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Abstract: The Milky Way is used by nocturnal flying and walking insects for maintaining heading
while navigating. In this study, we have explored the feasibility of the method for machine vision
systems on autonomous vehicles by measuring the visual features and characteristics of the Milky
Way. We also consider the conditions under which the Milky Way is used by insects and the sensory
systems that support their detection of the Milky Way. Using a combination of simulated and real
Milky Way imagery, we demonstrate that appropriate computer vision methods are capable of reliably
and accurately extracting the orientation of the Milky Way under an unobstructed night sky. The
technique presented achieves angular accuracy of better then ±2◦ under moderate light pollution
conditions but also demonstrates that higher light pollution levels will adversely effect orientation
estimates by systems depending on the Milky Way for navigation.

Keywords: biomimetic; navigation; stellar; insect; celestial compass; orientation; anthropogenic light

1. Introduction

Locomotion in straight lines allows organisms to forage, migrate and escape from
competition or danger; it is fundamental to the survival of many species. Orientation is
a fundamental operation for closed-loop control that allows for effective locomotion. To
successfully find the right direction, some animals use landmarks, magnetic cues or wind,
while some species use the Sun, the Moon or polarised light as the cue for orientation [1–3].
Visual cues from the sky dome are believed to have been used for synchronisation and
orientation by organisms almost from the dawn of life, when the first photosensitive cells
formed [4]. Navigation using the stars has been undertaken by humans for millennia and
has been found in animals such as seals with sophisticated brains and high resolution
eyes [5]. Amongst these celestial options for orientation is the Milky Way, although its
characteristics for navigation are different from the pinpoint precision offered by stars for
navigation and are more favourable for low angular resolution visual systems.

1.1. The Milky Way

The Milky Way (MW) is a large structure compared to other celestial bodies; a typical
image of it is shown in Figure 1. It is an irregular luminous band as much as 30◦ wide,
composed of stars and gas clouds stretching across the night sky visible by an observer on
Earth (see Figure 2). Astronomers have known since the 1920s that this band is an edge-on
view of the MW Galaxy in which we live, amongst a vast pinwheel teeming with nebulae,
gas clouds and hundreds of billions of stars in a class of galaxy known as spiral galaxies.
The MW Galaxy is approximately 87,400 light years in diameter and is only 1000 light
years across in the spiral arms. The Sun, Earth’s star, is located in the Orion spar about
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28,000 light years from the galactic centre. There is a visible structure of the MW seen as
dark bands and areas within a luminous band caused by interstellar clouds in cosmic dust,
as shown in Appendix A Figure A1, collectively known as the Great Rift or Dark Rift. The
luminosity of the MW is not constant along its arc, thus the luminosity of the visible portion
of the MW will depend on the observer’s location on Earth and the time of year.

Figure 1. The MW observed under a rural sky in South Australia.

Figure 2. A 360 degree panoramic image covering the southern and northern celestial spheres of the
MW created by joining multiple images. Photo: Courtesy of the European Southern Observatory
(ESO) under Creative Commons Attribution-ShareAlike 4.0 International license.

For sensing purposes, the MW is comparatively low contrast; however, it is much
larger than the pinpoint stars, and its primary features are composed of low spatial fre-
quencies. It is apparent that sensitivity to low contrast and low light is required to observe
it; however, high spatial acuity is not required. This is discussed in the context of insect
vision in the next section.
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1.2. Insect Vision under Starlight

The method we present is based on observed insect behaviour; thus, it is important
to understand what they can actually sense and the limitations of their sensing, since
their visual perception is substantially different from our own. Insects have evolved
compound eyes that have extraordinary adaptations and specialisations [6], and the tiny
optics and eyes of insects are challenged by low light levels. There are two main types of
compound eyes, as shown in Figure 3, which are apposition eyes and superposition eyes.
In an apposition eye, each ommatidium is sleeved by light-absorbing screening pigment,
preventing light reaching the photoreceptors from neighbouring ommatidia. This means
that a photoreceptor only receives light from a single lens. Apposition compound eyes
are typical of diurnal insects that have evolved to achieve the highest possible angular
resolution, such as dragonflies [7] and honey bees [8]. In superposition compound eyes,
however, there is a wide optically transparent region, the clear zone (marked cz in Figure 3),
between the lenses and the retina. The superposition arrangement allows light from
possibly hundreds of lenses to be focused onto photoreceptors in the retina, which improves
light sensitivity at the expense of angular resolution. This eye type is more suited to
nocturnal insects that are active in dim light [2,9]; such insects include night-active beetles
and moths. It is apparent that at the lowest level of illumination, substantial pooling is
usually being undertaken by the visual system of night-active insects both through optical
means and through neural/computational interconnections [10].

