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Featured Application: In the subject research, cluster analysis was applied to vibration signals
from the aggregates of the laboratory drilling stand. This scientific research is important because,
until now, this method had not been applied to the signals accompanying aggregates, although
it was significant used in identifying and classifying objects. The presented scientific results
can be used to optimize the operation of individual aggregates, make them more efficient, and
help prevent possible emergency conditions related to the drilling equipment. Vector symptoms
of aggregates as objects were investigated and proposed, objects were identified, and clusters
were classified. The recognized clusters can be understood as referential for objects with the
same symptoms.

Abstract: Rotary drilling technology with diamond tools is still essential in progressively extracting
the earth’s resources. Since investigating the disintegration mechanism in actual conditions is very
difficult, the practice must start with laboratory research. Identifying and classifying the drilling
stand and its aggregates as objects will contribute to the clarification of certain problems related to
streamlining the process, optimizing the working regime, preventing emergencies, and reducing
energy and economic demands. For these purposes, the cluster method was designed and applied.
Applying the clustering method has a significant place in complex and dynamic processes. Eight
vibration signals were measured and processed during the operation of the aggregates, such as the
motor, pump, and hydrogenerator, with a sampling frequency of 18 kHz and a time interval of 30 s.
Subsequently, 16 symptoms were designed and numerically calculated in the time and frequency
domain, creating the symptom vector of the aggregate. The aim of the study and article was the
classification of aggregates as objects into recognizable clusters. The results show that the strong
symptoms include a measure of variability, variance in the signal, and kurtosis. The weak symptoms
are skewness and the moment of the signal spectrum. Visualization in the symptom plane and space
proved their influence on cluster formation. According to the cluster analysis results, six to seven
clusters presenting the activity of the aggregates were classified. It was found that the boundaries
between the clusters were not sharp. As part of the research, the centroids of clusters of aggregates
and the distances between them were calculated. Classified clusters can rebuild reference clusters for
objects with a similar character in a broader context.

Keywords: vibration signal; symptom vector; cluster analysis; cluster; drilling stand

1. Introduction

The identification and classification of the technological process assume that sufficient
information is available on its static and dynamic properties and there is information
on the current state of the process during its control—the structure and principle of the
control system corresponding to the quantity and quality of available data. Therefore, the
identification of the process precedes the design of the control system. This procedure
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includes obtaining its static and much of its dynamic properties. If enough information is
received by identifying the process and if it is sufficiently stable, it is possible to design a
control system without the need for the continuous measurement of the state of the process.
However, suppose the process is unstable or sensitive to external influences. In that case, it
is necessary to continuously update information about the process’s status and properties
during control and make management decisions based on them. In industrial practice,
a possible solution is cluster analysis, the result of which is the classification process or
object . For example, Sekula et al. [1], and Hood et al. [2] proposed a new approach for
disintegrating rocks without high tool wear or failure rates. From a scientific point of view,
rock separation by rotary drilling is a dynamic process with a strong stochastic component.
In terms of the measurability of state quantities, it is also complicated because the essence
of the rotary drilling process is the cutting and chipping of the material by the drilling tool.
Such elementary mechanical processes are challenging to measure in operating conditions,
and their mathematical modeling is more theoretical than practical. For these reasons, in
industrial practice, drilling and embossing rigs are used, the operating mode of which is
defined in advance by the stand manufacturer or is set by an expert based on the average
geomechanical properties of the rock massif. Rotary rock drilling can be understood as a
system whose inputs are the control variables, such as the revolutions of the drilling tool
n (rps), the pressure force F (N), and the amount of borehole flushing water Q (m3). The
outputs of the system are controlled variables, such as drilling speed v (mm/s−1), well
length l (mm), and specific disintegration energy w (J.m−3). In addition, the drilling system
can be affected by other state parameters, such as the properties of the drilling tool (e.g.,
the diameter of the drill bit or several channels) and the geomechanical properties (e.g.,
hardness, strength, abrasiveness, etc.) of the rock being disintegrated. The separation of
rocks by cutting tools simulated by the finite element method was investigated in [3,4].

In terms of the wear of the disintegrating tool, but also terms of drilling speed v, the
theoretical research on the disintegration of rocks by rotary drilling and subsequent experi-
ments on the drill stand showed that there is an optimal drilling mode in terms of specific
energy consumption w (J.m−3) [5–8]. Krepelka et al. [9] and Flegner et al. [10] presented the
results of processing the vibroacoustic signal from the process of uncoupling rocks. Time-
frequency methods process the measured signal. These authors described the dynamic
parameters of the drilling system. Moreover, these optimal mode criteria were met in at
least one (i.e., optimal) working mode (i.e., the optimal speed or pressure force). Following
the above, the system of optimal control of the rock disintegration process by rotary drilling
must be based on sufficient and reliable information about the current state of the process or
the geomechanical properties of the rock. These properties strongly determine the drilling
process itself. Therefore, the question is which specific information characterizes the state
of the disintegrating process and how it can be obtained. Qiu et al. [11] investigated the
vibration of a drilling rig under combined deterministic and random excitation. As part of
the research, the accompanying vibration signals were investigated as an integrating source
of information about the state of the rotary rock separation process and the drilling equip-
ment’s current state. By examining the measured accompanying signals, it was shown that
periodic mechanical vibrations and stochastic mechanical shocks occur at the indentor–rock
interface during the drilling process, corresponding to elementary mechanical processes
of cutting and chipping the material. These vibrations and shocks subsequently cause a
corresponding noise. The researchers in [12,13] performed an experimental study of the
drilling process on selected rocks to determine whether vibration signals can help classify
drill bit wear. Based on this theory, a scientific assumption was made that the mechanical
vibration signal and the accompanying signal contain information about the conditions
and the state of the rock disintegration process and the technical condition of the drilling
equipment, which could be used for identification and process classification. In [14,15],
monitoring and evaluation of sounds generated as unwanted by-products at the bit–rock
dividing line were proposed to predict the type of rock being drilled.
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The idea of using vibrations makes it possible to apply the analysis of vibration
signals in the field of technical diagnostics or condition monitoring. In addition to the
measurement result, the goal is to provide an evaluation and, in the narrower case, a
diagnosis of the object’s state (see Figure 1). Further research showed that near the optimal
drilling operating mode, the accompanying measured signal has typical identifiable and
classifiable characteristics. A recent study [16] proposed a technique to improve the feature
extraction capability before using the PCA method for feature selection.

Figure 1. General scheme of recognition in technical diagnostics.

