical and
horizontal form of the scatterers, roughness on the surface and geometry can obscure the
SAR image because of the backscattering microwave radiation. In short, seasonal, temporal
and environmental effects on the earth change the dataset and can cause shortages of
generalization capabilities. These difficulties when obtaining SAR images, combined with
the increased resolution made creating a new dataset almost impossible. Additionally,
finding a labeled free dataset for scientific research is almost impossible.

CORINE, a program started in 1985, aims to gather information for the European
Union on priority environmental issues (e.g., air, water, soil, land cover, coastal erosion
and biotopes). CORINE utilizes the land cover/use data produced by computer-aided
visual interpretation methods over satellite images according to the Land Cover/Use
Classification determined by the European Environment Agency (EEA) [14]. According to
the EEA criteria and classification units (44 classes), changes in land cover/land use for
monitoring the land via satellite images are detected with the help of remote sensing and
geographic information systems. The main ideas of the CORINE projects are managing
the environment, reducing the effects of climate change and helping to observe urban and
environmental developments.

SAR image processing is a challenging task [15]. One of the significant steps in the
processing of SAR images is segmentation. The main aim of segmentation with SAR image is
to split the image into parts according to separate attributes without any intersection and to
mark each pixel in the image according to one of the classes [16]. With most accessible datasets,
methods based on the many different convolutional neural network (CNN) [17–19] and the
recurrent neural network (RNN) [20] have been used for the SAR image segmentation task,
and successful results have been achieved. With the increase in access to big datasets with
high resolution, pixel-wise segmentation has become impossible, since labeling SAR images is
difficult. Superpixel generation models use superpixel-wise segmentation methods [21,22] for
big SAR datasets. The methods are divided into two categories according to their superpixel
generation: clustering-based and graph-based [22]. Here, in order to use affective pixel-wise
CNN segmentation models, we present a new pipeline.

As seen above, the need for labeled free datasets, together with the presence of
SAR image noise, backscattering and geometric distortion are the main issues for pixel-
wise segmentation. The previous research efforts have mainly concentrated on speckle
noise [23,24] and on generating labels for these noisy datasets. While SAR images are
available for free, reaching the noise-free labeled dataset is still difficult. To solve this
problem, we propose a novel process for easily creating a new dataset. The process starts
with downloading SAR images, uses CORINE and ends with creating labeled forms ready
for SAR image segmentation tasks, as detailed in Section 3.

Once we created our dataset, we trained U-Net, PSPNet and HRNet deep learning
models effectively for the semantic segmentation task. The overview of our approach is
presented in Figure 1.

Identifying the qualities and shortcomings of deep learning methods is a significant
task. To specify which methods are better and how methods differ from each other, we
utilize McNemar’s test to evaluate the success of the models: U-Net, PSPNet and HRNet.
McNemar’s test has been employed in various previous research, as discussed in our
evaluations. Five machine-learning models were analyzed, with the classification results
assessed according to the methods in [25]. In ref. [26], a similar evaluation was performed
to compare the class-wise prediction against an extensive database.
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Figure 1. The overview of our proposal.

The essence of this work is explained as follows:

(1) We propose a dataset creation pipeline that can be performed easily;
(2) We train the latest deep learning segmentation models, instead of traditional ones,

with the newly created dataset;
(3) We demonstrate the robustness of the proposed pipeline by training and then compar-

ing results against noisy and noise-free versions of our dataset;
(4) We evaluate the performance of deep learning methods with McNemar’s test.

The rest of this study is structured as follows. We give a brief review of related
works in Section 2. In Section 3, the dataset creation pipeline is introduced. In Section 4,
models utilized and experimental setups are detailed, step by step. Analyses and results
are represented in Section 5. We then conclude this work and make recommendations for
future work.

2. Related Works

Many different algorithms have been applied, and many datasets have been used for
segmenting SAR images, by many earlier research efforts. At the same time, there are many
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common problems encountered while segmenting. In this part, we first mention existing
datasets, then provide an overview of common problems, and finally, briefly provide
information about related work.