Spatial pooling ensures that the effective angular resolution of the eye will be lower
than that indicated by the density of the optical elements. Given the already limited
resolution of insect eyes compared to our own experience, the biological findings indicate
that the MW may be a useful cue even with comparatively low-resolution vision systems.
Appendix A discusses the extreme limits of low light vision that have been found in insect
visual systems, allowing vision well below starlight conditions, as shown in Appendix A
Figure A2.

Figure 3. Simplified depiction of apposition (Left) and superposition (Right) compound eyes. The
clear zone (cz) found in superposition eyes is labelled. Illustration adapted from [11].

Daytime celestial navigation has been observed and studied extensively in many
species. In some insect species such as dragonflies, it has been found anatomically that
there is polarisation sensitivity of the dorsal rim area of their compound eyes, suggesting
that they are sensitive to the orientation of skylight polarization [12,13]. This characteristic
allows them to perceive a clear blue sky as a large polarisation pattern aligned to the
angular position of the sun. This perception is useful to a flying insect, since otherwise the
sky might provide negligible heading information, either absolute or relative, particularly
if the sun is near apex, near the horizon, or obscured by clouds. A comparison between
the characteristics of the MW and the sky polarisation pattern can be made. Although the
brightness level is quite different, they are both large, low contrast structures that dominate
the sky if they are visible.
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Moreover, it has been found that the desert ant Cataglyphis [14] and the field cricket
Gryllus campestris [15] have the ability to use celestial cues to maintain their heading
direction while walking, even when their locomotion is disturbed about the yaw axis.

Compared with daytime movement, it is a challenging task to establish and maintain
an inertial or celestial frame heading at night. A moonless clear night sky is much dimmer
than full daylight, with a change in light intensity from 0.0001 lux under such conditions to
10,000 lux in daylight [16]. A nocturnal dung beetle in Southern Africa, Scarabaeus satyrus,
has been found to orient in very straight lines, transporting its dung balls away from
competitors. These night-active dung beetles use the MW as a stellar directional cue when
the moon and lunar sky polarisation pattern are absent [2,17–19]. The MW is used as a
landmark for the duration of an outbound sprint. The aim of the insect is to get away, in
a straight line, from other beetles congregating and foraging at the same site, who might
attempt to commandeer the painstakingly assembled ball.

It is important to understand the limitations of the approach used by dung beetles
orienting at night. It seems that they are using the MW as a short-term heading reference,
rather than as a compass that is aligned in some way to the inertial frame. In this regard,
the mechanism could also be accurately described as a celestial landmark, although the
distinction between a compass and a landmark is not significant given the time frame
involved and the behaviour of the beetle.

1.3. Contribution of This Study

There have been past insect biology-inspired studies using celestial cues for navigation.
The sky itself can be a reference in day time with sun, clouds and scattering [20], resulting
in patterns that are stable [21]. Some implementations have been developed by using
sky-polarised light [20] to achieve autonomous navigation both on the ground [22,23] and
as part of a flying navigation system on a drone [24]. NASA has even considered use of sky
polarisation for navigation in the challenging Mars environment, where the magnetic field
is not useful for navigation and where deep terrain features surrounding the vehicle might
mask the sun [25].

However, existing technological approaches have not yet considered the MW as a
celestial navigation cue to be used in the same manner that S.satyrus dung beetles use it.
Due to the size and distinction of the MW, it could be useful for coarse orientation of space
craft, robots, aircraft and planetary rovers, even under dynamic or high-vibration situations.

In this paper, we investigate a computer-vision-based navigation algorithm inspired
by insect behaviour and physiology that can use the MW as an orientation reference from
which it is possible to compute direction signals under low-light conditions. A computer
vision approach based on a series of algorithmic operations also allows for the possibility
of gaining insight into the challenges and limitations faced by biological systems. Of
particular interest when considering the MW is the ecological effect that light pollution and
atmospheric pollution might induce.