The authors of the manuscript deal with the scientific topic of effective control of the
drilling process based on the classification of vibration signals from the aggregates of the
drilling stand. Flegner et al. [17] investigated vibrations and their effect on the aggregates
of a horizontal drilling stand. Vibration signals from the working modes of drilling and
individual aggregates were continuously measured. Subsequently, a symptom vector was
extracted for each vibration signal. On this basis, clusters characterizing the operation of
the drill stand unit and the regime of the rock being disintegrated were recognized and
classified using the cluster method. Sharif et al. [18], Piltan and Kim [19] applied a machine
learning approach to classify technical components in the manufacturing equipment. A
cluster expertly obtained offline for the aggregate of the drilling stand was shown to
represent an effective mode of operation. The proposed approach to solving the task of
classifying the condition of the equipment and controlling the drilling process allows for
artificial intelligence methods to be used, such as clustered analysis. Its application to
mining operations is justified by the complexity and stochasticity of the drilling equipment
and the drilling process (see Figure 2).

Figure 2. A simple model for the classification of drilling stand aggregates.

In various research works [20,21], the authors described the classification system of
drilling stand aggregates in more detail. Then, using a mathematical formalism, they
explained the principle of a classifier based on cluster analysis. They implemented selected
artificial intelligence methods. The results indicate a strong potential for solving scientific
and technical tasks. The preliminary results of the scientific research were presented based
on an investigation of the dependencies between the properties of the accompanying signals
and clusters created by the activity of the aggregates . Zhang et al. [22] applied cluster
analysis in seismic contexts, where it can help improve the prediction accuracy of machine
learning methods for earthquakes in mines.

This paper presents essential new knowledge from the original research on the classifi-
cation of vibration signals from the drilling stand aggregates’ operation. The goal was to
create a complex vector of symptoms that differentiates based on the clusters, the current
state and activity of the aggregates, and the drilling mode.
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2. Experiment Methodology

The horizontal laboratory drill stand and rock disintegration mechanism can be char-
acterized as a complex device and process. Significant scientific knowledge is based on
experimental measurements and empirical hypotheses. This knowledge can be summarized
in this area in the following aspects:

• With the increasing length of the well in the initial phase of drilling with a specific
type of tool, it may sharpen, which results in an initial increase in the drilling speed in
(m/s−1) and a decrease in the volume density of the disintegration energy;

• In general, as the length l (mm) of the borehole increases, the drilling speed gradually
decreases;

• In general, with increasing borehole length up to a certain limit length, the volume
density of the disintegrating energy is approximately constant;

• It is not realistic to determine the optimal parameters of the drilling mode for a given
rock at once because the geometry of the tool changes due to its wear, and the physical-
mechanical properties of the rocks also change. The geostatic and hydrostatic pressure
acting on the disintegration process varies with the drilling depth;

• The optimal drilling mode can be determined directly in the drilling process based
on information about the rock being drilled, based on sensing the characteristics
of the disintegration process and evaluating the corresponding parameters of the
drilling mode;

• The drilling process control aims to maintain such process parameters when the
volume density of the decoupling energy acquires minimum values. In this area,
the tool has the most extended service life, and high drilling speed is achieved with
low-speed sensitivity to the state of tool wear.

From the point of view of the economic operation of drilling rigs, the following are
most often used as optimality criteria:

• Maximum tool life criterion;
• Maximum drilling speed criterion;
• Total minimum cost criterion.

To ensure that these criteria are met, it is necessary to have reliable drilling equipment
and processes. Since the drilling conditions change dynamically and the probability of their
repetition is low, the appropriate solution is the application of unique artificial intelligence
methods. The obtained current information on aggregate and drilling parameters could be
processed for recognition and identification purposes . A proposal of multidimensional
statistical methods integrating the vector machine algorithm to improve the monitoring of
multidimensional processes can be found in [23,24].

The scientific findings published in the authors’ article [25] confirm that the proposed
and applied artificial intelligence method is a possible solution to recognize and identify
the state of the drilling stand and its aggregates, the critical technological parameters of
the drilling process, and the optimal operational parameters in more detail. The authors
performed experimental measurements of the rock disintegrating process, where the rock–
bit interaction was modeled using oscillations.

The objective of the experimental measurements was to obtain an accompanying
vibration signal during the operation of individual aggregates. By processing the measured
signal, it was assumed that information would be obtained about their technical condition.
In addition, the research condition of using the signal as a carrier of information was
expanding the existing drilling stand with measuring systems. Their task was to digitally
measure, display, and archive the process data . For example, a weighted support vector
machines (WSVM) method was proposed for automated process monitoring and early
fault diagnosis in [26,27].

The drilling stand consists of a support stand driven by a synchronous motor. The
number of spindle revolutions and the pressure of the drilling tool on the rock can be
controlled by software through the Twido control system. The drill stand tries to keep
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them at a set constant level. The control system allows one to set and measure the depth
of the well as a function of time and torque Mk (Nm). Drilling speed or the depth of the
well is measured indirectly using a magnetostrictive position sensor. The sensor has an
encapsulated part containing a transducer and a 50 cm long metal rod. The ring moves
freely along the rod. The position of the ring on the rod is evaluated by the transducer and
converted into a time delay between two output pulses. The position sensor is fixed on
the fixed structure of the stand, and the ring is connected to the moving head, in which
the drilling tool is fixed. Thus, simultaneously with the moving drilling tool, the ring also
moves along the sensor rod.

The drilling stand currently consists of a controlled drill drive, sensors for measuring
process variables (ADASH 3900-II), and a Twido control system.

This measurement and control system solution was designed to use the stand’s existing
sensors and control elements.

After completing the above-mentioned measuring and control elements, the drilling
stand enables experiments to be carried out objectively. The authors of [28] describe the
measurement and control system in more detail (see Figure 3).

The measured accompanying signal is a response to the operation of the drilling stand.
It can be characterized (i.e., with some simplification) as the result of the superposition of a
periodic signal derived from the activity of the stand and a periodic signal with a strong
stochastic component. It is formed during the operation of individual aggregates and at the
interface between the drilling tool and the rock . Research papers [29,30] present the use of
vibration and acoustic signals for determining the geomechanical properties of rocks.

This research aimed to find a suitable method that would indirectly determine the
state of the aggregates and the process of uncoupling the rock concerning its optimal mode.
Kumar et al. [31], and Salimi and Esmaeili [32] proposed an optimal working mode of the
drilling process based on the vibration signal. Such a method is the cluster analysis of the
vibration signal [33,34].