2.1. Most-Used SAR Datasets

SAR images are obtained from air and satellite platforms. The most-utilized SAR
dataset for image processing is the MSTAR [27], created by the U.S. Air Force based on HH
polarization X-band images. This dataset has images of armored vehicles of 15 different
types. There are a few hundred images, all of which are convenient for image processing.

Some of the most recent SAR datasets are OpenSARShip 2.0 [28], JAXA’s ALOS
PALSAR [29] forest/non-forest, and the SARptical [30] dataset. OpenSARShip 2.0 in-
cludes 41 images of Sentinel-1 and nearly 11,000 various ships. JAXA’s ALOS PALSAR
forest/non-forest dataset is used for land-cover analysis. Additionally, the SARptical
provides TerraSAR-X data.

The main differences between SAR datasets are that they can be obtained from different
sources using separate bands, and that they have different resolutions. Resolution and
noise of the datasets are some of the main factors affecting success.

2.2. Common Problems for SAR Image Segmentation

Main problems encountered in this area are as follows:

1. SAR images have a low resolution for segmentation tasks;
2. SAR image noise, backscattering and geometric distortion;
3. No easy access to a free, labeled dataset, though some SAR images can be accessed

through paid services;
4. The numbers of training and test images in the datasets used in experiments are low

due to the fact that the labeled dataset is not open source.

2.3. SAR Processing Models

Studies have shown that many different datasets have been used in many areas, such
as road segmentation, land cover, wetland classification, etc.

For road segmentation, DeepLabV3+, FCN-8s and Deep Residual U-Net deep neural
models were compared in [17]. X-band TerraSAR-X images were trained and the resulting
IoU value for FCN-8s was 45.46%, the precision value was 71.69% and the recall value was
75.17%. Meanwhile, Deep Residual Unet IoU’s value was 40.18%, while DeepLabV3+ IoU
value was 40.18%.

Some efforts have also been made on the land cover segment. There were comparisons
of roads, built-up areas, and water and vegetation via POLSAR image segmentation with
MIoU values and FcN and Unet models in [18]. With the present study, we aim to increase
the success rate by using small datasets. While the FCN mean IoU value was 0.50, the
U-Net mean IoU value was 0.44. In ref. [31], Sentinel-1 SAR images were used with
state-of-the-art segmentation models such as U-Net, DeepLabV3+, FC-DenseNet, BiSeNet,
PSPNet, SegNet and FRRN-B; also, the results were compared based on their accuracy. The
best overall accuracy through these experiments was achieved by the FC-DenseNet (Fully
Convolutional DenseNets) model, with 92.78%.

In ref. [19], a novel architecture was proposed with polarimetric SAR (PolSAR) imagery,
and it classified the wetland complexes. This work compared results from RF, FCN-16s,
FCN-8s, FCN-32s and Segnet models. The F-1 score of the proposed FCN model was
0.84, and the F1-score of the RF model was 0.74. F1-scores achieved by FCN-32s, FCN-16s,
FCN-8s and Segnet models were as follows: 0.69, 0.75, 0.81, 0.76, respectively. The proposed
FCN model had an increased F1 score when compared with existing models.

In ref. [32], a novel matrix factorization active-contour model based on fused features
was proposed for water/land segmentation in SAR images. Wavelet textual features,
Gaussian (DoG) filter features, and Gabor filter features were compounded, and feature
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matrixes were composed. Then, with the SAR image’s edge and region data, the energy
procedure was created.

