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Abstract: Different types of buildings in different climate zones have their own design specifications
and specific user populations. Generally speaking, these populations have similar sensory feedbacks
in their perception of environmental thermal comfort. Existing thermal comfort models do not
incorporate personal thermal comfort models for specific populations. In terms of an algorithm, the
existing work constructs machine learning models based on an established human thermal comfort
database with variables such as indoor temperature, clothing insulation, et al., and has achieved
satisfactory classification results. More importantly, such thermal comfort models often lack scientific
interpretability. Therefore, this study selected a specific population as the research object, adopted the
0-order Takagi–Sugeno–Kang (TSK) fuzzy classifier as the base training unit, and constructed a shared
feature-guided new TSK fuzzy classification algorithm with extra feature compensation (SFG-TFC)
to explore the perception features of the population in the thermal environment of buildings and to
improve the classification performance and interpretability of the model. First, the shared features
of subdatasets collected in different time periods were extracted. Second, the extra features of
each subdataset were independently trained, and the rule outputs corresponding to the key shared
features were reprojected into the corresponding fuzzy classifiers. This strategy not only highlights
the guiding role of shared features but also considers the important compensation effect of extra
features; thereby, improving the classification performance of the entire classification model. Finally,
the least learning machine (LLM) was used to solve the parameters of the “then” part of each basic
training unit, and these output weights were integrated to enhance the generalization performance of
the model. The experimental results demonstrate that SFG-TFC has better classification performance
and interpretability than the classic nonfuzzy algorithms support vector machine (SVM) and deep
belief network (DBN), the 0-order TSK, and the multilevel optimization and fuzzy approximation
algorithm QI-TSK.

Keywords: thermal comfort model; interpretability; shared feature; fuzzy classification

1. Introduction

People spend approximately 90% of their time indoors [1]. Thermal comfort is one of
the main factors affecting building energy and work performance [2]. The study of building
comfort is beneficial for reducing building energy consumption and improving building
environment satisfaction [3].

In the past few decades, many experts and scholars have conducted in-depth research
on thermal comfort models using different methods [4–8]. For example, D. Enescu reviewed
the most used thermal comfort models and indicators with their variants and discussed
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their usage in control problems referring to energy management in indoor applications [4].
S. Carlucci et al. analyzed the adaptive models in ASHRAE Standard 55 [9], the European
EN 15251 [10], the Dutch ISSO 74 [11] and the Chinese GB/T 50785 [12], then identified the
main sources of uncertainty around the application of adaptive models, and analyzed the
difference between the adaptive comfort models quantitatively [5]. Zhu et al. summarized
the progress in the literature concerning the dynamic characteristics and comfort assessment
of airflow in four main sections. It will hopefully aid the understanding of human thermal
comfort perception of indoor airflow [6]. X. Zhou et al. studied the thermal comfort effects
of asymmetric radial environments under different exposure durations, they proposed
relational equations with consideration of exposure duration [7]. M. Luo et al. transferred
the developments in human metabolic science to the built environmental context. They
led to the conclusion that the algorithm of human metabolism will affect thermal comfort
modeling with precision [8]. These methods can be roughly classified into two categories.

The approaches in the first category use statistical methods to study thermal comfort
models. Among them, the predicted mean voting (PMV) model established by Fanger [13]
and the adaptive thermal comfort model proposed by de Dear et al. [14] are the most
representative. However, PMV does not have self-learning ability. Although the adaptive
thermal comfort model proposed by de Dear et al. can self-learn and self-correct, its self-
correction ability is limited. Its accuracy drops dramatically for new climate conditions or
building types. In addition, the thermal comfort of building occupants may be affected
by factors not included in these models (such as gender, age, health status [15,16], and
long-term and short-term adaptation [17,18]).

The approaches in the second category mainly use machine learning algorithms to
study thermal comfort models. Many scholars have applied machine learning algorithms
to thermal comfort research [19]. Although thermal comfort models based on machine
learning algorithms outperform traditional thermal comfort models [20], the commonly
used artificial neural network (ANN), support vector machine (SVM), and random forest
(RF) all have poor semantic interpretability and, thus, have difficulty describing the impor-
tance of each input variable. Recently, some scholars have conducted research on thermal
comfort from the perspective of fuzzy logic reasoning [21,22]. For example, C. Li et al.
presented a type-2 fuzzy method based on a data-driven strategy for the modeling and
optimized the thermal comfort parameters. The proposed method can be used to realize a
comfortable and energy-saving environment in a smart home or intelligent buildings [21].
J. Menyhárt et al. determined a new comfort index using fuzzy logic based on the responses
of subjects, it can evaluate a new personalized ventilation system [22].