The MW is a difficult photographic subject under many atmospheric and human
geographic conditions, and its position in the sky varies over hours and seasons. Even in
regional South Australia, where our laboratory is located, the MW is not always visible
on a clear moonless night, depending on humidity and dust. To overcome this shortage
of data, our data set consisted of both real photographs of the MW and the outputs from
the Stellarium software [26] to generate adequate numbers of images with a variety of
conditions, such as location, time and light pollution. This study considered the clear night
sky without the weather conditions that would preclude visibility of the MW (clouds, fog
or rain).

The intent of this study is to both develop a novel heading sensor and to deepen
our understanding of precisely why insects have evolved to use this signal. Although the
MW is not visible in many human-modified environments due to anthropogenic light, it is
quite visible under clear skies in the low population-density areas of the world. Stars are
visible at and above stratospheric altitudes from aircraft and satellites at orbital ranges even
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during the day. An example environment where it might be most useful is in the sparsely
populated polar regions, where magnetic compass orientation is of marginal utility [27].
On Mars for example, the magnetic field is not useful for navigation, leaving a selection of
computer vision and celestial approaches, including solar and stellar cues [24,28,29]. The
insects that use the Milky Way are important species in their ecosystems, epitomised by
the dung beetle. Understanding, simulating and emulating their Milky Way navigation
method may help to understand and even quantify the vulnerabilities of the species to
anthropogenic light, allowing mitigation measures to be designed.

2. Materials and Methods
2.1. Data Generation

The MW is not visible in most urban centres across the world, either due to light
pollution, geographical location, atmospheric conditions or contaminants [30]. Therefore,
it is a challenge to capture adequate night sky images with proper exposure [31]. To
overcome this limitation, we used a simulator, Stellarium (version 0.22.2) [26], to generate
MW test images for processing. Stellarium is an open-source desktop planetarium software
that the creators claim is intended for the community of amateur astronomers and for
knowledge transfer in transdisciplinary research. This software was created for simulating
the celestial sphere based on a given time and location. In other words, this simulator can
give the observer a reasonably realistic rendering of the sky with variable sky and viewing
settings [26].

There are several key settings in Stellarium that we used in this paper: date, location,
MW brightness/saturation, light pollution level (LP), etc. The following image, Figure 4,
shows an example of the latitude and longitude settings.

Figure 4. Stellarium location setting, Lincoln National Park, SA.

Before we select the light pollution levels in Stellarium, we should consider the
contrast available to the nocturnal insect’s visual system. The Bortle scale [32] is a nine-
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level numerical scale that measures the night sky’s brightness, with 1 meaning an excellent
dark sky site and 9 indicating a heavily light polluted site. The corresponding qualitative
appearance caused by different levels of light pollution is shown in Table 1, extracted from
Stellarium. A sky quality meter (SQM) is used to measure the luminance of the night
sky, which is given in the commonly used astronomical units of magnitude per square arc
second (mag/arcsec2).

Table 1. Light pollution levels.

Level Title SQM (mag/arcsec2) NELM

1 Excellent dark sky site 21.7–22.01 7.6–8.0
2 Typical truly dark site 21.5–21.7 7.1–7.5
3 Rural sky 21.3–21.5 6.6–7.0
4 Rural/suburban transition 20.4–21.3 6.1–6.5
5 Suburban sky 19.1–20.4 5.6–6.0
6 Bright suburban sky 18.0–19.1 5.1–5.5
7 Suburban/urban transition 18.0–19.1 5.0 at best
8 City sky <18.0 4.5 at best
9 Inner City sky <18.0 4.0 at best

As we can see from Table 1, different light pollution levels represent different naked-
eye limiting magnitude (NELM). For example, level 3 corresponds to the rural night sky
where the NELM is 6.6–7.0 and approximate SQM is 21.69–21.89 mag/arcsec2. There are
some sky brightness values with related condition information shown in Table 2 from [33].
Some natural environmental light levels can be found; for example, the rural night sky (clear,
no moon) zenith sky luminance values are in a range of 0.25–0.8 mcd/m2, and approximate
SQM is 20.3–21.6 mag/arcsec2, which is in our assumed range for nocturnal insect night
vision, as discussed in Section 1.2. Level 4 corresponds to the rural/suburban transition
area where the NELM is 6.1–6.5 and approximate SQM is 20.49–21.69 mag/arcsec2. This
study [33] also indicates that the rural night sky (overcast) zenith sky luminance values are
in a range of 0.25–2.7 mcd/m2 and that approximate SQM is 19.0–21.6 mag/arcsec2, which
could also be a suitable level setting for generating our test images. Our rationale is that
most of the landscape relevant to humans is somewhat light polluted. Thus, we selected
3 (rural sky) and 4 (rural/suburban transition) as the light pollution level settings [32].
All of the test images use the default MW brightness/saturation setting (brightness: 1,
saturation: 1).