Generally, unsupervised image segmentation models are preferred in SAR segmenta-
tion because they are easy and useful. In ref. [33], a novel model with region smoothing
and label correction (RSLC) was explained in detail. To resemble the spatial information
in the polynomial result of the image, smoothing results were used. This establishes that
the process of segmentation may be accomplished rapidly and effectively. One of the
other effective and thriving segmentation projects is a convolutional deep neural network
(CDNN) [34], which has been proposed to classify crop areas within SAR satellite images,
along with the cultivation status of the crop. Using a high pass linear spatial (HLS) filter,
the segmented dataset is preprocessed in training. After that, a modified region growing
(MRG) algorithm is used for classification in the testing phase, and with Euclidean distance
(ED), the cultivation status of each crop can be specified. Additionally, a new method
was proposed in [35], based on brief presentation and a hierarchical fuzzy C-means (FCM)
advance. Firstly, the image is divided into pixel groups with their features, and the major
pixels which consist of pixel groups are then used for constructing the thumbnail. After
that, FCM is utilized for segmentation.

Our work differs from those mentioned above in that it explains the new dataset
creation process from beginning to end. After that, popular semantic segmentation methods
are used and evaluated with mIoU, MA, and PA metrics with our newly-created dataset. In
this way, with this paper, a detailed study has been proposed, proceeding from the creation
of a SAR dataset to explaining how it can be used with deep learning methods.

3. Dataset Creation

Although most used datasets are detailed above, here we propose a novel pipeline that
easily generates labels for SAR images. With our proposal, datasets varying in size can be
created in accordance with the needs of the models. First of all, as shown in Table 1, C-band
Sentinel-1 images with IW sensor mode and a ground range detected (GRD) product type,
released freely by ESA and representing specific parts of Turkey, are obtained. These images
are then preprocessed with the Sentinel Application Platform (SNAP) application. One of
the most critical factors is preprocessing, which affects the success rate when training with
Sentinel images. For Sentinel-1 grid data, a standard workflow is presented in [36]. The
following steps have been used for preprocessing: [36]

1. Thermal noise removal;
2. Application of orbit file;
3. Border noise removal;
4. Calibration;
5. Speckle filter;
6. Terrain correction.

After this preprocessing procedure, images are exported in the high resolution RGB
format to be used in the segmentation process. There are three different methods for
obtaining RGB images: dual pol ratio, dual pol multiple and dual pol difference. When
dual pole ratio is preferred, it uses the red VV channel, green VH channel, and blue VV/VH
channel. For our study, three high resolution images were acquired with dual pol ratio.
After that, these were cut apart to a pixel resolution of 256 × 256, and 6722 images with
256 × 256 pixel were acquired. Example images are shown in Figure 2.
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Table 1. Information about the newly-created dataset.

Istanbul, Turkey

Size 12,288 × 12,288 px.
Geo Coordinates West, East 28.443, 29.546
Geo Coordinates South, North 39.96, 41.063
Reference Information 20210123 036260 0440DA 330D

Izmir, Turkey

Size 12,228 × 12,228 px.
Geo Coordinates West, East 26.604, 27.703
Geo Coordinates South, North 38.654, 39.752
Reference Information 20210128 025357 03051D 2D81

Adana, Turkey

Size 12,228 × 12,228 px.
Geo Coordinates West, East 34.906, 36.004
Geo Coordinates South, North 36.643, 37.742
Reference Information 20210120 025240 03015D DC9A

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 15 
 

Size 12,228 × 12,228 px. 
Geo Coordinates West, East 34.906, 36.004 
Geo Coordinates South, North 36.643, 37.742 
Reference Information 20210120 025240 03015D DC9A 

After this preprocessing procedure, images are exported in the high resolution RGB 
format to be used in the segmentation process. There are three different methods for ob-
taining RGB images: dual pol ratio, dual pol multiple and dual pol difference. When dual 
pole ratio is preferred, it uses the red VV channel, green VH channel, and blue VV/VH 
channel. For our study, three high resolution images were acquired with dual pol ratio. 
After that, these were cut apart to a pixel resolution of 256 × 256, and 6722 images with 
256 × 256 pixel were acquired. Example images are shown in Figure 2. 