In the cluster analysis of signals in the time domain, it is assumed that the sought-after
information is hidden in one of the time characteristics of the signal, such as the signal
period, arithmetic mean, dispersion, power, energy, or probability density distribution.
Here, a distinction is made whether it is a deterministic signal or a signal with a random
component. This was the first partial research task regarding the possibility of process
recognition and identification.

Simultaneously analyzing the vibration signal in the time domain, its frequency
analysis was also performed. As mentioned, signal processing in the frequency domain
is based on the idea that any signal can be replaced by a group of simple harmonic
signals, each with a different amplitude, frequency, and initial phase. Similarly, the related
idea about the origin of the accompanying vibration signal is authentic. Therefore, it is
possible to expect two groups of components carrying information about the current state
of aggregates during operation. The first group is the harmonic components derived from
operating one of the stand’s aggregates. The second group is the components caused
by working two or three stand aggregates simultaneously. Changes in the frequency
spectrum of the signal were investigated and calculated . The authors in [35,36] processed
the measured signal in the frequency domain and estimated the dominant frequencies of
the process.

In the following research stage, the scientific work focused on calculating the symptom
vector from the vibration signal and searching for hidden information about the actual
state of the equipment and the drilling process. Guo et al. [37] applied Fourier and wavelet
transform analysis methods for vibration signals to extract the dominant frequencies in
different layers of the rock mass.
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Figure 3. Laboratory horizontal drilling stand: (a) 1—feed mechanism; 2—sheet metal cover of
the working tool; 3—stand; (b) 4—slide; 5—control system for the drive spindle; 6—double acting
hydraulic cylinder; (c) 7—core barrel; 8—drilling bit; 9—centering sled clamping mechanism.

3. Theoretical Background

Before the clustering process, it is necessary to determine all of the significant charac-
teristics of the objects. Based on these data, it is then possible to start grouping the objects.
The objects of the drilling stand equipment are its aggregates during operation. Therefore,
it is possible to describe them using the form O ={o1, . . . , on} for n = 8. The investigated
aggregates are the motor, pump, hydrogenerator, and their mutual combination during
operation: a total of eight objects. The measured vibration signals define individual objects.

This accompanying vibration signal is the basis for calculating the vector of symptoms
of the drilling process and the operation of the aggregates.

Given the empirical knowledge in this area, it can be concluded that the vibrational
signal is deterministic with a strong random component . In the research papers [38,39], the
vibration signal was processed and presented using digital methods for technical diagnostics.
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From a practical point of view, a single realization (i.e., sequence) of the length of the
n samples is sufficient for its processing. It is possible to obtain a sufficiently strong infor-
mational value by processing it. This realization of the vibration signal can be described as
a sequence of measured samples {xi}n

i=1. The authors in [40,41] designed a special acoustic
sensor device for the qualitative research and monitoring of technological equipment.

Realizations of signals with a length of n = 16,384 samples were processed to create a
vector of symptoms for scientific purposes. The effort was to design and investigate the
numerical signs of the drilling stand, which would sufficiently sensitively differentiate
the generated vibration signals by creating clusters from the point of view of the working
mode. The authors in [42,43] present useful methods of processing vibration signals for
the detection and diagnosis of mechanical systems. These symptoms can be calculated
from one realization or a sequence of several consecutively measured realizations of the
vibration signal. Extraction of the j-th numerical symptom sj ∈ R from the measured
realization of the signal for which samples xi ∈ X for i = 1, 2, . . . , n, is understood as the
n-dimensional complex vector function:

sj = f j(x1, x2, . . . , xn), (1)

where {xi}n
i=1 is the signal realization organized into a vector structure x = (x1, x2, . . . , xn).

It is necessary to design and numerically calculate several symptoms to describe the state of
individual aggregates. Subsequently, m numerical signs sj where j = 1, 2, . . . , m represents
the m-component sign vector s = (s1, s2, . . . , sm), which presents the state of the process or
its parts. Equation (1) describes the extraction of symptoms from the vibration signal.

When applying mathematical abstraction, it is possible to imagine that the investigated
process is located in an m-dimensional linear vector space Vm(R). It is assumed that sj ∈ R
for each j = 1, 2, . . . , m. It is an infinite and continuous m-dimensional vector space for
which Vm(R) = Rm.

In industrial conditions, where the vibration signal is measured and digitized by an
AD converter with limited resolution, the designed vector space of symptoms is finite.
Therefore, numerically calculated symptoms are components of a symptom vector and take
values from finite sets of values.

In general, the symptoms themselves have different physical dimensions and different
ranges of values. One symptom can acquire huge values, and the other can be very
small. Standardizing the values of the characteristic vector using statistics is necessary
to avoid distortion of results due to different scales of measurement parameters during
cluster analysis of multivariate data. Equation (2) can be used to standardize the values of
the characteristic:

snorm
jk =

sjk −min
{

sjk

}N

k=1

max
{

sjk

}N

k=1
−min

{
sjk

}N

k=1

, (2)

where sjk is the unstandardized j-th symptom, calculated from the k-th signal realization;
N is the number of evaluated signal realizations; s norm

jk is the normalized j-th symptom,
calculated from the k-th realization of the signal.

It was necessary to choose a suitable metric ρ
(
sx, sy

)
for the feature space Vm(R),

which determines the distance between a pair of feature vectors sx, sy ∈ Vm(R) to be able
to accurately distinguish the individual states of the process and aggregates based on the
values of the vector of symptoms. In this research, the classic Euclidean metric was used,
for which (3) applies [44]:

ρe
(
sx, sy

)
=

√√√√ m

∑
j=1

(
sxj − syj

)2. (3)
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This obtained the metric feature space (Vm(R), ρe) of the object drilling stand and
drilling process. In a broader context, it can be understood as a symptom space of the rock
separation process by rotary drilling.

A vibration signal was used as the basic information signal from which the proposed
numerical indicators of the condition of the drilling stand were extracted.

The essential partial task of experimental research was to design the symptom vector
of the process under investigation. Laboratory experiments and measurements aimed to
process the vibration signal of 16 symptoms as a probable symptom vector. An analysis of
the numerical values of the symptoms depending on the drilling mode and aggregates of
the horizontal experimental drilling stand was carried out. In addition, it was necessary to
analyze the differentiability of vector signs concerning aggregate modes using metrics.