Table 2. Night sky brightness values.

Condition Illuminance (mlux) Zenith Sky Luminance
(mcd/m2)

Zenith Radiance
(mag/arcsec2)

Overcast natural night <0.6 <0.2 >21.8
Natural starlit night 0.6–0.9 0.2–0.3 21.4–21.9

Bulge of the MW N/A 2.71 20.5–21.0
Rural night sky (clear, no moon) 0.7–3 0.25–0.8 20.3–21.6

Rural night sky (overcast) 0.7–9 0.25–0.7 19.0–21.6

Figure 5 provides the azimuthal grid (green line), celestial equatorial coordinate grid
(blue line) and an example of the MW image that we used to perform image processing.
Figure 6 shows a part of the MW with different settings of the Bortle scale as the light
pollution levels in Stellarium.
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Figure 5. Left: Stellarium image (light pollution level: 1, MW brightness: 4, saturation: 1) with
the azimuthal grid (green). Middle: Stellarium image (light pollution level: 1, MW brightness: 4,
saturation: 1) with the celestial equatorial coordinate grid (blue). Right: Stellarium sky image (light
pollution level: 5, MW brightness: 1, saturation: 1).

Figure 6. Bortle scale levels.

As discussed above, Stellarium allows for sufficient parameter settings to provide
a more flexible way to create night sky images. However, this software cannot create
real-time weather environments such as cloud conditions for the simulated sky images;
thus, we only considered the clear night sky with different light pollution levels.

2.2. Methodology

It is well established that the brightness variation in the sky caused by the MW is
responsible for the orientation behaviour of the S.satyrus dung beetles [18,34], but the
actual neural computation involved is not exposed by the behaviour. In this section, we
present the development steps of the computer vision method presented in Algorithm 1
that we have developed to extract direction information under low light levels of this large
but low-contrast celestial landmark. The objective of the method is to reduce the image
to an angle representing the orientation of the MW. The proposed method consists of the
distinct steps shown in Figure 7.
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Figure 7. Flow chart for angle calculation steps from MW images.

Algorithm 1: MW Detection and Orientation
Input: RGB image
Output: Angle

1 for RGB image do
2 Split the image into its component red, green, and blue channels
3 Median filtering on each channel
4 Calculate the threshold level using Otsu’s method in Section 2.2.1.
5 Convert the image into a binary image
6 Dilate image with a specified flat morphological structuring element
7 Remove small objects
8 Create output binary image

9 for binary object mask image do
10 Calculate edge and create edge image using LRWEEDA method in

Section 2.2.2.
11 Calculate Radon transform using method in Section 2.2.3.

12 return Angle
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2.2.1. Image Thresholding

The only discernible large object in a clear, moonless night sky is the MW. This
suites thresholding techniques that assume that the image contains two pixel groups,
those belonging to the foreground and those belonging to the background. Because of
the simple computation, robustness and adaptability, Otsu’s technique [35] is extensively
used for computer vision applications. The algorithm is used to automatically determine
optimal threshold values to segment the background from the foreground area [36,37].
Figure 8 shows a comparison of two additional common thresholding techniques, Ridler
and Calvard’s method [38] and Kapur’s entropy method [39]. All three popular image-
thresholding approaches achieve similar results in this situation.

Figure 8. Thresholding method comparison for real sky images.