In order to use these images for supervised pixel semantic segmentation, the next 
step is acquiring labels for images. The CORINE dataset [14], freely available in Coperni-
cus, was downloaded. In the original, this dataset consists of labels for 44 classes. In this 
study, with the help of QGIS program, we decreased the count of labels to five, as: forests, 
urban, peatland bogs and marshes, agricultural areas, and water. 

After the number of classes in the CORINE Land Cover dataset was reduced to five, 
three images with the same resolution and coordinates were obtained from the SNAP via 
the QGIS. As a result, labeled RGB images with the same resolution and coordinates were 
made ready for semantic segmentation. 

 
Figure 2. Examples of 256 × 256 RGB images. 

4. Experiments and Models 
In this section, we first give general information about Sentinel-1, which is followed 

by a description of the training process, the evaluation metrics, and the models used in 
this study. We will finish the section by explaining McNemar’s test and how it measures 
success among deep learning models. 

4.1. Sentinel-1 

Figure 2. Examples of 256 × 256 RGB images.

In order to use these images for supervised pixel semantic segmentation, the next step
is acquiring labels for images. The CORINE dataset [14], freely available in Copernicus,
was downloaded. In the original, this dataset consists of labels for 44 classes. In this study,
with the help of QGIS program, we decreased the count of labels to five, as: forests, urban,
peatland bogs and marshes, agricultural areas, and water.

After the number of classes in the CORINE Land Cover dataset was reduced to five,
three images with the same resolution and coordinates were obtained from the SNAP via
the QGIS. As a result, labeled RGB images with the same resolution and coordinates were
made ready for semantic segmentation.
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4. Experiments and Models

In this section, we first give general information about Sentinel-1, which is followed
by a description of the training process, the evaluation metrics, and the models used in
this study. We will finish the section by explaining McNemar’s test and how it measures
success among deep learning models.

4.1. Sentinel-1

SAR is a method of creating images using radio waves. Due to the movement of the
radar, a large artificial gap will be created when a gap in the synthesis of data is formed
by taking measurement values at certain intervals and collecting these values at the same
time [37]. The artificial aperture creates the equivalent of a large physical antenna, and it
provides high resolution images. There are many different types of satellites with discrete
bands or modes.

Sentinel is the name of the program called Copernicus run by the European Space
Agency (ESA). Sentinel-1 consists of 2 satellites (Sentinel-1A and Sentinel 1-B), which both
share the same orbit. Sentinel-1A and Sentinel-1B were launched, respectively, in 2014 and
2016. Sentinel-1 carries a C-band, dual-polarized synthetic aperture radar that enables data
collection day and night in all weather conditions. Sentinel-1 can collect data in 4 different
modes, which are: wave (WV), strip-map (SM), extra-wide swath (EW) and interferometric
wide swath (IW). The main mode is the IW mode, which acquires a total representation of
the earth’s surface and satisfies the mass of service demands [38]. This is the reason why
IW has been used in this paper.

4.2. Training

Models used in this study were implemented using MMSegmentation [39] and trained
on a single GTX 1080TI with 11 gigabytes of VRAM. MMSegmentation is a framework based
on the PyTorch library, and its toolbox is open-source and appropriate for segmentation.
This framework represents various semantic segmentation methods. One can construct
customized datasets and framework by uniting diverse modules. The training speed is
outstanding. For training, 80% of our noise-free newly-created dataset images were used,
and the rest of the images were used for testing. Data augmentation was performed and
input data was normalized on the training set. Flipping training images horizontally and
vertically is used for data augmentation. A drop in our performance was noticed when
pre-trained models, which MMSegmentation incorporates, were used in our models. The
ADAM optimizer was used, with a learning rate 0.003 and an exponential learning rate
decay of 0.90 applied after each iteration. Each model was trained for 80 k iterations and,
during this training phase, the best model’s checkpoint was preserved and then used to
evaluate the test set.

