Study on the Influence of Specimen Size and Aggregate Size on the Compressive Strength of Rock-Filled Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Experiment Scheme
2.2. Principles of Numerical Calculation
2.3. Numerical Simulation Experiment Scheme
3. Results
3.1. Effect of Specimen Size on Compressive Strength
3.2. Effect of Aggregate Size on Compressive Strength
Further Study on the Effect of Aggregate Size on Compressive Strength
3.3. Influence of Dual Factors of Specimen Size and Aggregate Size on Compressive Strength
4. Discussion of the Results
5. Conclusions
- (1)
- RFC has a formally consistent compressive strength size effect law with SCC and rock, and a better result is obtained by fitting using the negative exponential function. Based on the fitting function, the characteristic sizes of RFC under different particle size types are given in this paper. There is no obvious law between the characteristic sizes and particle size types. The influence of specimen size on the failure mode of RFC is not significant.
- (2)
- For RFC with the same proportion of aggregate, as the aggregate size decreases, the compressive strength increases, and this increasing trend gradually slows down. The compressive strength of RFC is positively correlated with the total energy released through acoustic emission. RFC with smaller aggregate sizes all exhibit inclined through-cracks after failure, which manifests as a macroscopic shear failure consisting of a large number of tensile damaged elements.
- (3)
- This paper analyzes the compressive strength data of RFC, and obtains the fitting surface function of specimen size and aggregate size against compressive strength. Based on the fitted surface, it is evident that the effect of specimen size on compressive strength is more pronounced than that of aggregate size.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, F.; An, X.; Shi, J.; Zhang, C. Study on rock-fill concrete dam. J. Hydraul. Eng. 2005, 36, 1347–1352. [Google Scholar]
- Jia, J.; Lino, M.; Jin, F.; Zheng, C. The cemented material dam: A new, environmentally friendly type of dam. Engineering 2016, 2, 490–497. [Google Scholar] [CrossRef]
- Jin, F.; Zhou, H.; An, X. Research on rock-filled concrete dam. Int. J. Civ. Eng. 2018, 17, 495–500. [Google Scholar] [CrossRef]
- Xu, X.; Jin, F.; Zhou, H.; Bi, Z. Review on development and innovation of rock-filled concrete technology for dam construction. J. China Three Gorges Univ. Nat. Sci. 2022, 44, 1–11. [Google Scholar]
- An, X.; Wu, Q.; Jin, F.; Huang, M.; Zhou, H.; Chen, C.; Liu, C. Rock-filled concrete, the new norm of SCC in hydraulic engineering in China. Cem. Concr. Compos. 2014, 54, 89–99. [Google Scholar] [CrossRef]
- Liang, T.; Jin, F.; Huang, D.; Wang, G. On the elastic modulus of rock-filled concrete. Constr. Build. Mater. 2022, 340, 127819. [Google Scholar] [CrossRef]
- He, S.; Zhu, Z.; Lv, M.; Wang, H. Experimental study on the creep behaviour of rock-filled concrete and self-compacting concrete. Constr. Build. Mater. 2018, 186, 53–61. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, G.; Sun, F.; Wang, M.; Li, W.; Xu, J. Experimental research on the properties of rock-filled concrete. Appl. Sci. 2019, 9, 3767. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, B.; Tang, X.; He, T.; Qiao, Z.; Wu, X.; Yang, L. Experimental study on mechanical properties of large-scale rock filled concrete specimen in Lvtang reservoir. Water Resour. Plan. Des. 2020, 4, 142–147. [Google Scholar]
- Sim, J.; Yang, K.; Kim, H.; Choi, B. Size and shape effects on compressive strength of lightweight concrete. Constr. Build. Mater. 2013, 38, 854–864. [Google Scholar] [CrossRef]
- Del Viso, J.; Carmona, J.; Ruiz, G. Shape and size effects on the compressive strength of high-strength concrete. Cem. Concr. Res. 2008, 38, 386–395. [Google Scholar] [CrossRef]