The proposed symptoms were numerically calculated from one realization {xi}n
i=1

of the realization length n = 16,384 samples. The signal samples were measured with
a sampling frequency of fs = 18,000 Hz. The calculation was repeated for N = 30
consecutive realizations of the signal. Subsequently, the symptom values calculated this
way were normalized according to Equation (2). This procedure was used to analyze and
compare accompanying vibration signals from the operation of individual aggregates and
the drilling process. In the following text of the article, the calculation relations for the
proposed symptoms are given. They were designed and calculated according to the area
in which they were applied. In the time domain, vibration signal values generally change
over time. As a result of the need to create a symptom vector, statistical characteristics were
used as the basis.

The first proposed feature s1 ≡ x̄(t) was the average value of the vibration signal
x̄(t). It is the value of the amplitude in the waveform of the signal calculated according to
relation (4):

s1 ≡ x̄(t) =
1
n

n

∑
i=1

xi(t). (4)

The average value x̄(t) is a symptom of the position around which the other values
are more or less concentrated. The disadvantage is the high sensitivity to extreme values
and the possible fictitious nature of the calculated value. The second significant feature of
s2 ≡ σ2

x is the variance. It expresses the degree of variability, which provides information
on how the individual observed values in the analyzed signal are scattered or describes
the variability of measured values. The dispersion symptom is the average value of the
squares of the deviations of the measured values of the monitored symptom from their
average value. The relation (5) applies to the dispersion:

s2 ≡ σ2
x =

1
n

n

∑
i=1

(xi(t)− x̄(t))
2

. (5)

The skewness symptom s3 ≡ γ1 expresses the size of the asymmetry of the measured
signal (6).

s3 ≡ γ1 =

1
n

n
∑

i=1
(xi(t)− x̄(t))3

σ3 . (6)

The kurtosis symptom s4 ≡ γ2 (7) informs whether the values of the investigated
signal symptom are flatter or sharper than the values of the Gaussian curve.

s4 ≡ γ2 =

1
n

n
∑

i=1
(xi(t)− x̄(t))4

σ4 − 3. (7)

Other selected characteristics were specific to the vibration signal in the time domain.
The following features were proposed: the peak is the maximum distance of the wave’s top
from the reference value, which is usually the x-axis (8).
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s5 ≡ max(xi(t)). (8)

The peak-to-peak symptom s6 ≡ xp2p(t), which represents the difference between the
maximum and minimum value. The value is the maximum distance of opposite signal
peaks (9):

s6 ≡ xp2p(t) = |max(xi(t))−min(xi(t))|. (9)

The symptom effective value s7 ≡ xrms (i.e., root mean square level (rms)) , where rms
is an objective value used in diagnostic regulations, determined according to relation (10):

s7 ≡ xrms =

√
1
n

n

∑
i=1

x2
i (t). (10)

The symptom s8 ≡ Es is the energy of the signal. The energy of the accompanying
vibration signal is given by the sum of the squares of the signal samples {xi}n

i=1 (11):

s8 ≡ Es =
n

∑
i=1

x2
i (t). (11)

The significant symptom s9 ≡ L2x is the norm of the measured signal L2 from the time
waveform of the signal; thus, Equation (12) applies:

s9 ≡ L2x = ‖x‖ =
(

n

∑
i=1

x2
i (t)

) 1
2

= (x, x)
1
2 . (12)

The design of the ninth symptom s9 ≡ L2x was based on the idea of a vector whose
components are the individual sample’s realization of the signal {xi}n

i=1. The Lp norm of
the vector x was defined for the feature vector (13):

Lp(x) =

(
n

∑
i=1
|xi|p

) 1
p

= (x, x, . . . , x)1/p,︸ ︷︷ ︸
p - krát

p ∈ (0, ∞〉. (13)

Specifically, the L2 norm of the vector x (p = 2).
The symptom s10 ≡ Ps represents the signal power; thus, Equation (14) applies:

s10 ≡ Ps =
1
n

n

∑
i=1

x2
i (t). (14)

The entropy of the signal is the symptom s11 ≡ Hs (15):

s11 ≡ Hs = −
n

∑
i=1

p(xi)log2 p(xi), (bit). (15)

An essential statistical characteristic in time analysis is the autocorrelation function
Rxx(τ) of the measured vibration signal xi(t). The autocorrelation function Rxx(τ) repre-
sents a generalization of the mean square value. It is defined by Equation (16):

Rxx(τ) =
1
n

n

∑
i=1

xi(t)xi(t + τ). (16)

It presents periodic parts of the vibration signal xi(t), and nonperiodic ones disappear
quickly. It provides information about the dependence of the values of the function xi(t) at
time t on the values at time t + τ. For the design of the vector symptom s12 ≡ L2xRxx, the
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norm of the autocorrelation function Rxx(τ) of the vibrational signal was calculated. It was
determined based on Equation (17):

s12 ≡ L2xRxx =

√
|Rxx(τ)|2. (17)

Amplitude and power spectra were calculated in the frequency domain. Their complex
values are significant for the design of the feature vector in the frequency domain. Fourier
transformation X(iω) was used to calculate the amplitude spectrum of the vibration signal
of the drilling stand. It is defined by the integral Equation (18):

X(iω) =

∞∫
−∞

x(t)e−i2π f tdt. (18)

Since the signal generated by some aggregates of the drilling equipment is processed
directly, a numerical method known as discrete Fourier transformation (DFT) was used.
For the calculation (DFT) and to obtain the resulting amplitude spectrum, it was advisable
to use the fast Fourier transform (FFT) algorithm. The DFT is defined by relation (19):

X(k) =
N−1

∑
n=0

x(n)e−j2πk n
N , n = 0, . . . , N − 1; k = 0, . . . , N − 1. (19)

The discrete value X(k) represents the amplitude. The values x(n) and X(k) have
the same physical dimension. Subsequently, the moment of the vibration signal in the
frequency domain was calculated from the amplitude spectra. The moment of signal
spectra s13 ≡ mxFFT as a vector symptom is a numerical characteristic that is calculated
from the amplitude spectrum vibration signal. The moment symptom mxFFT represents
the center of gravity of the spectrum or the virtual center of the spectrum. When designing
the signs for the drilling process, the moment is an essential numerical characteristic. The
moment s13 ≡ mxFFT of the signal represents the sum of products of all possible values of
the spectrum with the frequencies of these spectra (20).

s13 ≡ mxFFT =
∑N

i=0 fi|X(i f )|
∑N

i=0 fi
is valid for

fi = i∆ f ,

∆ f =
fs

N
.