In terms of the input parameters, these models use the same environmental and
personal factors as in the PMV model. or add new features, such as skin temperature [23]
and time [24]; however, they do not consider usage scenarios or population features.
Therefore, thermal comfort models face the following challenges:

(1) Test scenarios (climate, building type, and user population) and feature dimensions:

Researchers have confirmed that the season, climate, and building type impact human
thermal adaptability and thermal expectations [25]. Most of the recent research focuses
on the Mediterranean climate region [26,27]. In addition, due to inconsistent observation
indicators for subjects in different research or scenarios, the feature dimensions of the
datasets are usually inconsistent, and previous thermal comfort models are not suitable
for datasets with multiple different feature dimensions. Therefore, for different climatic
regions, it is necessary to develop thermal comfort models that can be applied to multiple
datasets of different feature dimensions to enable a prediction using personal thermal
comfort models in a wider range of scenarios.

(2) Research on the shared features of specific populations:

For a particular type of building, the long-term user population generally has the
same or similar shared features, such as age, activity level, clothing level [28], and human
behavior [29]. This kind of specific observation population has similarities and correlations
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regarding the impact of shared features on the final decision’s results. Therefore, it is
particularly important to identify shared features that are relatively easy to observe and
greatly impact the final decision classification among these features. However, the recent
research on personal thermal comfort models has not addressed the impact of shared
features of specific populations on comfort.

(3) Semantic interpretability of thermal comfort models:

The choice of algorithm is one of the main factors affecting the accuracy of machine
learning-based thermal comfort models [30]. According to previous studies of thermal
comfort models, many machine learning-based models have difficulty expressing the
relationship between input variables and model outputs; hence, these models are called
“black box models”. Although these algorithms can achieve a good performance in the
learning process, they do not have good scientifically derived semantic interpretability.

To address these issues, the following steps are performed in this study: (1) extracting
key shared features that greatly impact classification performance from the features of
specific scenarios and specific populations and highlighting the guiding role of these key
shared features in the performance of the final model; (2) strengthening the guiding role
of the shared features of a specific population in the classification while considering the
compensatory effect of extra features on human thermal comfort; and (3) constructing
a highly interpretable fuzzy classifier to mine the effect of the thermal environment on
human thermal comfort; thereby, better guiding building environmental design.

The features of a specific population can be roughly classified into shared features
and extra features. The shared features do not change with external conditions and are
easily acquired using conventional acquisition methods. The extra features may change
with changes in the external environment or have feature information that is difficult to
acquire. Therefore, in the modelling process, it is necessary to strengthen the guiding role
of shared features in the final decision, to fully consider the impact of extra features on
the classification, and to ensure that the antecedent parameters of each rule, the output of
each rule, and the outputs of the model are all interpretable; thereby, making the thermal
comfort model applicable to more usage scenarios. The contributions of this study can be
summarized as follows:

(1) Rich practical application scenarios

In contrast to previous studies in which data were collected for various climatic regions
using various methods, this study collects comprehensive data on a specific population
in a specific scenario in a specific climatic region (see Section 4.1 for details), not only
supplementing the thermal comfort database but also enriching the application scenarios
of thermal comfort models by processing datasets of different feature dimensions.

(2) Model optimization, construction, and training

Both shared features and extra features of the specific population impact the final
decision of the model. This study highlights the guiding role of shared features through
training on and the information reuse of shared features of the specific population. More-
over, the model is trained separately on extra features, taking into account the impact
of these extra features on the final classification results. Finally, through the integrated
optimization of the output weights, the stability and generalization performance of the
model are improved.