- Zhuo, J.; Zhang, Y.; Ma, M.; Zhang, Y.; Zheng, Y. Uniaxial compression failure and size effect of recycled aggregate concrete based on meso-simulation analysis. Materials 2022, 15, 5710. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Du, Q.; Tu, J. A study of size effect for compression strength of rock. Chin. J. Rock Mech. Eng. 1998, 166, 611–614. [Google Scholar]
- Li, K.; Yin, Z.; Han, D.; Fan, X.; Cao, R.; Lin, H. Size effect and anisotropy in a transversely isotropic rock under compressive conditions. Rock Mech. Rock Eng. 2021, 54, 4639–4662. [Google Scholar] [CrossRef]
- Masoumi, H.; Douglas, K.; Russell, A. A bounding surface plasticity model for intact rock exhibiting size-dependent behaviour. Rock Mech. Rock Eng. 2016, 49, 47–62. [Google Scholar] [CrossRef]
- Lloyd, D. Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 1994, 39, 1–23. [Google Scholar] [CrossRef]
- Yu, J.; Li, Y.; Zhou, H.; Xu, F. Influence of particle size on the dynamic behavior of PMMCs. Acta Mater. Compos. Sin. 2005, 22, 31–38. [Google Scholar]
- Wang, Z.; Song, M.; Sun, C.; He, Y. Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2011, 528, 1131–1137. [Google Scholar] [CrossRef]
- Lee, D. Fracture mechanical model for tensile strength of particle reinforced elastomeric composites. Mech. Mater. 2016, 102, 54–60. [Google Scholar] [CrossRef]
- Tang, C. Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 1997, 34, 249–261. [Google Scholar] [CrossRef]
- Xie, H.; Li, L.; Peng, R.; Ju, Y. Energy analysis and criteria for structural failure of rocks. J. Rock Mech. Geotech. Eng. 2009, 1, 11–20. [Google Scholar] [CrossRef]
- Yang, T.; Liu, H.Y.; Tang, C. Scale effect in macroscopic permeability of jointed rock mass using a coupled stress-damage-flow method. Eng. Geol. 2017, 228, 121–136. [Google Scholar] [CrossRef]
- Yang, T. Numerical Study Method of Seepage Characteristics in Rock Damage Process. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2019. [Google Scholar]
- Jin, L.; Yu, W.; Du, X.; Yang, W. Meso-scale simulations of size effect on concrete dynamic splitting tensile strength: Influence of aggregate content and maximum aggregate size. Eng. Fract. Mech. 2020, 230, 106979. [Google Scholar] [CrossRef]
- Weibull, W. The phenomenon of rupture in solids. Proc. R. Swed. Inst. Eng. Res. 1939, 153, 1–55. [Google Scholar]
- Tang, C.; Tham, L.; Lee, P.; Tsui, Y.; Liu, H. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part II: Constraint, slenderness and size effect. Int. J. Rock Mech. Min. Sci. 2000, 37, 571–583. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, Y.; Tang, S.; Li, L.; Tang, C. Size effect of rock messes and associated representative element properties. Chin. J. Rock Mech. Eng. 2013, 32, 1157–1166. [Google Scholar]
- Hu, G.; Ma, G. Size effect of parallel-joint spacing on uniaxial compressive strength of rock. PLoS ONE 2021, 16, e0257245. [Google Scholar] [CrossRef]
- Wu, K.; Chen, B.; Yao, W. Study of the influence of aggregate size distribution on mechanical properties of concrete by acoustic emission technique. Cem. Concr. Res. 2001, 31, 919–923. [Google Scholar] [CrossRef]
- Li, S.; Gao, D. Experimental research on the influence of coarse aggregate size on boulder concrete compressive strength. Concrete 2013, 2, 59–61. [Google Scholar]
- Jin, L.; Yu, W.; Li, D.; Du, X. Numerical and theoretical investigation on the size effect of concrete compressive strength considering the maximum aggregate size. Int. J. Mech. Sci. 2021, 192, 106130. [Google Scholar] [CrossRef]
- Hu, L.; Chen, X.; Dong, W. Mechanical properties and meso-scale failure mechanism of corundum pellet concrete with different aggregate sizes. Concrete 2021, 10, 70–75. [Google Scholar]