The following equations represent Otsu’s thresholding method of an image with L
gray levels. Suppose we split the image pixels into two classes C0, C1 by threshold at level
t. The probability of occurrence of level i is given by ni

N

p(i) =
ni
N

, p(i) ≥ 0,
L−1

∑
i

p(i) = 1 (1)

The probabilities of two class occurrences are given by

ω0 = P(C0) =
t

∑
i=0

pi = ω(t) (2)

ω1 = P(C1) =
L−1

∑
i=t

pi = 1−ω(t) (3)

The mean of the two classes is calculated based on the following equations

µ0 =
t

∑
i=1

i · p(i)
ω0

=
1

ω(t)

t

∑
i=1

i · p(i) (4)

µ1 =
L

∑
i=t+1

i · p(i)
ω1

=
1

1−ω(t)

L

∑
i=t+1

i · p(i) (5)

Total mean can be written as

µT = µ(L− 1) =
L−1

∑
i=0

ipi (6)
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Otsu is defined as the between-class variance (BCV) that is shown as

σ2
B = ω0(µ0 − µT)

2 + ω1(µ1 − µT)
2 (7)

The optimal thresholding value of Otsu t is chosen by maximising σB2

t = max{σB2} (8)

We used MATLAB R2021a software to calculate the Otsu threshold and to apply the
flat morphological structuring element to dilate the object area. The spherical structuring
element with a selected radius was used to generate the dilated binary object image. There
is an example in Figure 9 that shows the MW detection result of the generated test image
shown in Figure 10 with cardinal points.

Figure 9. Left: RGB image. Middle: binary image. Right: edge image.

Figure 10. Test image from Stellarium with the following settings: location: SA, Australia, FOV: 120◦,
date: 1 February 2022, time: 02:30:17 (UTC+10:30).

In Figure 9, the left image is the detection area result that is overlaid on the original
RGB test images. The middle image shows the threshold results for the MW area, and on
the right is the edge detection result.

2.2.2. Low Redundancy Wavelet Entropy Edge Detection (LRWEEDA)

This method uses a combination of the wavelet transform, Shannon entropy and
thresholding to achieve edge detection. LRWEEDA has been developed to be efficient, with
low redundancy and noise resilience, and it is well suited to real-time image processing
applications [40]. LRWEEDA’s basis in Shannon entropy ensures that its performance
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in high noise or low signal levels will be consistent and constrained by the information
available. There are many edge detecting methods, most notable being the Canny edge
detector [41] (which we also used in the results section below), and there are neural-
network-based techniques [42]; thus, the selection of LRWEEDA and Canny was a choice
from many options. The objective of the algorithm is for it to be used inside the modest
computational resources of embedded hardware (such as the Raspberry PI 4 or even the
Raspberry PI Zero II); thus, deep-learning-based approaches were avoided despite their
high performance [43,44].

For each wavelet decomposition level, vertical and horizontal components, WH
ψ (j, m, n)

and WV
ψ , are combined and normalised between zero and one to define f(j, m, n),

f(j, m, n) = normalise(WH
ψ (j, m, n) + WV

ψ (j, m, n)) (9)

Shannon entropy of an image is defined as:

H(I(x, y)) = −
L

∑
i=0

p(Ii) log p(Ii) (10)

where p is the probability of pixel value Ii occurring within I(x, y), and L is the maxi-
mum pixel value within I(x, y). To combine Shannon entropy with wavelet decompo-
sition, the Shannon entropy value is calculated at each decomposition level (j). Thus,
I(x, y) = f(j, m, n) results in

H(f(j, m, n)) = −
L

∑
i=0

p(fi) log p(fi) (11)

The optimal wavelet decomposition level is denoted as f(β, m, n). A variable threshold Λ
is applied to the image:

∀m, n ∈ f(β, m, n)

f(β, m, n) =

{
f(β, m, n) if f(β, m, n) ≥ Λ
0 if f(β, m, n) < Λ

(12)

where Λ is the threshold value and varies in the range of 0 ≤ Λ ≤ 1.

2.2.3. Radon Transform

The Radon transform (RT) has been used for extracting or reconstructing angular
information in many image processing applications. The Radon transform of an input
image f (x, y) can be denoted as g(s, θ) and is defined as its line integral along a line inclined
at angle θ from the y-axis and at a distance s from the origin shown in Figure 11. The
algorithm was fully developed by Toft in [45]:

g(s, θ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(x cos θ + y sin θ − s)dx dy (13)

where−∞ < s < ∞, 0 6 θ < π. g(s, θ) indicates a projection that uses the Radon transform
of f (x, y) at angle θ.