(3) Enhancement of semantic interpretability

The predicted results of previous thermal comfort models constructed by machine
learning algorithms are difficult to interpret and analyze. In the process of building en-
vironmental design, it is necessary to understand the factors and indicators that affect
the thermal comfort results to understand the mechanism underlying the impact of the
building environment on human thermal comfort. The Takagi–Sugeno–Kang (TSK) algo-
rithm selected in this study has a natural ability to address uncertainty, and the features
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in the rules of the model, the output of the rules, and the output of the model are all
semantically interpretable.

The sections of this study are arranged as follows: The Section 1 introduces the
relevant research background, current situation, research content, and framework of the
thesis. The Section 2 introduces the basic knowledge of this study. The Section 3 discusses
the constructed model. The Section 4 presents the experimental analysis and discussion.
The Section 5 summarizes this study.

2. Related Knowledge

This study uses mainly the classic 0-order TSK fuzzy classifier and the least learning
machine (LLM). They are briefly introduced first in this section.

2.1. Classic 0-Order TSK Fuzzy Classifier

Due to the high classification performance and high interpretability of the 0-order
TSK fuzzy classifier, it has been widely used in daily life [31–35]. The classifier is briefly
described as follows:

The output yk of the k-th fuzzy rule is expressed as follows:
Rule k: If x1 is Bk

1∧ x2 is Bk
2∧...∧ xD is Bk

D, then yk = pk
0, k = 1, 2, . . . , K

where the input vector is x = [x1, x2, . . . , xD]
T (D is the number of features), each com-

ponent xi is a fuzzy linguistic variable, FBk
i
(xi)(i = 1, 2, . . . , D, k = 1, 2, . . . , K) is the

corresponding membership function, and Bk
i (k = 1, 2, . . . , K) is the fuzzy subset of the

input vector xi under the k-th rule. Rule k refers to the k-th rule, ∧ is the fuzzy connection
operator, K is the total number of fuzzy rules, and pk

0 represents the output of the k-th
fuzzy rule.

The fuzzy membership function Fk(x) can be written as [33]:

Fk(x) =
D

∏
i=1

Fk
Bk

i
(xi) (1)

where the normalized fuzzy membership function F̃k(x) can be written as [33]:

F̃k(x) = Fk(x)

/
K

∑
k′=1

Fk′(x) (2)

Usually, we use the Gaussian fuzzy membership function as the fuzzy membership
function, and its expression is as follows [33]:

FBk
i
(xi) = exp(−(xi − ck

i )
2
/2δk

i ) (3)

where two parameters ck
i and δk

i can be obtained by the fuzzy c-means (FCM) algorithm [36]
and their expressions are as follows [33]:

ck
i =

N

∑
i=1

Fk(xi)xij

/
N

∑
i=1

Fk(xi) (4)

δk
i = h.

N

∑
i=1

Fk(xi)(xij − ck
i )

2
/

N

∑
i=1

Fk(xi) (5)

where the fuzzy membership degree Fk(xi) is obtained by FCM, i = 1, 2, . . . , N, and h is a
scale parameter that can be manually tuned or optimized using the learning strategy [37].
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Each rule is used to process the input vector through a series of steps, and the final
output value of the TSK fuzzy classifier can be expressed as [33]:

y0 =
K

∑
k=1

Fk(x)pk
0/

K

∑
k′=1

Fk′(x) (6)

2.2. Least Learning Machine (LLM)

According to the literature [38,39], the LLM was first conceptually proposed as a fast
learning algorithm for single-layer or multilayer feedforward neural networks. For the i-th
input sample, the input layer is xi = (xi1, . . . , xiD). In the hidden layer, g(wi, bi, xi) is the
activation function, and wi and bi are the weight parameter and the bias value, respectively.
β1, β2, . . . , βK are the output parameters of the output layer.

Therefore, for a given training set O = {(xi, ti)
∣∣xi ∈ RD, ti ∈ R , i = 1, 2, 3, . . . , N

}
, xi

represents the i-th input sample, and ti represents the label corresponding to the i-th
sample. We let X = [x1, x2, . . . , xN ]

T , T = [t1, t2, . . . , tN ]
T , and the number of hidden-layer

nodes be K. Then, the output is H = [h1, h2, . . . , hK], where hk is the output of the k-th

hidden-layer node (hk = g(wk, bk, xi)). The final output is f (X) =
K
∑

k=1
βkhk = Hβ, where

β = [β1, β2, . . . , βK]
T [38]. According to [38], β = ( 1

η I + HTH)
−1

HT, where η is a constant,
I is a D-dimensional identity matrix, and T is the label set.

