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Abstract: Tunneling, especially in urban areas, affects many structures on the ground, which directly
influences the usability and stability of the structures. The settlement of and axial stress on the pile
foundation are important factors that determine the behavioral characteristics of the pile foundation.
Therefore, this study uses numerical analysis and machine learning to derive a prediction model of
pile axial stress due to tunnel excavation adjacent to the piled raft. Numerical analysis data were
utilized for machine learning purposes, and the effects of the input data on the prediction model were
scrutinized. The numerical analysis revealed that the change in the pile axial stress resulting from
tunnel excavation differed depending on the pile’s location, with the greatest axial stress reduction
occurring in the center of the piled raft. Furthermore, the rate of reduction was higher in soils with
lower relative densities. Several algorithms were employed to derive the prediction model, with
tree-based algorithms displaying notable performance in predicting pile axial stress. Additionally,
preprocessing the data with appropriate feature engineering techniques exhibited superior predictive
power, and incorporating settlement data aided in enhancing the prediction model’s performance.

Keywords: pile-tunnel interaction; piled raft; numerical analysis; axial stress; machine learning

1. Introduction

Pile foundations are widely used to support urban structures, and tunnel-induced
ground deformation is transmitted to these piles, which in turn transmit the deformation
to the superstructure. The variation in pile settlement and axial force has been extensively
studied by many researchers as a means of estimating the state of a pile foundation through
field monitoring, and the behavioral characteristics of piles affected by tunnel excavation
are also being actively investigated [1–9].

Since its introduction by Poulos [10], piled raft foundations have been applied to
numerous large structures. Although many variables must be considered in piled raft
design, traditional regression analysis techniques are currently limited to the consideration
of only a few variables.

In a study on load transfer induced by shield tunnelling in soft ground, Zheng et al. [11]
investigated changes in the load acting on piles through both field measurements and
numerical analysis of the tunnel location. The results of the study indicate that changes
in the load due to tunnel excavation are dependent on the pile’s location. Specifically, the
load on the pile located in the middle of the foundation decreased when the tunnel was
excavated under the pile, while the load on the piles at both ends tended to increase to
some extent. The authors of this paper intend to compare the outcomes of this study with
the numerical analyses conducted in their research.

Machine learning, with its ability to consider multiple variables simultaneously, is an
effective tool for overcoming the limitations of traditional regression analysis techniques
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and is used in many fields, including engineering, natural sciences, and medicine, as well
as geotechnical engineering. Li et al. [12] analyzed single masonry piers with different
aspect ratios (h/l) by employing the multi-pier (MP) method. The results of the analysis
were used as input to a machine-learning algorithm called back-propagation multilayer
perceptron (BPMLP) to generalize the data, and they predicted the potential failure modes
of the masonry wall. Rehman et al. [13] presented an intelligent model of the hydraulic
conductivity of sandy soil by employing various machine-learning algorithms, among
which they proposed a GEP-based model to predict the conductivity value with the best
performance. They resolved the limitations of the existing value prediction models by
using a broad range of input parameters that define geological characteristics, such as
grain size, gradation parameters, and dry density. Onyelowe et al. [14] provided a guide
to the application of machine learning to various geotechnical problems by reviewing
intelligent learning algorithms such as ANN, Fuzzy Logic, GEP, ANFIS, and ANOVA
applied to the prediction of geotechnical problems. Therefore, the performance of the
final predictive model is affected by the variables of the input data used, missing values,
and hyperparameters of the algorithm, which must be considered when utilizing machine
learning. According to Ijaz et al. [15], various geotechnical parameters demonstrate the
reliability of developed GSMs through high KPIs (RMSE, MAE, NSE, and PC), and models
based on various geotechnical parameters provide efficient design solutions. In particular,
according to Andrew Ng [16], the quality of the data is a crucial factor in determining the
performance of a predictive model. Khalid et al. [17] proposed several predictive models to
estimate the physico-mechanical characteristics of undisturbed soils. Among them, the 3D
response surface-analysis-based models showed 8.2–42.4% less deviation for all parameters
compared with the model developed using only DCPI as an independent variable.