One useful property of the Radon transform is that the rotation of an image by angle
θr causes the Radon transform to be shifted by the same amount; thus,

f (x cos θr − y sin θr, x sin θr + y cos θr)↔ g(s, θ − θr) (14)
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Figure 11. Projection integral in the direction, θ.

As discussed above, the Radon transform for each (s, θ) calculates the total intensity
of the specific line that pairs the parameters. In other words, the maximum value of the
Radon transform corresponds to the location of maximum intensity of the straight line in
our detected MW area. The Radon transform was implemented by using the radon function
in MATLAB, and the angle θ was computed at angles from 0◦ to 180◦, in 1◦ increments.
In this study, the implementation of the Radon transform ensures that angle outputs are
integer degrees, which limit the resolution of results. Figure 12 shows the location of the
peak of the Radon transform and displays a circle over the maximum.

Figure 12. Radon transform, indicating the maximum value of θ.

Once the maximum value of θ has been calculated, we can rotate the original image
through the negative of the angle to straighten it, as shown in Figure 13, entirely for
comparison purposes, to explore the quality of the result.
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Figure 13. Left: angle calculation result for Figure 10. Right: angle result for rotation to vertical.

3. Results

The algorithm was tested on both simulated images and real night sky images. The
Bortle scale levels selected for the simulated images that were used for the processing set
were 3 and 4. MW brightness and saturation are set as default (brightness: 1, saturation: 1).
The simulated test image results can be seen in Figure 14; the first column provides a
brighter and more clear MW shape (brightness: 5), which can be used for comparison
between the Stellarium MW area and the detected MW area. The real images we used
are from a live sky camera located at Mount Burnett Observatory, Australia [46]. Some
additional information is provided about the camera in Table 3. In order to illustrate the
MW shape clearly, Figure 15 shows the MW area with increased brightness (Stellarium MW
brightness set as 5).

Figure 14. First column: In order to illustrate the results clearly, this column shows the MW with
increased brightness (Stellarium MW brightness set as 5). 2nd–7th columns: Detection and angle
calculation results for simulated sky images. The light pollution level for the test images is 3.
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Table 3. Information about the All Sky Camera, Mount Burnett, Australia.

All Sky Camera Information

Location Mount Burnett, Victoria, Australia
Latitude 37.9725 S

Longitude 145.4955 E
Camera ASI224MC

Exposure 30 s
Computer Raspberry Pi 3B+

Figure 15. Top row: All Sky Camera images from Mount Burnett Observatory; bottom row: the
simulated sky images with the increased brightness of MW area (Stellarium MW brightness set as 5).

The results from the live sky camera can be seen in Figure 16. This figure illustrates
the MW detection and angle calculation results for real night sky images.

Figure 16. First column: Real sky images that are used for angle calculation test. 2nd–6th columns:
Detection and angle calculation results for real sky images.
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The intent of the algorithm is to simulate the use of the MW as a celestial direction
reference. The algorithm was executed on simulation images that resulted from the observer
undergoing a continuous rotation rate of 0.5◦/s with updates at 10 s intervals, imposing
both a rotation and the gradual movement of the celestial hemisphere and MW over time.
All the dates and times for this test are set on different moonless nights. Figure 17 shows a
small subset of the test images from Stellarium for illustrative purposes: The images were
captured from angle θ to θ + 315◦, at 45◦ intervals. All of the images that were used for this
angle calculation test were under LP:4 conditions (MW brightness: 1 and saturation: 1).
The rotation angle calculation results for three times and locations are plotted in Figure 18.

Figure 17. Moving angle calculation test images from Stellarium.

Figure 18. Moving angle calculation: Location: Melbourne Observatory (MELO), date: 27 February
(start time 23:50). Location: Australia Astronomical observatory (AAO), dates: 25 May (start time
22:30), 1 July (start time 22:00).

A Canny edge detector [41] was also tested with comparable results, shown in compar-
ison to the LRWEEDA in both simulated images (Figure 19) and real sky images (Figure 20).
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Figure 19. Comparison for the Canny and LRWEEDA edge detection methods that were tested on a
full rotation circle of the test images from Stellarium with the following settings: Location: Australia
Astronomical Observatory (AAO), date: 25 May (start time 22:30).

Figure 20. Comparison of the Canny and LRWEEDA edge detection methods tested on real sky
images from the All Sky Camera, Mount Burnett, Australia.