3. The Proposed Fuzzy Classifier: SFG-TFC

As mentioned above, building a thermal comfort model is not an easy task. In recent
years, most of the work on thermal comfort models has been focused on machine learning
algorithms. One representative work is the data-driven thermal comfort model based
on the support vector machine algorithm [15]. This is a model with self-learning and
self-tuning capabilities using the support vector machine (SVM) algorithm. This model
focuses on variables such as indoor temperature, clothing insulation, metabolic rate, and
wind speed. It is very similar to our study. More importantly, compared to SVM, the fuzzy
system constructed by our model not only has good classification performance, but also
has good interpretability.

In our study, data are collected from specific people in specific climate regions and in
specific scenarios. Subdatasets of M time nodes are obtained under laboratory simulation
scenarios and are randomly ordered, and each subdataset contains shared features and
extra features. For each time node, the collected datasets can be divided into a shared
feature dataset and an extra feature dataset. As shown in Figure 1, the SFG-TFC training
structure is divided into the following steps: First, the key shared features that greatly
impact decision-making are obtained using the method of information gain, fuzzified, and
output by rules. Second, the extra features of each subset are fuzzified and output by
rules, and the rule output matrix of key shared features is reprojected to each independent
base training unit. Finally, the output weights of the optimized model are integrated to
improve the generalization performance of the model. In the modelling process, one of the
difficulties and objectives of this study is to strengthen the guiding role of the key shared
features in human thermal comfort while considering the enhancing effect of extra features
on the final classification performance.
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3.1. Construction of the Basic Training Units

Each base training unit is described as follows [39].

A. According to FCM, the membership value of each feature is obtained as follows [35]:

F(xij) =
C

∏
r=1

F(xr
ij) (7)

where i= 1, 2, . . . , N, j= 1, 2, . . . , D, r = 1, 2, . . . , C, C is the number of the fuzzy partitions.

B. The rule output ω is expressed as follows [39]:

ωik =
D

∏
j=1

F(xij) ·ϕ(j, k) (8)

where i = 1, 2, . . . , N, j = 1, 2, . . . , D, k = 1, 2, . . . , K, and ϕ is a randomly generated (0, 1)
matrix, N is the number of training samples and K is the number of rules.

C. The rule output matrix H is expressed as follows:

H =

ω11 · · · ω1K
...

. . .
...

ωN1 · · · ωNK


N×K

(9)

where N is the number of training samples and K is the number of rules.

D. According to the LLM, the final output Y of each base training unit is expressed as
follows [39]:

Y = H×β (10)

3.2. Fuzzy Modeling Based on Shared Features

Since the thermal comfort perception of a specific population has similar perception
features, these features usually do not change over time, and the corresponding features in
each training sample are similar. Therefore, starting from the shared features of a specific
population, the association between the shared features and personal thermal comfort data
can be mined.

First, the key shared feature dataset Xs is extracted using the method of
information gain. The dataset is divided into a corresponding number of subdatasets
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X1, . . . , XM−1, XM(Xi ∈ RNi×Di , i = 1, 2, . . . , N) according to different sampling nodes. A
total of M − 1 subdatasets X1, . . . , XM−1 are randomly selected, and the share features for a
specific population Xs

1, . . . , Xs
M−1 are organized (Xs

i ∈ RNi×Ds
) and merged into a shared

feature dataset Xs′ =

 Xs
1

. . .
Xs

M−1

, where Xs′ ∈ R(N1+N2 ...+NM−1)×Ds′
. For the shared fea-

ture dataset, the key shared features that greatly impact the final decision are obtained
through the method of information gain and organized into a key shared feature dataset
Xs = (Xs ∈ R(N1+N2 ...+NM−1)×Ds

and Ds ≤ Ds′ ). The specific method is as follows: First,
the matrix Φ randomly assigns an initial value (from 0 to 1) to each element of the shared
feature dataset Xs, and then features are selected based on the information determination
ratio (IDR). In this study, the IDR is set to 80%, namely, when a feature contains more
than 80% valid information, all the information of the feature is selected; otherwise, the
information of the feature is not selected.