(20)

Since the result of the FFT is a vector of complex values, a suitable symptom is also
the norm of the amplitude spectrum of the signal s14 ≡ L2xFFT and Equation (21) applies:

s14 ≡ L2xFFT =

√√√√n−1

∑
k=0
|X(iωk)|2. (21)

In industrial practice, power spectra are also calculated in addition to amplitude spec-
tra. In complex industrial processes, to which the drilling process and equipment belong,
power spectra have a stronger telling value about the complex state of the technological
process. The Equation (22) was used to calculate the power spectrum:

Sxx(ω) =
1

2πN

∣∣∣∣∣ N

∑
n=1

x(n)e−j2π f n

∣∣∣∣∣
2

, (22)

where 1 ≤ n ≤ N is valid for a signal in the discrete form x(n) = x(n∆t) with a finite
number of samples N. On this basis, the moment of the power spectrum was calculated
s15 ≡ mxFFT2 (23):
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s15 ≡ mxSxx =
∑N

i=0 fi|Sxx(ω)|
∑N

i=0 fi
is valid for

fi = i∆ f ,

∆ f =
fs

N
.

(23)

Subsequently, the norm of the power spectrum was calculated as s16 ≡ L2xSxx, as the
last proposed symptom (24).

s16 ≡ L2xSxx=

√
n

∑
i=1
|Sxx(ω)|2. (24)

After determining the symptoms of the aggregates, it is necessary to create clusters
of C objects. Clusters form a set of objects. The set of clusters for the investigated drilling
stand can be written as C = {C1, . . . , Cn}, i.e., for n = 8. In addition, each cluster contains
at least one object.

A typical symbolic representative was determined for the clusters created by the
symptoms of the aggregates, which is the center of the symptom cluster. It was considered
that if the objects represent points in the Rm space, then it is possible to consider the center
of gravity (centroids) of the objects in the feature cluster.

Then, for a more effective assessment of the differentiability of the vibration signal
from the drill stand aggregates using a defined symptom vector, centroids (centroids) were
calculated (25). Centroids were calculated for each cluster of aggregates and symptoms.
They represent an essential center of a cluster of symptoms because they can have the
character of an object.

tC =
1
N

N

∑
C=1

sij, (25)

where sij are the numerical symptoms for each i, j = 1, 2, . . . , n, m and N is the number of
symptoms in the set.

4. Results and Discussion

The main task of the experimental research was the design of the characteristic vector s
and the determination of clusters during the operation of the drilling equipment aggregates
from the vibration signal. First, the experiments were performed on 16 specific symptoms
as possible elements of the symptom vector. Then, an analysis was conducted of the values
of these symptoms depending on the activity of the aggregates on the horizontal drilling
stand. In addition, it was necessary to analyze the differentiability of individual symptoms
using the Euclidean metric.

The symptoms were always numerically calculated from one realization {xi}n
i=1 of

the signal with the length of the realization of samples and measured with a sampling
frequency fs = 18 kHz.

All proposed symptoms were calculated from N = 30 realizations of the vibration
signal from the operation of aggregates and normalized according to the Equation (2). It was
necessary to look for significantly different symptoms that fundamentally differentiate the
operation of aggregates, engine, pump, hydrogenerator, or their combined operation. Another
point of view is the effort to exclude common symptoms, unimportant or redundant. The
following variables were proposed as state indicators of the aggregates based on laboratory
experiments: s1—mean value (i.e., measure of variability); s2—variance of the signal time
waveform; s3—skewness; s4—kurtosis; s5—peak (i.e., maximum value); s6—peak2peak;
s7—rms of the signal; s8—L2x norm of signal time waveform; s9—signal energy; s10—signal
power; s11—signal entropy; s12—L2xRxx autocorrelation norm; s13—mxFFT moment of the
signal spectrum; s14—L2xFFT norm of the signal spectrum; s15—mx Sxx moment of the
power spectrum of the signal; s16—L2x Sxx norm of the power spectrum of the signal.

Due to the large number of results obtained by signal processing, only significant
results are presented in this paper.
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Figure 4 shows individual symptoms s1, s2, s4, s5 of the vibration signal of all aggre-
gates. It is possible to assess the good differentiability of the signals from the display of
the symptom waveforms. The biggest recognizable differences are the mean value for the
symptom s1 (see Figure 4a). Waveforms of symptoms show strong fluctuations. The highest
symptom values s1 have the pump and the hydro generator. On the contrary, the lowest
values are during the motor and pump, motor, and hydrogenerator operation. Symptoms
s2 and s5 partially have the same waveform (see Figure 4b,c). A greater difference is in the
s4-skewness symptom, which divides the waveforms into two groups. The first group is
the aggregates pump, hydrogenerator, and their joint operation. The second group consists
of the activity of the other aggregates, while the motor aggregate has the largest values (see
Figure 4d). All symptoms were calculated with statistical characteristics.

Figure 4. Waveforms of values of selected symptoms of all aggregates s1, s2, s4, s5: (a) symptom
s1—mean values; (b) symptom s2—dispersion values; (c) symptom s4—kurtosis values; (d) symptom
s5—maximum values.

Figure 5 shows the waveform of symptoms s7, s11, s12, and s16. A more detailed
description is required (see Figure 5a) with the waveforms of the symptom s7—rms. It is
clear that the symptom s7 strongly divides the aggregates into two groups again. Similarly
to s4, s2, and s5, the first group consists of a pump, hydrogenerator, and their combination.
Their s7 symptom values are lower than those of the other aggregates. From this point
of view, it can be assumed that the symptom s7 is significant for the recognition and
classification of vibration signals. Symptoms s11, s12, and s16 are strongly fluctuating in
values. The pump has the highest symptom value s11—entropy. However, the values
fluctuate strongly. It is different for the hydrogenerator, which has high but relatively
constant values of the symptom s11 (see Figure 5b). At s12 and s16, the aggregate-separated
motor has the highest values, and a pump and hydrogenerator have the lowest (see
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Figure 5c,d). Symptoms s7, s11, and s12 belong to the specific characteristics of the vibration
signal, and symptom s16 is calculated from the frequency characteristic.

The presented different waveforms of symptoms provide a good basis for creating
clusters, which aim to recognize and classify vibration signals from the operation of the
drilling stand aggregates.

Figure 5. Waveforms of values of selected symptoms of all aggregates s7, s11, s12, s16: (a) symptom
s7—rms value; (b) symptom s11—entropy values; (c) symptom s12—norm autocorrelation values;
(d) symptom s16—norm spectrum power values.