In the present study, the authors utilized numerical analysis data to develop a model
capable of predicting the axial stress induced in piles due to tunnel excavation in the
vicinity of a piled raft, through the application of machine-learning techniques. To evaluate
the performance of the models, the authors varied the input data in multiple ways and
employed various machine-learning algorithms, optimizing the hyper-parameters of each
algorithm. In order to overcome the challenge of the “black-box” nature of machine-
learning models, which can provide high accuracy at the cost of low interpretability, the
authors employed Explainable AI to quantitatively assess the contribution of each input
variable to the final prediction model.

2. Numerical Analysis
2.1. Modeling and Material Properties

This study presents a three-dimensional numerical analysis model to simulate a
tunnel excavation adjacent to a piled raft and to evaluate the settlement of the raft and the
axial stress of the pile. The numerical analysis model encompasses a range of variables,
including the modulus of elasticity of the ground, pile diameter, pile length, foundation
width, number of piles, pile spacing, pile-to-tunnel horizontal and vertical separation
distances, and tunnel face-to-foundation horizontal distance, which are outlined in Table 1
along with the scope of their application.

The elastic modulus of the ground is classified based on the relative density of the soil,
as presented by Lambe and Whitman [18]. Furthermore, the pile diameter and pile length
are categorized as either long piles or short piles, as per the guidelines outlined in the Basic
Design Criteria for Structures [19]. The pile spacing is considered both as a group pile and
a single pile by referring to the Basic Design Criteria for Structures [19] and is utilized to
compute the range of each variable.
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Table 1. Variables for numerical analysis.

No. Variable Acronym Unit Range

1 Relative density EG kPa 20 × 10−3, 40 × 10−3, 50 × 10−3

2 Horizontal offset pile–tunnel OH m 0.0TD, 2.0TD, 5.0TD
(1)

3 Vertical offset pile–tunnel OV m 0.0TD, 1.5TD, 5.0TD
(1)

4 Pile diameter PD m 0.5, 0.8, 1.0
5 Pile length PL m 6.5, 10.0, 12.5, 20.0, 22.0, 25.0, 35.0, 44.0
6 Raft width BR m 12.0, 20.0, 25.0
7 Pile number PN ea 9, 25
8 Pile spacing PCTC m 1.25PD, 2.5PD, 5.0PD

(2)

9 Offset raft–tunnel face TF m 10.0BR, 4.0BR, 1.0BR, 0.0BR
(3)

1 TD: Tunnel diameter; 2 PD: Pile diameter; 3 BR: raft width.

Numerous numerical investigations have been carried out employing various consti-
tutive models to analyze the behavior of piled raft systems, as reported by Sales et al. [20].
Additionally, Galliková and Rehman [21] conducted a settlement analysis of Neogene clay
utilizing a modified hypoplastic-model-based finite element modeling. The hypoplastic
model can provide greater accuracy than a simple Mohr–Coulomb or Cam-clay model for
clayey soils. However, this study assumes a general sandy soil condition. In the numerical
analysis, the applied ground is assumed to be sandy soil, and the Mohr–Coulomb model is
employed, with the pile and raft modeled using the linear elastic model. The constitutive
model and material properties utilized in the numerical analysis are outlined in Table 2.

Table 2. Constitutive model and material properties for numerical analysis.

Material Acronym Unit
Value

Loose Sand Medium Sand Dense Sand Pile and Raft

Unit weight γ kN/m3 15 16 17
Young’s modulus E kPa 20 × 10−3 40 × 10−3 50 × 10−3 3.92 × 10−7

Poisson’s ratio υ - 0.3 0.3 0.3 0.15
Cohesion c kPa 0 0 0 -

Shear resistance angle ϕ ◦ (deg) 35 40 45 -
Dilatancy angle ψ ◦ (deg) 5 10 15 -

Rinter - - 0.8 0.6 0.5 -

Bolton [22] proposed the dilatancy angle as Equation (1), which is applied in this study,
as shown in Table 2.

ψ = ϕ − 30◦ (1)

Figure 1 shows a conceptual view of the numerical analysis, and Figure 2 summarizes
the mesh generation of the numerical analysis.