We used mIoU, MA, and PA for the evaluation, as shown in Equations (2) and (3) [27].
IoU is a robust metric for the assessment of semantic segmentation; it shows performance
of the overlapping ratio between intersection and all surface data (union). IoU is calculated
as shown in Equation (1). FP and TP stand for false positive and true positive, and FN
means false negative.

IoU =
TP

TP + FP + FN
(1)

PA =
∑i ni,i

∑i ∑j ni,j
, MA =

1
C ∑

i

ni,i

∑i j
(2)

mIoU =
1
C ∑i

ni,i

∑j ni,j + ∑j nj,i + ni,i
(3)

where ni,j: number of pixels, i: target class, j: predicted class, C: number of classes, IoU: in-
tersection over union, PA: pixel accuracy, MA: mean accuracy, and mIoU: mean intersection
over union.
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4.3. Models

We selected the most vital segmentation models to test our dataset, as: U-Net, PSPNet
and HRNet.

U-net was used successfully in the biomedical field at first and become one of the most-
applied models for the SAR image segmentation task. The reason why it is preferred for SAR
images is that it can obtain more successful results with less training data. U-Net’s name comes
from its architecture, which resembles the letter U, as presented in the figure. This model has
two parts that are symmetric. The first has convolutional layers which are transposed and 2D,
and, on the other hand, the other one consists of known convolutional layers.

A pyramid scene separation network (PSPNet) [40] is designed to better acquire the
broad contextual representation of the scene. Patterns are derived from the input images
using an extended mesh strategy and with the help of a feature extractor. Feature maps
are then fed into a pyramid pooling module to separate models at divergent scales. Then,
they are summarized on four different ranges, each corresponding to a pyramid level,
and modified with a 1 × 1 layer to decrease their size. By this method, each pyramid
level analyzes the lower regions of the image with different positions. The outputs of the
pyramid levels are eventually upgraded and combined into initial feature maps to include
local and general context information. Then, these outputs are processed by a last layer to
output pixel-based predictions.

The high resolution net (HRNet) is proposed at first for estimation of human-readable
data. This model processes high resolution images into the process. Then, the model connects
resolution convolutions high-to-low in parallel and generates very high-resolution images
by repetitively managing fusions across parallel convolutions [41]. HRNet is used for a wide
range of visualization tasks, such as semantic segmentation and object detection. Experimental
results shown in [41] prove that HRNet is one of the recent and popular models.

4.4. McNemar’s Test Results

This test determines whether a learning model is better than another at a specific task.
The McNemar test performs analysis by taking the number of couples that are positive but
then negative and the number of couples that are negative at first but later become positive.
The test utilizes a z-score for measuring the differences, as shown in Equation (4).

Z =
(|A1,0 − A0,1| − 1)√

A1,0 + A0,1
(4)

Suppose that there are two algorithms X and Y. A1,0 represents X algorithm succeeding
and Y algorithm failing and A0,1 shows X algorithm failing and Y algorithm succeeding.
After the calculation, when the z-score = 0 we can say that the two algorithms have shown
similar performance. If the value of the z-score increases past 0 in the positive direction, this
points out that their performance differs significantly; confidence levels corresponding to
the z-score are presented in Table 2 [42]. One-tailed prediction shows the effect of a change
in one direction and not the other. A two-tailed prediction does not have a direction and
does not have to be specified prior to testing. A two-tailed prediction has the possibility of
both a positive and a negative effect.

Table 2. Confidence levels corresponding to z scores for one-tailed and two-tailed predictions.

Z-Score One-Tailed Prediction Two-Tailed Prediction

1.645 95% 90%

1.960 97.5% 95%

2.326 99% 98%

2.576 99.5% 99%
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For our study, first we calculated the PA value of each image used for validation for
each segmentation model. After that, we compared the PA values for each image with each
other (using HRNet-PSPNet, HRNet-UNet and PSPNet-UNet). The algorithm which had
a higher PA value was set to 1, and the smaller one was set to 0. Then, the z-scores were
calculated and models were compared with each other.