Size (mm) | SCC | Type1 | Type2 | Type3 | Type4 | Type5 | Rock |
---|---|---|---|---|---|---|---|
150 | 24.07 | 33.50 | 36.30 | 38.63 | 33.27 | 34.67 | 46.33 |
300 | 24.23 | 31.60 | 30.17 | 34.70 | 31.40 | 34.17 | 44.20 |
450 | 22.53 | 30.40 | 30.17 | 33.63 | 30.80 | 34.53 | 44.13 |
600 | 22.80 | 28.30 | 28.90 | 30.20 | 29.07 | 31.27 | 43.03 |
750 | 19.50 | 27.23 | 27.67 | 29.70 | 26.83 | 29.80 | 41.73 |
900 | 19.60 | 25.73 | 29.07 | 28.03 | 27.30 | 27.23 | 41.03 |
1050 | 19.17 | 25.37 | 27.27 | 26.83 | 27.03 | 27.97 | 37.43 |
1200 | 20.17 | 24.67 | 24.70 | 24.50 | 26.73 | 25.40 | 40.33 |
1350 | 20.17 | 24.60 | 25.67 | 25.73 | 26.87 | 28.57 | 38.97 |
1500 | 18.10 | 23.70 | 25.07 | 25.43 | 25.23 | 26.30 | 37.47 |
1650 | 19.63 | 22.67 | 25.63 | 25.10 | 25.30 | 26.97 | 38.23 |
1800 | 17.77 | 22.63 | 23.93 | 24.57 | 25.70 | 24.63 | 34.13 |
1950 | 18.13 | 23.83 | 24.53 | 23.40 | 24.33 | 25.13 | 35.80 |
2100 | 17.53 | 22.03 | 23.93 | 25.67 | 24.93 | 24.87 | 38.30 |
2250 | 17.50 | 23.83 | 23.57 | 21.60 | 23.90 | 24.57 | 34.87 |
2400 | 15.03 | 22.67 | 23.23 | 21.20 | 21.93 | 23.10 | 37.60 |
2550 | 17.87 | 22.77 | 21.67 | 24.00 | 23.90 | 24.00 | 34.87 |
2700 | 14.77 | 22.20 | 21.17 | 24.00 | 23.37 | 22.20 | 34.87 |
2850 | 16.43 | 22.20 | 22.27 | 22.23 | 23.40 | 24.60 | 34.87 |
3000 | 16.17 | 22.23 | 20.40 | 21.10 | 22.30 | 24.03 | 33.47 |
Fitting Parameter | SCC | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 | Rock |
---|---|---|---|---|---|---|---|
a | 14.08 | 22.08 | 20.37 | 22.20 | 22.06 | 22.62 | 32.76 |
b | 11.11 | 14.50 | 15.06 | 19.64 | 12.17 | 15.09 | 15.03 |
c | 5.89 × 10−4 | 1.41 × 10−3 | 7.95 × 10−4 | 1.34 × 10−3 | 8.52 × 10−4 | 9.64 × 10−4 | 7.21 × 10−4 |
characteristic size (mm) | 8275 | 4265 | 6891 | 4676 | 6261 | 5885 | 7460 |
Specimen Size (mm) | Intercept | Slope |
---|---|---|
150 | 35.48 | −0.07 |
300 | 30.50 | 0.64 |
450 | 29.24 | 0.89 |
600 | 27.72 | 0.61 |
750 | 26.96 | 0.43 |
900 | 27.10 | 0.12 |
1050 | 25.40 | 0.50 |
1200 | 24.15 | 0.35 |
1350 | 23.55 | 0.91 |
1500 | 23.54 | 0.54 |
1650 | 22.65 | 0.83 |
1800 | 22.56 | 0.58 |
1950 | 23.53 | 0.24 |
2100 | 22.29 | 0.67 |
2250 | 22.95 | 0.18 |
2400 | 22.56 | −0.04 |
2550 | 21.86 | 0.47 |
2700 | 21.93 | 0.22 |
2850 | 21.16 | 0.59 |
3000 | 20.36 | 0.55 |
Particle Size Type | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | 25 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aggregate size (mm) | 3000 | 1500 | 1000 | 750 | 600 | 500 | 428 | 375 | 333 | 300 | 200 | 150 | 120 | 100 |
compressive strength (Mpa) | 22.23 | 20.40 | 21.10 | 22.30 | 24.03 | 23.43 | 22.87 | 24.63 | 24.10 | 24.60 | 24.17 | 25.80 | 25.93 | 27.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, Y.; Yang, T.; Liao, H.; Yu, L.; Liu, Y.; Wang, G.; Zhao, Y.; Qiao, H. Study on the Influence of Specimen Size and Aggregate Size on the Compressive Strength of Rock-Filled Concrete. Appl. Sci. 2023, 13, 6246. https://doi.org/10.3390/app13106246
Li X, Zhang Y, Yang T, Liao H, Yu L, Liu Y, Wang G, Zhao Y, Qiao H. Study on the Influence of Specimen Size and Aggregate Size on the Compressive Strength of Rock-Filled Concrete. Applied Sciences. 2023; 13(10):6246. https://doi.org/10.3390/app13106246
Chicago/Turabian StyleLi, Xiang, Yufan Zhang, Tao Yang, Haimei Liao, Lei Yu, Yunke Liu, Guoji Wang, Yinghong Zhao, and Haoyang Qiao. 2023. "Study on the Influence of Specimen Size and Aggregate Size on the Compressive Strength of Rock-Filled Concrete" Applied Sciences 13, no. 10: 6246. https://doi.org/10.3390/app13106246
APA StyleLi, X., Zhang, Y., Yang, T., Liao, H., Yu, L., Liu, Y., Wang, G., Zhao, Y., & Qiao, H. (2023). Study on the Influence of Specimen Size and Aggregate Size on the Compressive Strength of Rock-Filled Concrete. Applied Sciences, 13(10), 6246. https://doi.org/10.3390/app13106246