The numerical modeling approach employed in this study encompasses a mesh
consisting of over 68,500 individual elements. The model is subject to boundary conditions,
where the xmin, xmax, ymin, and ymax values are fixed, while full fixity is imposed at zmin,
and zmax is left unconstrained. Furthermore, the excavation of the tunnel is assumed to
produce a −2% volume loss, while the groundwater conditions are disregarded in the
model. To safeguard against any potential displacement of the piled raft affecting the
boundary, the ground mass was secured at a distance of no less than 5BR the width of
the foundation.
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2.2. Result of Numerical Analysis

This chapter presents an in-depth analysis of the pile axial stress distribution when
tunnel excavation is carried out directly beneath the pile (OH = 0.0 D, OV = 0.5 D). The
results are compared with the findings of Zheng et al. [11] based on field measurements
and numerical analysis to verify the accuracy of the current study. Figure 3 illustrates the
axial stress distribution of a pile at the pre-loading stage of tunnel excavation and at the
end of tunnel excavation (TF = 0) in dense soil.

As demonstrated in Figure 3, the axial stress experienced by the pile decreases uni-
formly along its entire length during tunnel excavation from the pre-excavation stage in
dense sand. The degree of reduction in the axial stress is found to be more pronounced
in the central pile, as evident from Figure 3a, as compared with the left and right piles
in Figure 3b,c. Furthermore, as depicted in Figure 4, the reduction in the axial stress is
observed along the entire length of the pile in loose sand. However, in contrast with dense
sand, the reduction in the axial stress is significantly greater in the middle and toe sections
of the pile than in the upper portion. Additionally, while the central pile exhibits a greater
reduction in axial force than the left and right piles in dense sand, the reduction in the axial
force is observed across all piles in loose sand.
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The changes in the pile axial stress are presented in Figures 5 and 6, depicting the results
for dense and loose sand, respectively. As demonstrated in Figure 5, the rate of change in the
pile axial stress varies depending on the length of the pile in the center pile. Nevertheless,
the axial stress in the center pile and at the top of the pile decreases overall during tunnel
excavation. When the length of the pile is shorter, the middle and toe of the pile exhibit a
more significant decrease compared with the top. However, for longer piles, the reduction in
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stress is less pronounced in the middle and toe. Notably, Figure 5b,c indicate that the axial
stress increases at PL = 10 and 20, with the decrease being insignificant at PL = 35. Conversely,
in loose sand, the decrease in pile axial stress is greater for shorter pile lengths and is greatest
in the middle of the pile, as depicted in Figure 6. In addition, the left and right piles, shown in
Figure 6b,c, respectively, exhibit a significant increase in pile axial stress at the top, followed
by a rapid decrease. At PL = 35, however, there was no significant difference between the pile
locations, and the overall rate of decrease was similar.
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In the scenario where the tunnel excavation was carried out directly underneath
the pile, the maximum pile axial stress was observed in the center pile, while the left
and right piles exhibited a slight decrease or increase, in agreement with the findings of
Zheng et al. [11]. Moreover, it can be inferred that the highest pile axial stress occurs at the
top during reloading, implying that the results of the numerical analysis conducted in this
study conform to the prevailing literature.

3. Prediction Model of Pile Axial Stress
3.1. Data Exploration and Preprocessing

This study utilizes a variety of variables and algorithms to derive and optimize a
model capable of predicting the axial stress of a pile during tunnel excavation adjacent
to a piled raft. The numerical analysis is used to identify the variables, and the resulting
settlement is used as input data for machine learning. However, the allowable load applied
to the piled raft is excluded from the input data for machine learning because it is expected
to have a significant impact on the prediction model and, therefore, to predict the axial
stress change accordingly.

In this study, the authors analyze the performance of the prediction models derived
by varying the features of the input data. Table 3 shows that four cases are examined. In
case 1, settlement is included as an independent feature among the variables applied to the
numerical analysis, and in case 2, settlement is excluded from case 1 and applied to machine
learning. In cases 3 and 4, the authors create new features by combining the variables
considered in the numerical analysis. Specifically, APILE/ARAFT is the cross-sectional area
of the pile relative to the area of the raft in the piled raft, a variable created by combining
PD, PN, and BR from Table 1. Additionally, PL/PD is the length-diameter ratio of the pile,
while PP and PZ indicate the location at which the pile axial stress is measured, with PP
divided into the left, center, and right based on the raft center and determined by applying
the PCTC value. PZ is the depth at which the pile axial stress is measured. In case 3, the
authors consider settlement as a feature for machine learning, whereas in case 4, settlement
is excluded.