Figure 21 shows the low-resolution images generated from the Stellarium test im-
ages (MELO 0227) with the pixel value provided in Figure 22. The original image is
965 × 965 pixels, and the downsampling image resolution is shown in Figure 22. As we
can see from Figure 21, in low-resolution scenarios, our proposed method provides reliable
navigation cues, even though the resolution was reduced to around 100 × 100 pixels.
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Figure 21. Comparison for the low-resolution images from Stellarium. Moving angle calculation:
location: Melbourne Observatory (MELO), date: 27 February (start time 23:50).

Figure 22. Comparison for the low-resolution images from Stellarium with pixel values for different
resolution levels.

Figures 23 and 24 show the MW area that was detected on two sets of test images from
Stellarium chosen from the same location but on different dates. In each test set, only the
light pollution levels were set from 1 to 7; the remaining settings were the same (location,
date, time, MW brightness and saturation). The resolution for all test images for the LP
level comparison was 1280 × 920; the figure shows the total pixel values inside the MW
area. As we can see from Figure 23, all test images are listed around the graph, and the total
pixel values for each LP level were calculated by summing the detected MW area from the
binary images.
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Figure 23. The MW area that was detected with light pollution levels set from 1 to 7 in Stellarium
(date: 2 January 2022, time: 02:30 (UTC +10:30), location: SA, Australia).

Figure 24. The MW area that was detected with light pollution Levels set from 1 to 7 in Stellarium
(date: 2 May 2022, time: 02:30 (UTC +09:30), location: SA, Australia).

Figure 25 shows the comparison of two different light pollution levels (LP: 4 and LP: 6)
with simulated test image rotation angle calculation results. All test images were generated
in Stellarium with the same date, location and MW (brightness: 1 and saturation: 1) settings.
For all of the test images, the angle changed 5◦ for each iteration every 10 s of Stellarium
simulated time.
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Figure 25. Moving angle calculation for light pollution is set as 4 and 6, location: Melbourne
Observatory (MELO), date: 27 February (start time 23:50).

4. Discussion

Overall, the mean accuracy of the method is better than ±2◦ for the sequences tested
under LP: 4, shown in Table 4, which is comparable to other azimuthal reference technolo-
gies, whether magnetic or celestial. The results degraded under higher light pollution
levels. Maximum errors did not exceed ±4◦ under LP: 4 conditions. However, in the
presence of light pollution, the angle reference provided by the MW starts to break down;
thus, under LP: 6, maximum errors of around ±18◦ emerge. In addition, different features
of the MW endure longer under high LP levels, leading to an offset solution compared
to the angle measured at higher light levels. Exploring the performance of the method
of segmenting the MW (and by analogy, probably any comparable method), it becomes
apparent that the higher LP levels render the MW inaccurate, then unreliable, and finally
invisible and useless for navigation as the LP level increases.

Table 4. Summary of results from the MW compass method and corresponding LP levels.

Sequence LP Mean Error Maximum Error

AAO 01 Jul 4 ±1.71◦ ±4.0◦

AAO 25 May 4 ±0.19◦ ±1.0◦

MELO 27 Feb 4 ±0.58◦ ±1.0◦

MELO 27 Feb 6 ±1.53◦ ±18.0◦

Unlike the individual points of intensity that represent stars, the MW is a large dis-
tributed pattern that is in some ways a complementary detection problem to star detection
by celestial navigation systems. There are a number of advantages to this, including robust-
ness against vibration that would blur out individual stars and robustness to loss of focus
and other phenomena such as condensation and dust on lenses. At this stage, the system is
not robust to partial occlusion by clouds, foliage or buildings, although such obstacles do
not exist in every environment for every use case. The system would also not detect when
it was not functioning, a very necessary function in a navigation system. These problems
might be overcome using a two-stage process of detection and measurement well suited to
deep learning.

An interesting outcome of the study was that the problem transferred easily between a
simulator that makes some effort to achieve visual realism and real star images. This bodes
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well for future pattern classification methods, since there will be no limitation caused by
availability of data; as long as the likely environmental illuminants and occlusions can be
meaningfully incorporated, superimposed or post processed into the simulator output.