5. Experimental Evaluation and Discussion

Here we will show the results and performance analysis of the models. After that, we
will evaluate the performance of methods by using McNemar’s test.

5.1. Results

First, we obtained SAR images of certain regions of Turkey, which ESA provides free of
charge. Before labeling the SAR images, we performed six preprocesses to eliminate noise
and make geometric corrections. In order to label the data, the 44-class CORINE dataset
was reconstructed as five classes by combining similar features using the QGIS program.
When combining the CORINE dataset and the SAR images, the exact coordinates and the
same pixels were superimposed via the QGIS program. As a result, we created a new
dataset with the acquisition of SAR images, and after the preprocessing steps, due to the
labelling of the SAR images, we combined CORINE and noise-free SAR images. As detailed
in Section 4, we evaluated our dataset using three semantic segmentation deep learning
models, namely, U-Net, PSPNet and HRNet. Figure 3 shows ground-truth annotations
on the left and images resulting from HRNet segmentation on the right column. By this,
results obtained are compared with the original annotated images.
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5.2. Segmentation Performance

In this section, we evaluate the results of the UNet, PSPNet, and HRNet models given
in detail above. For our models, the training times took from 1 to 2 days. Using multi-GPU
systems could offer significant improvements, and more images for the dataset could then
be made available. All models shown on the newly-created dataset achieved an overall
pixel accuracy above 88%. We reached respective overall PAs of 92.23%, 90.74%, and 88.59%
and mIoUs of 70.60%, 65.99%, and 62.87% with the HRNet, PSPNet and UNet models.
These results can be seen in Table 3. The overall segmentation results for all studied models
are given in Table 4. There we present MA and mIoU values for five classes and compare
the results with the new dataset. As seen in the table, preprocessing steps increased success
by approximately 3% in every class and proved that preprocessing is essential for SAR
segmentation. The purpose of choosing the three biggest cities of Turkey was that the urban
areas were more prevalent in terms of the surface area in the dataset. However, urban areas’
scores were the lowest ranked in this study, as they represented the smallest part of the
dataset. The highest success obtained in these areas was water, as the water areas were
readily apparent.

Table 3. Summary of the segmentation performance of deep learning models.

U-Net PSPNet HRNet

mIoU (%) 62.87 65.99 70.6

MA Value (%) 73.41 75.33 80.47

Overall PA (%) 88.59 90.74 92.23

Table 4. McNemar test results for deep learning models.

HRNet PSPNet U-Net

HRNet X ← 3536 ← 18,685

PSPNet X X ← 15,423

U-Net X X X

In Table 5, a summary of all segmentation evaluation results is shown. Here, PA values
of all validation images are presented in order to compare each model with the others.
When the images with the lowest PA values against the validation images are examined,
it is seen that the urban areas are more often in the images. The PA values of two of the
trained deep neural network models are higher than 90%, and the best-performing one
among these models was the HRNet model, which achieved an overall PA of 92.23%.

We obtained different results in our study with images of the same three cities in
our dataset taken at different times. It can be concluded that the results of images taken
from identical regions at different times may differ within identical models because the
backscattering of SAR diversifies the dataset.
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Table 5. PA values of each validation image and results of comparison of each model with each of
the others.

Number of
Image

HRNet
PA Value

PSPNet
PA Value

U-Net
PA Value

HRNet-PSPNet

A(1,0) A(0,1)