Table 3. Features for machine learning in each case.

No. Case 1 Case 2 Case 3 Case 4

1 EG EG EG EG
2 OH OH OH OH
3 OV OV OV OV
4 PD PD PL/PD PL/PD
5 PL PL APILE/ARAFT APILE/ARAFT
6 BR BR PCTC PCTC
7 PN PN TF TF
8 PCTC PCTC PP PP
9 TF TF PZ PZ

10 PP PP Settlement
11 PZ PZ
12 Settlement

Table 3 provides a summary of the features considered for machine learning in each case.
Figure 7 shows that the null of the input data is missing in each case.
To identify the presence of any outliers within the data, the distribution of the de-

pendent variable was subjected to examination, as illustrated in Figure 8. The analysis
confirmed that no outliers are present within the data. While it is common for data ob-
tained from field measurements to contain outliers, the present study did not extensively
investigate the handling of outliers and instead relied on the results derived from numeri-
cal analysis.
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The results of the correlation analysis between the features in each case are presented
in Figure 9. It is important to note that correlation does not necessarily imply causality
between the features, but rather a statistical relationship. A higher absolute value of the
correlation coefficient indicates a stronger correlation, and the sign indicates the direction
and proportionality of the relationship. Figure 9a illustrates the correlation analysis for
case 1, where PZ shows the highest correlation coefficient (0.49) with the target feature.
Notably, as the value of PZ decreases, the pile axial stress increases. Furthermore, EG, PL,
and settlement exhibit correlation coefficients of 0.4, 0.36, and 0.26, respectively, with stress
increasing as EG and PL increase and decreasing as settlement increases. Figure 9b depicts
the correlation analysis for case 2, which is not significantly different from the analysis in
case 1 except for the absence of the settlement feature.
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3.2. Selection of Algorithms

In this study, the authors conduct a comparative analysis of the predictive models
of pile axial stress derived in each case in terms of their performance, utilizing various
machine-learning algorithms. Specifically, eight algorithms are considered, namely, Linear
Regression (LR), Lasso (L1), Ridge (L2), Multi-layered Perceptron (MLP), Support Vector
Machine (SVR), Random Forest (RF), Extreme Gradient Boosting (XGB), and Light Gradient
Boosting (LightGBM).

LR is a straightforward, rapid, and comprehensible algorithm used for the linear
prediction of regression problems. However, it has the drawback of being less accurate. L1
and L2 are algorithms designed to address the shortcomings of LR by imposing additional
constraints to prevent overfitting of the predictive models derived through LR. L1 and L2
are restricted via L1-norm and L2-norm penalties, respectively. A detailed explanation of
the LR, L1, and L2 algorithms can be found in the following references: [23], [24], and [25].

MLP is a multilayer neural network structure with multiple perceptrons in various
layers, and is a fundamental algorithm of artificial neural networks, containing one or
more hidden layers between the input and output layers. For further details on the MLP
algorithm, the reader is referred to [26].

SVR is one of the most popular algorithms used in machine learning and separates data
by choosing the hyperplane that is furthest from the data. It is less sensitive to erroneous
data, less prone to overfitting, and more user-friendly than neural network algorithms such
as MLP. However, it has the drawbacks of taking longer to learn and being less interpretable.
A detailed explanation of the SVR algorithm can be found in [27].

Random Forest is one of the representative ensemble algorithms that combines mul-
tiple decision-tree algorithms to derive a predictive model. It uses a bagging method for
training and has the advantages of good generalization performance, ease of parameter ad-
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justment, and poor overfitting. However, it also has the disadvantages of difficult analysis
for individual trees and poor model performance when the dimensionality is large and the
amount of data is not significant. A description of RF can be found in [28].

XGB is a boosting-based algorithm that has won several competitions and is one of
the ensemble algorithms that, like RF, uses decision trees. For a description of XGB, the
reader should refer to [29].

LightGBM, like XGB and RF, is an ensemble algorithm that utilizes a decision tree.
Unlike XGB, which expands the tree in a level-wise manner, LightGBM expands the tree
leaf-wise. This reduces the number of losses when expanding the same leaf, and the
algorithm has the advantage of being faster than XGB. For an explanation of LightGBM,
the reader can refer to [30].