Among the less suitable symptoms based on their waveforms, it is possible to choose
s3, i.e., skewness and s13, i.e., the moment of the signal spectrum (see Figure 6). The values
of the symptom s3, i.e., the skewness, oscillate vigorously. Assessing the maximum and
minimum values is complicated, and the differences between individual aggregates are
negligible (see Figure 6a). At the symptom s13, i.e., the moment of the signal spectrum,
two groups of objects are visible (see Figure 6b). The first group consists of a pump, a
hydrogenerator, and their joint operation. However, the waveforms overlap so strongly
that it is impossible to assess their difference. The second group of objects consists of other
aggregates. It is possible to distinguish them partially but not significantly.

The important results and indicators are the presentation of the waveform of the
symptom values for one aggregate of the drilling stand. Therefore, their plot is essential
from the point of view of efficiency of the classification and differentiability of the sought
symptoms (see Figures 7–14).
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Figure 6. Waveforms of values of selected symptoms of all aggregates s3, s13: (a) symptom s3—
skewness values; (b) symptom s13—moment spectrum values.

Figure 7. Motor as the aggregate: (a) symptom values s1–s8; (b) symptom values s9–s16.

Plotting all motor symptoms in Figure 7 gives a partial idea of the possibility of
clustering for a single aggregate. For example, from Figure 7b, it can be concluded that s11
has the lowest values, other symptoms for the motor are not fully pronounced, and their
values are relatively high, such as s7 and s8 (see Figure 7a).

Figure 8. Pump as the aggregate: (a) symptom values s1–s8; (b) symptom values s9–s16.

Figure 8 shows all the symptoms for the pump. From Figure 8a, it can be concluded
that the symptoms have relatively low values except for s1 and s3. A similar situation is
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seen in Figure 8b where s11, s12, and s15 have higher values. The other symptoms for the
pump are not significant.

Figure 9. Hydrogenerator as aggregate: (a) symptom values s1–s8; (b) symptom values s9–s16.

Figure 9a,b show all the symptoms for the hydrogenerator. A similar symptom analysis
applies to the hydrogenerator as to the pump.

Figure 10. Motor and pump as aggregates: (a) symptom values s1–s8; (b) symptom values s9–s16.

From Figure 10a,b of the operation of the motor and pump, it is possible to draw the
partial conclusion that the symptoms are well differentiated and have a constant waveform.
The exceptions are s1 and s3.

From Figure 11a,b, which show the operation of the motor and hydrogenerator, it is
possible to derive a similar partial result as that for the motor and pump operation. The
motor and its vibration signal represent an aggregate that, by its operation, fundamentally
affects the vibration signals and symptoms of the other units, such as the pump and
hydrogenerator.

The presentation of symptoms for the operation of the pump and the hydrogenerator
are similar to those for the pump and the hydrogenerator in their separate operation. Most
symptoms have low values, and there are few differences (Figure 12a,b).
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Figure 11. Motor and hydrogenerator as aggregates: (a) symptom values s1–s8; (b) symptom values
s9–s16.

Figure 12. Pump and hydrogenerator as aggregates: (a) symptom values s1–s8; (b) symptom values
s9–s16.

From Figure 13a,b, it can be concluded that individual symptom differences are good
if all aggregates are active. A strong fluctuation is only observed for s3.

Figure 13. All stand aggregates without drill bit: (a) symptom values s1–s8; (b) symptom values
s9–s16.
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Figure 14. All stand aggregates with drill bit: (a) symptom values s1–s8; (b) symptom values s9–s16.

From Figure 14a,b, it is possible to see that the difference in symptoms is very good
in the operation of all aggregates if the drill bit is installed. There is a strong fluctuation
at s3 and partly at s1. Overall, it is possible to draw a partial conclusion that the designed
symptoms and the created symptom vectors are suitable criteria for classifying the objects
of the drill stand. It was assumed that it will be possible to create clusters based on the
analysis, description, and visualization.

Figure 15 shows the positions of the symptom vectors of the objects in the two-
dimensional symptom plane that form individual clusters. Clusters of objects form calcu-
lated symptoms from N = 30 realizations of the vibration signal of all aggregates. Individual
aggregates as objects (i.e., O ≡ C) of the drilling stand have their own defined part of
the symptom space. However, the border between them is not sharp, and there is mutual
overlap and the emergence of penetrations between clusters. When viewed in a two-
dimensional symptom plane with symptoms s1 and s2, five clusters can be formed (see
Figure 15a). Relatively good differentiability of clusters is possible for aggregates such as
the motor (C1), the motor and hydrogenerator (C5), the drilling stand without a drill bit
(C7), and the drilling stand with a drill bit (C8). The cluster (Cx) represents a group of pump
aggregates, the hydrogenerator, and their joint activity. Creating their separate clusters is
not quite possible. Creating a cluster for the motor and pump unit together as an object is
impossible because its symptoms are extensive. Symptom values were found in multiple
clusters. Figure 15b shows the symptoms s1 and s4 in the symptom plane. The significance
of the partial results is that it is possible to create clusters from the objects of the pump
(C2), hydrogenerator (C3), and their joint activity (C6). Partial recognizability of objects
through the clusters was noted for the motor and hydrogenerator (C5), the drill stand
without a drill bit (C7), and the drill stand with a drill bit (C8). The motor and the motor
and pump together were hard to recognize. Similar results were obtained for symptoms s1
and s5 shown in the plane in Figure 15c and for symptoms s2, s4 (see Figure 15d). Common
features represent the possibility of creating a cluster (Cx) and further clusters (C1, C5,
C7,C8) . Another feature is a different distribution in the symptom plane.
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Figure 15. Cluster graphs of all objects in two-dimensional symptom space with symptoms s1, s2, s4,
s5: (a) graph of symptoms s1 and s2 in the plane; (b) graph of symptoms symptoms s1 and s4 in the
plane; (c) graph of symptoms s1 and s5 in the plane; (d) graph of symptoms s2 and s4 in the plane.