Although this study was inspired by the visual behaviour of insects, it still used
cameras that are bound by the limitations of conventional electronics. The megapixel
resolution of the cameras is significantly more than the mere hundreds to thousands of
ommatidia that form the input to nocturnal insect visual systems. A more biomimetic
approach would probably make better use of the characteristics of the MW, including its
large size, dominant low spatial frequency features and dimness compared to surrounding
stars. Orders of magnitude of efficiency and sensitivity may be achieved by a tuned and
optimised system.

We did not use a deep learning approach in this initial study because we wanted
to understand the characteristics of the problem and of the solution. We also wanted
to understand the nature of the data and potential sources of data, since the MW is a
demanding photographic subject that would need to be filtered carefully before being
inserted into a training data set. Deep learning is likely to be useful for segmenting the MW
from other visible objects, such as trees and buildings but also clouds.

From an ecological perspective, we have shown that under low light pollution condi-
tions, insects should certainly be able to see the MW and use this information for direction
signals. However, a cautionary observation is that light pollution is the primary risk to this
mode of navigation. Nocturnal insects play vital ecological roles; for example, the dung
beetle’s role is well documented [47], and moths and night flying insects are variously polli-
nators and food for organisms higher in the food chain. Anthropogenic light is accepted as
a cause of damage to insect populations [48] and yet would also appear to be manageable
and largely avoidable. In this work, we have demonstrated how much disruption it can
cause to a MW navigation system.

More system integration is required for this sensor modality to be used for true
navigation, apart from the vision system being able to detect the presence of reliable MW
conditions. An accurate internal clock and almanac for the orientation of the MW in
the inertial frame at a location would be required to determine a navigation heading. A
reference for the direction of the gravity vector would be required, particularly for space
craft and aircraft. However, for short-term heading stabilisation in low light pollution
environments, the Milky-Way-based approach presented here should serve a robot just as
well as the MW serves nocturnal beetles.

5. Conclusions

Using biology for inspiration and conventional machine vision techniques for exe-
cution, we have demonstrated that the MW can be reliably detected and measured for
orientation as a suitable input to a navigation system. The method achieved maximum
errors of less than ±5◦ and mean errors of less than ±2◦ under the low light pollution
test conditions. The study also demonstrated the detrimental effect of stray light on
MW-based navigation.

Future research work will consider deep learning and neural biomimetic approaches
that may be more robust and less computationally expensive. The method presented is
low in computational cost and appears to be reliable; thus, we will soon endeavour to use
the method for on board processing of stellar imagery on robotic platforms. Substantial
optimisation and robustness can be added to the technique by exploiting the low-resolution
aspect of insect vision.
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RT Radon transform
MELO Melbourne Observatory
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Appendix A

Appendix A.1. The Milky Way

The MW has a substantial internal structure and features that are named, as shown in
Figure A1.

Figure A1. Main dark nebulae of the Solar apex half of the galactic plane. Image courtesy of Roberto
Mura under Creative Commons Attribution-ShareAlike 4.0 International license.

Appendix A.2. Insect Vision in Less Than Starlight

Nocturnal insects have a wide range of adaptations, optical, anatomical and neuro-
physiological, allowing them to fly and navigate under less than starlight illumination, for
example under rainforest canopies in the middle of the night [49]. The studied halictid
bees have photoreceptors 30 times more sensitive than those of honey bees, but given their
apposition eyes, this alone would not be enough to function in starlight. They have also
evolved additional neural adaptations to pool light even more broadly across the eye to
capture as much light as possible. Superposition eyes offer high performance under low-
light conditions. Because of their large ommatidial lenses and wide rhabdoms, some large
nocturnal insects with superposition compound eyes, such as hawkmoths, can capture
light 4000 times as effectively as photoreceptors in a honeybee’s eye or the human retina, at
the same light intensity [50]. Based on Kelber et al., we will estimate that nocturnal insects
retain visual perception in dim light as low as 0.1 mcd/m2; however, it is also known that
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this vision is comparatively low resolution, while still being sensitive to changes in level of
illumination. A low-resolution eye that can detect patterns at very low light intensities is
suited to the dim, distributed shape of the MW.

Figure A2, adapted from Kelber et al. [50], shows the dim light colour vision and visual
thresholds of species. Colours in the bars code for receptor types contributing to vision.

Figure A2. Dim light colour vision and thresholds of species. Figure adapted from data in Kelber
et al. [50].
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