In machine learning, the data are typically divided into training, validation, and
test data in a ratio of 5:3:2 to prevent overfitting, with only the training data being used
for algorithm selection. The learning results of each algorithm were evaluated using the
root-mean-square error (RMSE), and the algorithm results are summarized in Table 4.

Table 4. RMSE of the training of each algorithm.

Case 1 Case 2 Case 3 Case 4

LR 763.97 769.57 744.39 754.37
L1 767.49 772.81 744.37 754.34
L2 769.18 774.53 744.61 754.87

MLP 997.53 1100.50 1074.01 994.62
SVR 1352.94 1352.64 1352.45 1352.22
RF 207.17 289.75 204.55 291.34

XGB 187.29 276.95 185.06 275.98
LightGBM 184.28 244.13 186.97 241.69

The results reveal that the algorithms RF, XGB, and LightGBM exhibited the best
performance, while MLP and SVR, which are based on artificial neural networks (ANN),
demonstrated a lower performance. Therefore, hyper-parameter tuning was performed
only on RF, XGB, and LightGBM to enhance the predictive model performance.

3.3. Hyper-Parameter Tuning

Hyper-parameters constitute the intrinsic parameters of an algorithm that can be
fine-tuned to optimize the performance of a prediction model. As each algorithm has its
unique set of hyper-parameters, modifying them inevitably impacts the predictive model’s
performance. The hyper-parameters for the aforementioned algorithms are listed in Table 5
for reference.

Table 5. Hyper-parameters of each algorithm.

RF XGB LightGBM

n_estimators 426 n_estimators 96 n_estimators 140
max_depth 7 max_depth 8 max_depth 14

min_samples_split 10 learning_rate 0.15 learning_rate 0.06
max_leaf_nodes 20 colsample_bytree 0.93 colsample_bytree 0.95

random_state 21 subsample 0.78 subsample 0.07
reg_alpha 41.21 reg_alpha 47.2

reg_lambda 35.17 reg_lambda 11.06
gamma 0.05 random_state 23

random_state 16

A description of the hyper-parameters considered for RF, XGB, and LightGBM can be
found in the following references: [28], [29], and [30]. Hyper-parameter tuning involves
optimizing the parameters to achieve the best possible performance of the predictive model
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applied with the algorithm. In this study, the Optuna framework was employed to search
for the optimal value by adjusting the hyper-parameters in each trial within the specified
range or set list. Hyper-parameter tuning was carried out using the validation data from
the previously divided data in the algorithm selection phase. The results of the hyper-
parameter tuning and the resulting predictive models for each case are summarized in
Table 6.

Table 6. Results of hyper-parameter tuning for each case.

Case 1 Case 2 Case 3 Case 4

RF 328.80 331.02 301.02 313.47
XGB 176.87 233.88 178.26 234.45

LightGBM 173.61 232.25 173.34 232.89

After tuning the hyper-parameters using the validation data, LightGBM showed the
best performance.

3.4. Performance of Prediction

As previously discussed, the test data were predicted using the prediction model
obtained from the algorithm selection process using the training data and the optimization
of the hyper-parameters through the validation data. It is crucial to note that the test data
must not be exposed to the algorithm during the training and validation phases to prevent
overfitting. The results of the hyper-parameterization, as elaborated in Section 3.3, are
succinctly presented in Figures 10–13.
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Figure 10. Prediction of each algorithm for case 1: (a) RF; (b) XGB; (c) LightGBM.
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Figure 11. Prediction of each algorithm for case 2: (a) RF; (b) XGB; (c) LightGBM.
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Figure 12. Prediction of each algorithm for case 3: (a) RF; (b) XGB; (c) LightGBM.
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Figure 13. Prediction of each algorithm for case 4: (a) RF; (b) XGB; (c) LightGBM.

The results of the comparison of the models in terms of performance, as predicted for
each case and algorithm using the RMSE, are summarized in Table 7.

Table 7. Performance of prediction model.