A similar cluster analysis was performed and is presented in Figure 16 for symptoms s7,
s11, s12, and s16. In Figure 16a, four clusters are formed, of which well-recognizable objects
are marked as (C2, C3, C6). The combination of the representation from the symptoms s7
and s11 does not allow the creation of separate clusters for the other aggregates, so they
were labeled as Cy because they contain other objects than Cx. In the next combination of
symptoms, s7 and s12, the clusters from the previous partial results were confirmed (see
Figure 16b). The best results were obtained with the s11 and s12. It was possible to recognize
seven clusters of objects in Figure 16c based on the symptoms. The unrecognizable object
is just the motor and the pump working together. This combination of symptoms and
determination of clusters of objects represents a significant achievement in identifying and
classifying the drill stand and its aggregates. The opposite case is shown in Figure 16d
with symptoms s12 and s16. It can be seen that only four clusters could be formed. The
significance is that these were clusters (i.e., C2, C3, and C6) for aggregates considered
as objects (i.e., O ≡ C) that are weakly or hardly recognizable in other symptoms. All
other objects form another cluster (Cz). It is also important that the results of displaying
the clusters in the plane represent a variant in which the symptoms are from different
areas of signal processing. While the symptom s12 norm of autocorrelation of the signal
is calculated in the time domain, the symptom s16 is in the frequency domain. The fact
that the autocorrelation function of the signal and its power spectrum are equivalent and
mutually transformable characteristics of the process also plays a role here. However, their
numerical form in the structure of the symptom vector from which they are calculated
is different.
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Figure 16. Cluster graphs of all objects in the two-dimensional symptom space with symptoms s7,
s11, s12, s16: (a) graph of symptoms s7 and s11 in the plane; (b) graph of symptoms s7 and s12 in the
plane; (c) graph of symptoms s11 and s12 in the plane; (d) graph of symptoms s12 and s16 in the plane.

The selected and displayed symptoms of objects and the created clusters in a two-
dimensional plane are significant partial results from the presented research. They provide
valuable information about suitable symptoms for forming clusters and classifying the drill
stand’s objects.

In the following section of the paper, Figure 17 shows the clusters of symptom vec-
tors of the drill stand aggregates in the three-dimensional symptom space. For such a
display, three symptoms were used, making it possible to assume the differentiability of
the aggregates. From the many research results, only the representative ones were selected.
This three-dimensional representation comprised the following symptoms , i.e., s1—mean
values; s2—dispersion values; s9—energy values (see Figure 17a). There was sufficient
diversity of the uniform clusters of aggregates created (i.e., C1, C2, C5, C6, C7, and C8). A
cluster could not be created for the hydrogenerator, motor, and pump objects. This makes
their classification more difficult. For Figure 17b, where the symptoms (i.e., s9—energy
values; s11—entropy values; and s12-norm autocorrelation values) were displayed, it was
possible to, at least partially, display the cluster (i.e., C4—for the motor and pump together)
despite being located between the two defined C5 and C8. Similar results are provided in
Figure 17c,d.

Partial results are also presented in Figure 18a–d. Identified clusters of aggregates can
be seen, which means that the differentiability is sufficient. It was stated that six clusters of
drill stand aggregates were defined. However, the boundaries between clusters are strongly
blurred. Nevertheless, the resulting clusters indicate that the calculated symptoms from
the vibration signal measurement are suitable for classification.
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Figure 17. Clusters of symptom vectors of the drill stand aggregates in a three-dimensional symptom
space: (a) graph of symptoms: mean, dispersion, and energy values in space; (b) graph of symptoms:
energy, entropy, and norm autocorrelation values in space; (c) graph of symptoms: entropy, power
and norm power spectrum values in space; (d) graph of symptoms: power, norm autocorrelation and
norm power spectrum values in space.

Figure 18. The location of clusters of symptom vectors of the drill stands aggregates in three-
dimensional symptom space: (a) graph of symptoms: maximum, mean, and entropy values in space;
(b) graph of symptoms: maximum, mean, and kurtosis in space; (c) graph of symptoms: energy,
entropy, and moment power spectrum values in space; (d) graph of symptoms: kurtosis, energy, and
norm power spectrum values in space.
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Suppose one compares symptom display and cluster formation in the vector plane
and space; in that case, it can be concluded that visualization in space gives a more effective
and detailed view of the position (i.e., location in space), character (i.e., a span in space),
and mutual overlap.

Another option for assessing the differentiability of aggregates when using a de-
fined symptom vector is based on the cluster’s calculated center of gravity (i.e., centroid).
Figure 19 shows the centroids of individual clusters, representing an essential representa-
tive center in the cluster. Centroids are displayed in three-dimensional symptom space.
The distribution of centroids in three-dimensional space confirms the formation of clusters
in their vicinity.

Figure 19. Centroids of the symptoms of the aggregates as objects in a three-dimensional symptom
vector: (a) symptom centroids: mean, dispersion, and kurtosis values; (b) symptom centroids:
maximum, peak2peak, and energy values; (c) symptom centroids: norm, power, and rms values;
(d) symptom centroids: entropy, norm autocorrelation, and moment spectrum values; (e) symptom
centroids: energy, entropy, and norm autocorrelation values; (f) symptom centroids: norm spectrum,
norm power spectrum, and moment power spectrum.
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Table 1 shows the centroid values of individual objects. Tables 2–7 show the calculated
distances between the centroids of the clusters in the three-dimensional feature space. The
present research solves the identification of symptoms, classification, and recognition of
clusters of aggregates of the laboratory horizontal drilling stand. The starting point of the
research was processing the accompanying vibration signal for the cluster analysis. The
differentiability of eight objects proves the appropriateness of the proposed symptoms.

The goal of this and future research will be oriented towards controlling the rock
drilling process and drilling equipment so that the mode of operation is economically
efficient and environmentally acceptable.

Table 1. Centroid values of individual objects.

Values Centroids of Aggregates
Symptoms Motor Pump Hydrogenerator Motor and Pump Motor and Hydrogenerator Pump and Hydrogenerator Drill Stand without a Bit Drill Stand with a Bit

s1 0.470 0.883 0.887 0.354 0.269 0.691 0.472 0.526
s2 0.889 0.017 0.019 0.722 0.814 0.005 0.736 0.556
s3 0.502 0.849 0.854 0.438 0.398 0.781 0.445 0.546
s4 0.717 0.120 0.204 0.624 0.632 0.140 0.580 0.582
s5 0.745 0.013 0.025 0.669 0.697 0.005 0.659 0.570
s6 0.835 0.012 0.022 0.746 0.782 0.006 0.743 0.634
s7 0.930 0.043 0.048 0.816 0.881 0.012 0.825 0.692
s8 0.889 0.017 0.019 0.723 0.814 0.005 0.736 0.556
s9 0.930 0.043 0.048 0.816 0.881 0.012 0.825 0.692
s10 0.889 0.017 0.019 0.723 0.814 0.005 0.736 0.556
s11 0.217 0.553 0.666 0.317 0.257 0.147 0.321 0.442
s12 0.825 0.393 0.411 0.634 0.687 0.236 0.659 0.504
s13 0.934 0.006 0.006 0.880 0.935 0.003 0.908 0.789
s14 0.930 0.045 0.050 0.814 0.885 0.013 0.837 0.698
s15 0.890 0.018 0.020 0.719 0.821 0.005 0.754 0.564
s16 0.742 0.192 0.203 0.511 0.634 0.056 0.548 0.363

Table 2. Distances between the centroids of the clusters in the three-dimensional feature space.