Next, a shared TSK fuzzy classifier (sTSK) to be trained on the key shared feature
dataset Xs is constructed. According to the basic model introduced in Section 3.1, as shown
in Figure 1, the sTSK is trained on the key shared feature dataset Xs to obtain the rule output

matrix of the key shared features Hs =


Hs

1
Hs

2
. . .

Hs
M−1

, Hs ∈ RN×Ks
, where Hs

i represents the

rule output matrix of the i-th subdataset in the sTSK. Therefore, Hs contains the rule output
information of the key shared features of each subdataset.

3.3. Reuse of Information for Shared Features

As shown in Figure 1, the TSK base training units are trained autonomously on extra
features from each subdataset Xe

i to obtain the corresponding rule output matrices. The
rule output matrix Hs of the efficient key shared features in Section 3.2 is reprojected to
each independent TSK base training unit and fused with the rule output matrix of extra
features He. The main process includes the following steps:

(1) Training on extra features

The 0-order TSK fuzzy classifier is trained on the extra features Xe
1, . . . , Xe

M−1 sepa-
rately. This method not only enables the effective information of the extra features of each
subdataset sample to be fully retained and utilized but also solves the problem of having
different numbers of samples and feature dimensions in each subdataset. In this manner,
the rule output matrices of the extra features He

1, . . . , He
M−1, He

i ∈ RNi×Ke
are obtained.

(2) Reuse of key shared features

The i-th sample set in the rule output matrix of the shared features Hs =


Hs

1
Hs

2
. . .

Hs
M−1

 is

reprojected to the corresponding rule output matrix of the extra features He
i to obtain the

rule output matrix of each base training unit Hi =

[
He

i

...

...
Hs

i

]
, He

i ∈ RNi×(Ks+Ke); thereby,

reprojecting the key shared features. The reprojection of the key shared features enables
the key shared features to be used in each base training unit, which ensures the guiding
role of the key shared features in model decision-making.

(3) Calculation of the output weights

According to Formula (10), the output weights of the M − 1 base training units βi,
βi ∈ R(Ks+Ke)×L, are calculated.
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3.4. Integration of the Output Weights

The subdataset XM is subjected to basic unit training. According to Formulas (7)–(10),
the membership function value FM, the rule output matrix HM, and the output weight
βM′ are obtained. Next, the output weights of the previous M − 1 base training units
β1,β2, . . . ,βM−1 are integrated into the current base training unit βM′ to obtain the final
output weights βM, improving the stability and generalization performance of the model
where θ is a small constant that can be set in advance and βi denotes the i-th output weights
of each TSK base training unit.

Hence, the final output YM is obtained.
The output weights of the M− 1 base training units are used to integrate and optimize

the model decision-making of the M base training units to give the SFG-TFC model more
stable generalization performance.

3.5. Algorithms

This section presents the SFG-TFC algorithm. The specific training steps are specified
in Algorithm 1.

Algorithm 1: Training Algorithm of SFG-TFC

Input: The training set X1, . . . , XM−1, XM,where,Xi =
[
xi

1, xi
2, . . . , xi

Ni

]T

The corresponding class label set T1, . . . , TM−1, TM, where, Ti =
[
ti
1, ti

2, . . . , ti
Ni

]T

Output weight parameter θ, rule number K
Step1: Acquisition and processing of shared features
Step 1(a): the key shared feature dataset Xs is extracted by the method of information gain
Step 1(b): Perform sTSK training on Xs

Step 1(c): Calculation rule output matrix Hs =


Hs

1
Hs

2
. . .

Hs
M−1


Step2: Re-projection of key shared features
Step 2(a): Conduct TSK base unit training for additional features Xe

1, . . . , Xe
M−1 to obtain the rule

output matrix of additional features He
1, . . . , He

M−1.
Step 2(b): Project the corresponding relevant information in the rule output matrix Hs of the
shared feature to the corresponding base training unit again. Calculate the rule output matrix of

each base training unit Hi =

He
i

...