Case 1 Case 2 Case 3 Case 4

RF 332.51 381.24 307.61 327.62
XGB 203.08 247.21 199.63 265.41

LightGBM 200.82 262.23 197.65 257.51

Table 7 presents the performance results of LightGBM and XGB, both of which dis-
played satisfactory training and validation performance, with case 3 showing the most
accurate predictions. Comparing cases 1 and 3 with cases 2 and 4, it is evident that adjusting
the features in cases 3 and 4 resulted in better performance than applying the same features
as in the numerical analysis, as observed in cases 1 and 2. Although the final prediction is
slightly higher than the RMSE of the model obtained from the training and validation, the
difference is negligible, and there is no loss of confidence in the model due to overfitting.
When calculating the error of the best-performing LightGBM prediction model in case 3
with respect to the axial force of the pile, the error ranges from approximately 39 kN to
155 kN for pile diameters between 0.5 m and 1.0 m.

4. Explanation of the Prediction Models Using Explainable AI
4.1. Shapley Value

One commonly used technique to analyze the relationship between a predictive
model and its variables is feature importance. However, this method can indicate only
the degree to which each independent feature influences the predicted value, without
revealing how much the predicted value changes as each feature is varied. Furthermore,
feature importance is applicable only to tree- or boosting-based ensemble algorithms,
making it challenging to discern the relationship between individual features and predicted
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values in models derived through other algorithms, particularly those based on artificial
neural networks.

To address this limitation, Shapley values can be employed. These values rely on
game-theory principles to calculate the contribution of each player to the gain, and are
determined by constructing a combination of attributes to assess the importance of a single
attribute and averaging the change in its presence or absence. In recent years, the SHAP
framework has leveraged Shapley values to enhance the explanatory power of predictive
models in a variety of fields related to machine learning and deep learning [31].

4.2. Analysis of the Prediction Models

In this chapter, the authors employ the feature importance and SHAP summary plot
results to illustrate the predictive models derived in each case. Figure 14 displays the
importance of the features in each case, quantifying the impact of each feature on the
predictive model. Specifically, Figure 14a showcases the impacts of independent features
on the predictive models derived by the RF, XGB, and LightGBM algorithms in case 1.
For the best-performing LightGBM, the settlement exhibits the highest impact at 43.17%,
followed by PZ and PL at 9.94%, TF at 6.44%, OH at 6.00%, OV at 5.92%, PP at 5.40%, PCTC at
5.24%, EG at 3.44%, PD at 2.55%, and PN at 1.95%; BR does not affect the prediction model
at all. The feature importance in case 2 is illustrated in Figure 14b, where PL has the highest
impact at 22.02%, followed by PCTC at 15.26%, PP at 11.42%, EG at 10.09%, PD at 10.04%, PZ
at 8.27%, TF at 6.62%, PN at 6.55%, and OV and OH at 4.40% and 3.99%, respectively; BR has
a negligible impact at 1.35%. Case 3 is summarized in Figure 14c, where the settlement has
the highest impact at 42.01%, followed by PZ at 10.92%, PL/PD at 8.87%, TF at 6.99%, PP at
5.74%, OV at 5.60%, PCTC at 5.92%, OH at 5.55%, APILE/ARAFT at 5.09%, and EG at 3.30%.
Figure 14d shows the feature importance in case 4, where PCTC has the highest impact at
19.02%, followed by APILE/ARAFT at 16.03%, PP at 15.53%, PZ at 14.54%, TF at 9.29%, EG at
8.07%, PL/PD at 7.96%, and OH and OV at 4.81% and 4.75%, respectively.
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The analysis of the feature importance reveals that settlement is of significant impor-
tance in cases 1 and 3, where it is included as an independent variable. Meanwhile, PCTC
has the highest feature importance in cases 2 and 4, where settlement is not considered.
However, while the feature importance results can quantify the impacts of features on the
predictive value of a target feature, they do not provide insight into whether the prediction
value increases or decreases as the number of features increases. Therefore, the impact of
each feature on the prediction model, as measured by the SHAP value, is analyzed in the
summary plot presented in Figure 15.

In the summary plot, a large absolute value of the SHAP value indicates a large
contribution to the predicted value. A positive SHAP value indicates that as the feature
value increases, the prediction value also increases, and as the feature value decreases, the
prediction value decreases.