1 1.000 1.000 1.000 0 0

2 0.921 0.770 0.766 1 0

3 0.892 0.847 0.768 1 0

4 0.800 0.829 0.741 0 1

5 0.967 0.967 0.964 0 1

6 0.986 0.997 1.000 0 1

7 1.000 1.000 1.000 0 0

8 0.898 0.903 0.868 0 1

9 1.000 1.000 1.000 0 0

10 0.809 0.764 0.846 1 0

11 1.000 1.000 1.000 0 0

12 0.884 0.684 0.730 1 0

13 1.000 1.000 1.000 0 0

14 1.000 1.000 0.996 0 0

15 0.975 0.979 0.979 0 1

1329 0.843 0.875 0.843 0 1

1330 0.872 0.817 0.723 1 0

1331 0.943 0.777 0.777 1 0

1332 0.764 0.742 0.876 1 0

1333 0.662 0.641 0.629 1 0

1334 0.855 0.860 0.773 0 1

1335 1.000 1.000 1.000 0 0

1336 0.971 0.971 0.971 0 0

1337 0.974 1.000 1.000 0 1

1338 0.885 0.901 0.900 0 1

1339 0.974 0.972 0.982 1 0

1340 0.767 0.789 0.767 0 1

1341 0.872 0.872 0.777 1 0

1342 1.000 1.000 1.000 0 0

1343 1.000 1.000 1.000 0 0

1344 0.834 0.836 0.733 0 1

1345 0.948 0.981 0.980 0 1

5.3. McNemar’s Test Results

As can be seen from the experiments, the most successful results were obtained with
HRNet model. Nonetheless, we also want to evaluate the models with McNemar’s test
to decide which model performs better. In Section 4, how we apply the McNemar test is
explained in detail. Some of the PA values of the 1345 validation images and the comparison
values of the models are shown in Table 5.

After the comparison made for each validation image, we calculated a z-score for each
model against each of the others. Z-score values are represented in Table 6. The arrows
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(←,↑) show which segmentation model presented better. In Table 6, it is clearly shown that
HRNet has given a better segmentation performance than PSPNet or U-Net. PSPNet shows
better performance than U-Net. The result of McNemar’s test establishes the PA value that
is presented in Table 5, distributed over almost all validation images. The results show that
the confidence levels corresponding to the z-scores are more than 99%.

Table 6. Summary of the segmentation MA and mIoU values of various deep neural networks.

Classes

UNet PSPNet HRNet

Images with
Noise

Images with
Noise Free

Images with
Noise

Images with
Noise Free

Images with
Noise

Images with
Noise Free

IoU
(%)

Acc
(%)

IoU
(%)

Acc
(%)

IoU
(%)

Acc
(%)

IoU
(%)

Acc
(%)

IoU
(%)

Acc
(%)

IoU
(%)

Acc
(%)

Urban Areas 12.29 25.21 18.06 34.84 14.86 27.91 15.20 32.06 21.13 39.77 27.13 44.27

Agricultural Areas 57.57 65.12 58.64 67.74 62.41 68.94 64.32 71.23 71.54 83.24 74.47 85.2

Forest Areas 69.09 80.34 71.35 83.46 73.87 84.04 77.43 87.92 72.33 82.74 74.06 84.71

Peatland, Bogs and Marshes 70.67 83.78 72.17 85.42 74.45 86.63 78.36 89.53 74.49 86.21 79.59 89.67

Water 92.67 94.15 94.15 95.58 92.11 94.21 94.66 96.90 93.51 95.56 97.78 98.49

Summary (Average) 60.46 69.72 62.87 73.41 63.54 72.34 65.99 75.53 66.6 77.50 70.60 80.47

5.4. Discussion and Future Work

The biggest problems in SAR segmentation are the need for labeled data, the uncer-
tainty of how to label data, and the inherent problems of SAR images. The noise of the
SAR image, geometric corrections, and backscattering errors must be minimized before
beginning the labeling process. This paper explains in detail how to segment SAR images
by obtaining all kinds of data free of charge, and in order to prove the success of new
dataset creation, three CNN models have been applied.

We compared our results with similar previous studies [43–45]. For land cover seg-
mentation/classification with SAR images, refs [43–45] obtained results between 79–88%
using machine-learning algorithms. Refs. [46,47] attained a nearly 93% accuracy. However,
in ref. [46], optical images with 5 m spatial resolution were used, and [19] utilizes fully
polarimetric images with better resolution than Sentinel-1 SAR resolution.