...
Hs

i


Step 2(c): Calculate the output weight of M-1 training base units βi
Step 3: Integration of output weights
Step 3(a): Generate the M-th rule output matrix HM

Step 3(b): Optimize output weight βM = βM′ +
M−1
∑

i=1

θ
M−1βi

Output:
The prediction function of SFG-TFC: YM = HM ×βM

Remark 1. The datasets are collected at different time spans, and the features still have similarities
or differences over time. The associations between similar features (shared features) and different
features (extra features) are clarified to characterize their impact on the final personal comfort.

Remark 2. The reasons for the enhanced classification performance of Algorithm 1 are analyzed
from the perspective of feature enhancement and model optimization. First, this study analyzes the
dataset features and classifies the features of each dataset into shared features and extra features.
Then, the shared features play a guiding role, the extra features have a compensation effect, and the
integrated output weight guarantees the classification performance of the model.
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Remark 3. The output weight parameter θ and the number of rules K are important parameters
that affect the performance of Algorithm 1. In repeated experiments in this study, the output weight
parameter is 0.005, and the number of rules is 10–20.

4. Experiment and Discussion
4.1. Dataset and Experimental Setup

This study applied thermal comfort information for a specific population in a labo-
ratory scenario that simulates a specific scenario. The specific scenario simulated in this
study is an office or learning environment of an office building in a tropical humid climate
region in southern North Asia (as shown in Figure 2). Relevant instruments are arranged
inside and outside the experimental chamber in advance to measure and record the subjects’
basic conditions, sampling conditions, physical environment, physiological parameters,
subjective perception, and self-assessment (as shown in Figure 3).
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Sampling population: The subjects are healthy (all without cardiovascular or cere-
brovascular diseases or sensory disorders) young people of approximately 20 (20± 2) years
old who have lived in Zhangjiagang City (31◦43′12′′–32◦02′ N, 120◦21′57′′–120◦52′ E) for at
least one year and are fully adapted to the local climatic conditions.

Sampling time: This sampling was carried out in three time periods (April 2020, April
2021, and December 2021). April is in a transitional climate with comfortable weather,
while December is in an extreme climate. Choosing both comfortable and extreme climate
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experiments can truly demonstrate the participants’ feelings towards the environment. The
total number of samples collected in the three periods are 48, 108, and 255, respectively.

Sampling procedure: All subjects were required to complete a 90-min experiment. The
experimental process was as follows: First, each subject fills in basic personal information
and sampling condition information on a sampling information form in the preparation
room and enters the experimental chamber after sitting quietly for 30 min. After entering
the experimental chamber, the subject reads a book or browses the internet to simulate a
relaxed working state for 30 min while wearing a device to adapt to the indoor environment.
In 60–90 min, the staff record the physiological parameters of the volunteers and the
physical parameters of the indoor environment at that time, and then the subject completes
a subjective perception and self-assessment evaluation form. The staff ensure that the form
has been properly filled in before the subject is allowed to leave the sampling room.

4.1.1. Sampling Features

The features that affect personal thermal comfort are classified into six categories:
basic conditions, sampling conditions, physiological parameters, physical environment,
environmental perception, and self-assessment. Each category contains multiple observa-
tion indicators. All six categories of indicators are present at each time node. The shared
features and extra features are identified from these indicators. Figure 4 summarizes the
features observed in this study.
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4.1.2. Sampling Labels

In the thermal sensation vote (TSV) scale, which is the most widely accepted scale
in recent comfort research, thermal comfort is categorized into seven standards. In the
sampling process, this scale is used to obtain the thermal statuses of individuals. In the
process of data sorting, the sample labels with individual TSV values of −1, 0, and 1 are
defined as comfortable, and the sample labels with individual TSV values less than −1
or greater than 1 are defined as uncomfortable; thereby, constructing binary classification
samples, as shown in Figure 5.
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In this study, the datasets sampled using time nodes are processed and grouped, and
finally, a training sample of the comfort level of the indoor environment is obtained. Table 1
describes the three experimental datasets in detail. Two of the datasets are used for training,
and the remaining dataset is used for testing.

Table 1. Dataset descriptions.

Groups No. of Samples No. of Shared Features No. of Total Features No. of Classes

Data1 * 48 10 23 2
Data2 * 109 10 34 2
Data3 * 255 10 82 2

* Data1, Data2, and Data3 are the datasets collected in April 2020, April 2021, and December 2021, respectively.