Figure 15a illustrates the contributions of the features in the model derived by the
best-performing LightGBM algorithm in case 1 as a function of the SHAP value, with the
predicted values shown in order of magnitude. The feature with the largest contribution is
PL, with the SHAP value increasing as the feature value increases. This trend indicates that
the pile axial stress increases with the length of the pile, likely due to the larger allowable
load of long piles compared with short piles. Next is PZ, which demonstrates that the pile
axial stress increases as the feature value decreases, meaning that the pile axial stress is
greater at the top of the pile. EG indicates that a larger relative density of the ground results
in a greater allowable load and, therefore, greater axial stress on the pile. PD shows that the
pile axial stress decreases as the feature value increases, indicating a small change in the
pile axial stress due to the tunneling. Settlement is found to decrease as the feature value
increases, as the settlement caused by the tunnel excavation reduces the pile axial stress. PP,
which represents the position of the pile, shows that the smaller the feature value, the larger
the SHAP value, meaning that the greater distance from the tunnel side results in greater
pile axial stress. PCTC shows that the smaller the feature value, the smaller the SHAP value,
suggesting that the closer the piles are in terms of spacing, the smaller the pile axial stress,
due to the cluster pile effect. The feature PN shows that the larger the feature value, the
smaller the SHAP value, indicating that a larger number of piles results in smaller pile
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axial stress, as more piles share the allowable load. However, TF, BR, OH, and OV do not
produce meaningful SHAP values in terms of their impacts on the predictive model.

Figure 15b shows the SHAP values of the prediction model derived by LightGBM in
case 2, and the analysis reveals a similar trend to that observed in case 1. However, the BR
in case 2, which was not analyzed in case 1, exhibits a more meaningful SHAP value than
in case 1, with the SHAP value decreasing as the feature value increases. This trend is due
to the fact that the larger the foundation width, the more of the allowable load is supported
by the raft, resulting in less pile axial stress.

The SHAP values in case 3, summarized in Figure 15c, reveal that the smaller the
feature value of PL/PD, the smaller the SHAP value, which is consistent with cases 1 and 2.
Additionally, the larger the APILE/ARAFT, the smaller the SHAP value, with a larger APILE
indicating a smaller ARAFT. APILE is a function of PD and PN, while ARAFT is a function of
BR, and larger PD and PN values result in smaller pile axial stress.
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5. Discussion

This study employs numerical analysis and machine-learning techniques to develop a
model for predicting pile axial stress during tunnel excavation adjacent to a piled raft. The
numerical analysis considers various design parameters for the piled raft and tunneling,
and uses settlement and pile axial stress results from multiple cases as input data for
machine learning. The impact of each independent variable on the prediction model is
analyzed using feature importance and SHAP values.

During the training phase, RF, XGB, and LightGBM algorithms were applied, with
LightGBM exhibiting the best performance. This trend is observed consistently across all
cases, indicating that these three algorithms are the most reliable for deriving a predictive
model of pile axial stress. In the validation phase, LightGBM proved to be the most accurate
and exhibited the lowest RMSE in all cases, as compared with RF and XGB. In the prediction
phase, LightGBM performed the best in all cases, followed by cases 3, 1, 4, and 2. For
cases 1 and 2, the same variables used in the numerical analysis were employed, while a
combination of features was used for cases 3 and 4. The model that does not account for
settlement performed the best, but overall, the model that incorporates settlement as an
independent feature performed well.

This finding is supported by the feature importance and SHAP value analyses, which
indicate that settlement is a significant variable to consider. According to the SHAP value
analysis, factors that reduce the pile axial stress due to tunnel excavation include pile
top, long pile, loose ground, large pile diameter, large foundation settlement, narrow pile
spacing, close pile–tunnel distance, large number of piles, and large foundation width.

6. Conclusions

The present study reveals that while developing a prediction model using machine-
learning or deep-learning techniques, it is crucial to take into account not only the algorithm
but also the method used for processing the input data, especially when a non-numerical
laboratory model or field monitoring data are used. Additionally, several relevant vari-
ables must be considered to predict the pile axial stress during the excavation of a tunnel
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adjacent to a piled raft in practical applications. To obtain a more precise estimation, it is
recommended to incorporate measured settlement data of the foundation into the analysis.
Consequently, the authors intend to develop a prediction model by processing diverse
types of data and enhance its reliability by testing it with laboratory model and field
monitoring data.
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