Another land cover mapping study [47] used SAR C-band Sentinel-1 (S-1) time-series
data for classification with machine-learning models. The classes used in the paper were
water, shrubs and scrubs, trees, bare soil, built-up areas and cropland, categories which are
similar to ours. Overall accuracy obtained with the random forest classifier in [47] was 84%.

The prior study most similar to ours is [31]. In ref. [31], a new Finland dataset was
created, the same classes as ours were used, and the accuracy was 92.78% with FC-DenseNet.
Comparing our work with [31], we obtained nearly the same accuracy, with 92.23%. Our
method provides extra information about how to label datasets in a pipeline.

In our proposed method, 6722 images were processed by deep learning models.
However, use of a more extensive dataset for deep learning is crucial to achieving more
success. Additionally, using datasets with more urban areas can increase accuracy. In
order to increase the success of urban areas, [48] combined the use of Sentinel-2B and
Sentinel-1A imagery. Fusing Sentinel-2 Multispectral Instrument (MSI) and Sentinel-1 SAR
images, they reached an overall accuracy of 92.12%, with a support vector machine with
composite kernels. Furthermore, including Sentinel-1A SAR data with Sentinel-2B MSI data
improves the model’s capability to differentiate between urban and water areas. Applying
our pipeline over a combined dataset as proposed in [48] may be pursued as future work.

Reducing speckle noise is one of the most crucial steps in order to obtain more suc-
cessful results. In ref. [49], a modified U-net with temporal attenuation encoder (U-TAE)
was used as a semantic segmentation method. First, the temporal median filter was used to
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reduce the noise in the images. Then, Sentinel-2, Sentinel-1, spectral indices, and ALOS
elevation data were evaluated with various band combinations. As a result, with modified
U-TAE, a mIoU of 57.25%; with random forest, a mIoU of 39.69%; with U-Net, a mIoU of
55.73%; and with SegFormer, an mIoU of 53.5% is reached.

We focused primarily on auto-labeled noise-free dataset creation, then, by using these
enhanced noise-free datasets, attempted to improve accuracy in this field with state-of-
the-art deep learning models. We applied three state-of-the-art CNN models to try our
new dataset. Additionally, after applying the models, we evaluated the performance of the
models and proved which model provided the best accuracy. Confirmation of the model
with the highest success with the McNemar test increases the reliability of our proposal.

For future work, it would be interesting to develop deep learning models specially
for SAR segmentation and it would also be interesting to achieve more success for urban
areas segmentation; another type of CNN model or RNN model could also be examined.
Additionally, our pipeline could be evaluated by using another dataset for ground-truth
instead of CORINE.

6. Conclusions

Generally, for SAR image segmentation, there are two main troubles. First, there are
no freely available and labeled datasets, and images are not convenient for use due to noise.
Secondly, a great success was lacking, although a certain degree of success was achieved
with deep learning methods. Most of the researchers pay no attention how to obtain a
new dataset and use the datasets that are detailed in Section 2. Additionally, unsupervised
image segmentation methods are preferred due to being simple and practical.

By this study, a pipeline was suggested with a dataset which had been created by
us. We experimented with this dataset using state-of-the-art segmentation models for
testing. We obtained a 92.23% overall PA, with HRNET as the best model according to
performance. When results achieved were examined, we realized that models trained on
our newly created dataset had not achieved success only in the segmentation of urban
areas. When we examined the proportions of labeled classes in our dataset, we found that
the percentage of urban areas in the dataset is very few compared to that of the others.
The effectiveness of our proposed denoising pipeline for creating a dataset, one which
takes care of noises caused by clouds and weather conditions, is apparently seen with
examination of the results. As a result, the compared deep learning models achieved better
accuracy results on a noise-free dataset setup. Additionally, we evaluated the segmentation
performance of models with McNemar’s test. This test proved that HRNet is the best model
for our dataset.
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