4.1.3. Parameter Settings

The main parameters of this experiment include the number of fuzzy rules K, the
number of cluster centers C, coefficient η, and coefficient θ, which can be set in advance.
The settings are shown in Table 2.

Table 2. Experimental parameter settings.

Parameters Values

Number of fuzzy rules K 10~20
C 5
η (0, 0.1)
θ (0.005, 0.010)

4.2. Description of the Comparison Algorithms

In this study, the classic algorithms SVM [40] and DBN [41], the 0-order TSK [39],
and the multilevel optimization and fuzzy approximation algorithm QI-TSK [42] are used
as comparison algorithms to further verify the rationality and superiority of the method
proposed in this study. Among the above algorithms, SVM and DBN are classic nonfuzzy
machine learning algorithms, and 0-order TSK and QI-TSK are both fuzzy classification
algorithms. To further evaluate the classification performance of SFG-TFC, this study
compares the proposed algorithm with the abovementioned algorithms. Table 3 describes
these algorithms in detail.

4.3. Performance Comparison

(1) Classification performance

Figure 6 shows the classification performance of SFG-TFC. From the training results,
SFG-TFC has high and stable classification performance. According to the comparison
results, SFG-TFC outperforms the nonfuzzy algorithms DBN and SVM in terms of classifica-
tion performance. Compared with the classic fuzzy algorithms TSK and QI-TSK, SFG-TFC
shows better classification performance. Therefore, SFG-TFC effectively utilizes the shared
features of the specific population, strengthens the guiding role of the shared features, and
takes into account the compensatory effects of extra features to ensure the classification
ability of the final model.
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Table 3. Algorithm descriptions.

Compared Algorithms
Main Descriptions of SFG-TFC

Algorithms Main Descriptions

DBN

(1) In a hierarchical structure with multiple hidden
layers, only nodes of adjacent layers are connected.

(2) The process of feature learning has better
feature expression.

(1) Fuzzy inference of shared features: The method
of information gain is used to extract the key
shared features from the subdatasets and
perform fuzzy inference on the key shared
features to obtain the rule output matrix of the
key shared features.

(2) Information reprojection of the shared features:
The rule output matrix of the key shared features
is reprojected to the rule output matrix of the
extra features of each base training unit to
strengthen the guiding role of the key shared
features in determining human thermal comfort
while considering the learning and coordination
of the extra features.

(3) Output weights: The output weight information
of all basic training units is integrated to
improve the generalization performance.

(4) Fuzzy rules: These rules have high usability
and interpretability.

SVM

(1) A generalized linear classifier that binarily
classifies data based on supervised learning. The
decision boundary of the classifier is the
largest-margin hyperplane for the
learning samples.

(2) A few support vectors determine the final result.

0-TSK (1) The output is a constant.
(2) Fuzzy rules are highly interpretable.

Q I-TSK

(1) The basic construction unit of QI-TSK-fc (td > 1) is
composed of an optimized zero-order TSK fuzzy
classifier. Each basic building unit is consistent
with the adjacent basic building unit.

(2) Fuzzy rules and features are highly interpretable.
(3) The algorithm does not need to be iterated.
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(2) Generalization performance

Figure 7 demonstrates that the generalization performance of SFG-TFC is stable. The
generalization ability of SFG-TFC is comparable to those of the nonfuzzy algorithms
DBN and SVM. Compared with the classic fuzzy algorithms 0-order TSK and QI-TSK,
SFG-TFC exhibits better generalization performance. This study demonstrates that this
advantage may stem from the integration of all output weights at multiple time nodes in
the final training process, which optimizes the final output weights; thereby, improving the
generalization performance of the model. Therefore, the method of integrating the output
weights of all basic training units improves the stability and generalization performance of
the SFG-TFC model.
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(3) Shared feature-guided optimization

Figure 8 compares the thermal comfort models with and without the guidance of the
shared features of the specific population and identifies the impact of the shared features
on the classification and generalization performance. The thermal comfort model without
the guidance of shared features is constructed as follows. The subdatasets obtained at the
M − 1 time nodes are trained using the basic training module to obtain the corresponding
rule output matrix and output weights. The output weights of the training module are
integrated to obtain the final output of the model. SFG-TFC has good classification accuracy.
Hence, it is feasible to use the shared features of a specific population as guidance.
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(4) Optimization of the output weights

To further verify the rationality of the output weight integration method proposed
in this study, we construct a thermal comfort model that does not integrate the output
weight information of the first M − 1 base training units into the M-th training unit and
compare it with the SFG-TFC to observe the impact of these two model construction
methods on classification and generalization performance. According to Figure 9, SFG-TFC
exhibits better classification and generalization performance than the thermal comfort
model without integrating the output weights. The experimental results demonstrate that
the output weight integration method proposed in this study makes the output weight
of each basic training unit supervise the decision-making process of the model, which is
stable and reasonable.
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4.4. Discussion

Advantages: The experimental results confirm the rationality of the proposed method
of constructing the personal thermal comfort model based on the SFG-TFC model for
a specific population guided by shared features and supplemented by extra features.
Strategies such as fuzzifying key shared features, reprojecting the information of key
shared features, and integrating the output weights are all effective, which improve the
learning efficiency and the classification and generalization performance of the fuzzy
classifier during the modelling process. In addition, the semantics of the outputs of the
intermediate layers of SFG-TFC training, the output of each fuzzy rule, and the output of
the final fuzzy classifier are all interpretable.

Disadvantages: In this study, the parameters of the thermal comfort model need to
be set manually. Therefore, there is no way to obtain the hyperparameter combination
of the parameters used. In addition, the datasets applied in this study is sourced from
experimental cabin sampling. Due to the long duration of each sampling, the real-time
status, cooperation level, and equipment accuracy of the subjects will affect the classification
performance. Finally, the thermal comfort model in this study is only applicable to small
sample datasets (i.e., the size of the training samples is usually small). If it is to be applied
to large sample datasets, its relevant parameters still need to be further adjusted.

4.5. Analysis of the Semantic Interpretability

The interpretability of the TSK-FC classifier is crucial to facilitating building environ-
mental design. This study introduces a form of rule representation that considers two types
of features. First, ck

i is normalized, and the corresponding coordinates are determined. In
this study, the number of coordinates of all cluster centers is set equal to the corresponding
number of fuzzy partitions. The interval range of a cluster center is defined by the average
of its preceding cluster center and its succeeding cluster center (Figure 10). Each interval is
assigned a corresponding semantic interpretation. For example, Data1 is selected as the
final training data, Fi (i = 1,2, . . . ,10) are the key shared features, and Fi (i = 11,12, . . . ,23)
are the extra features. Three rules are randomly selected from all fuzzy rules obtained by
SFG-TFC. Taking F1 and F23 as examples, F1 and F23 each have five center points (that
is 0.001, 0.490, 0.685, 0.735, 0.999 and 0.001, 0.632, 0.633, 0.830, 0.999), the corresponding
fuzzy partitions are divided into (0.000,0.240), (0.240,0.588), (0.588,0.710), (0.710,0.867),
(0.867,1.000) and (0.000,0.316), (0.316,0.633), (0.633,0.732), (0.732,0.915), (0.915,1.000), and
the corresponding semantics are interpreted as very low, low, medium, high, and extremely
high, respectively, which are identified by 1,2,3,4,5 respectively.
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Figure 11. Partial rule descriptions.

5. Conclusions

According to fuzzy modeling, this study constructed a shared feature-guided personal
thermal comfort model (SFG-TFC) with extra feature compensation for a specific population
to observe the impact of different building environments on personal thermal comfort. The
output of SFG-TFC is the comfort value of each subject, its classification and generalization
performance are compared with actual feelings. The output results of the model reflect the
participants’ true reactions to the indoor environment under climate conditions in April or
December. In contrast to previous research, this study classified the training features into
shared features and extra features according to the features of the data and built different
TSK fuzzy classifiers to be trained on the two types of features separately, which not only
strengthened the guiding role of the shared features but also considered the important
compensatory effect of the extra features, making the two types of features complementary
in physical semantics. In addition, the output weights were integrated to improve the
generalization performance of the model. Extensive experimental results verified the
superiority and semantic interpretability of the model proposed in this study Relevant
parameters (such as the number of rules in each basic training unit and the training depth)
must be set in advance to make the model suitable for actual application scenarios. In
future, we must also consider how to quantitatively characterize the association relationship
between shared features and extra features.
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