Distances between the Centroids of Symptoms s1, s2, s4
Aggregates Motor Pump Hydrogenerator Motor and Pump Motor and Hydrogenerator Pump and Hydrogenerator Drill Stand without a Bit Drill Stand with a Bit

motor 0.000
pump 1.135 0.000
hydrogenerator 1.093 0.084 0.000
motor and pump 0.224 1.016 0.978 0.000
motor and hydrogenerator 0.231 1.129 1.094 0.125 0.000
pump and hydrogenerator 1.079 0.194 0.207 0.929 1.037 0.000
drill stand without a bit 0.206 0.947 0.910 0.127 0.224 0.881 0.000
drill stand with a bit 0.364 0.794 0.749 0.244 0.368 0.725 0.188 0.000

Table 3. Distances between the centroids of the clusters in the three-dimensional feature space.

Distances between the Centroids of Symptoms s1, s6, s8
Aggregates Motor Pump Hydrogenerator Motor and Pump Motor and Hydrogenerator Pump and Hydrogenerator Drill Stand without a Bit Drill Stand with a Bit

motor 0.000
pump 1.269 0.000
hydrogenerator 1.262 0.011 0.000
motor and pump 0.222 1.148 1.142 0.000
motor and hydrogenerator 0.221 1.267 1.262 0.130 0.000
pump and hydrogenerator 1.234 0.193 0.197 1.086 1.199 0.000
drill stand without a bit 0.179 1.105 1.098 0.119 0.222 1.062 0.000
drill stand with a bit 0.394 0.897 0.890 0.265 0.394 0.852 0.217 0.000

Table 4. Distances between the centroids of the clusters in the three-dimensional feature space.

Distances between the Centroids of Symptoms s7, s9, s10
Aggregates Motor Pump Hydrogenerator Motor and Pump Motor and Hydrogenerator Pump and Hydrogenerator Drill Stand without a Bit Drill Stand with a Bit

motor 0.000
pump 1.528 0.000
hydrogenerator 1.521 0.008 0.000
motor and pump 0.232 1.301 1.294 0.000
motor and hydrogenerator 0.102 1.428 1.421 0.130 0.000
pump and hydrogenerator 1.571 0.045 0.053 1.344 1.471 0.000
drill stand without a bit 0.214 1.319 1.311 0.018 0.112 1.362 0.000
drill stand with a bit 0.474 1.064 1.056 0.242 0.372 1.108 0.260 0.000
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Table 5. Distances between the centroids of the clusters in the three-dimensional feature space.

Distances between the Centroids of Symptoms s11, s12, s13
Aggregates Motor Pump Hydrogenerator Motor and Pump Motor and Hydrogenerator Pump and Hydrogenerator Drill Stand without a Bit Drill Stand with a Bit

motor 0.000
pump 1.078 0.000
hydrogenerator 1.111 0.114 0.000
motor and pump 0.222 0.937 0.967 0.000
motor and hydrogenerator 0.144 1.019 1.052 0.097 0.000
pump and hydrogenerator 1.104 0.435 0.548 0.978 1.042 0.000
drill stand without a bit 0.197 0.969 0.997 0.038 0.075 1.014 0.000
drill stand with a bit 0.418 0.799 0.820 0.202 0.298 0.882 0.230 0.000

Table 6. Distances between the centroids of the clusters in the three-dimensional feature space.

Distances between the Centroids of Symptoms s8, s11, s12
Aggregates Motor Pump Hydrogenerator Motor and Pump Motor and Hydrogenerator Pump and Hydrogenerator Drill Stand without a Bit Drill Stand with a Bit

motor 0.000
pump 1.030 0.000
hydrogenerator 1.063 0.114 0.000
motor and pump 0.272 0.782 0.816 0.000
motor and hydrogenerator 0.162 0.900 0.936 0.122 0.000
pump and hydrogenerator 1.065 0.435 0.548 0.839 0.933 0.000
drill stand without a bit 0.249 0.801 0.833 0.028 0.105 0.863 0.000
drill stand with a bit 0.514 0.561 0.589 0.246 0.367 0.680 0.267 0.000

Table 7. Distances between the centroids of the clusters in the three-dimensional feature space.

Distances between the Centroids of Symptoms s14, s15, s16
Aggregates Motor Pump Hydrogenerator Motor and Pump Motor and Hydrogenerator Pump and Hydrogenerator Drill Stand without a Bit Drill Stand with a Bit

motor 0.000
pump 1.359 0.000
hydrogenerator 1.350 0.012 0.000
motor and pump 0.310 1.088 1.081 0.000
motor and hydrogenerator 0.136 1.244 1.235 0.175 0.000
pump and hydrogenerator 1.448 0.141 0.152 1.166 1.328 0.000
drill stand without a bit 0.255 1.139 1.131 0.056 0.119 1.218 0.000
drill stand with a bit 0.551 0.868 0.861 0.244 0.418 0.936 0.299 0.000

5. Conclusions

This paper follows previous research work in obtaining and processing raw materials
and processing the signals from the process of rotary disintegrating of rocks. The problem
of the proposal of symptoms and the classification of aggregates as objects of laboratory
drilling equipment was solved. Sixteen symptoms were investigated, designed, and
numerically calculated based on the vibration signal. The accompanying vibration signal
was measured as an integrating information source of their activity. Visualization in the
symptom and space plane made classifying the searched clusters of objects possible. The
created clusters of objects confirmed the classifiability based on the measured vibration
signal and its calculated symptoms. The results of scientific research present sufficient
differentiability of drilling equipment objects. Overall, the applied method offers great
potential in the search for additional symptoms by optimizing the symptom dimension.
Extraction of significant symptoms and exclusion of redundant ones will be important.
Representative results were demonstrated for symptoms such as s1, s2, s4, s5, s7, and s12.
Weakly satisfactory results were obtained for symptoms s3 and s13. The main contributions
of this scientific study are:

• A drill stand was presented as an object of research and related measurements;
• A cluster analysis method was proposed for the classification of drilling stand aggregates;
• Specific symptoms of the vibration signal in the time and frequency domain and the

creation of the symptom vector were designed and calculated;
• The effectiveness of the classification of aggregates based on centroids and their mutual

distances was analyzed;
• The creation of classifiable clusters of aggregates;
• Displaying clusters of aggregates in 2D and 3D graphs.

Searching for additional symptoms is possible in the cepstral and wavelet analysis of
signals. Promising research can be undertaken in the application of clustering using fuzzy sets.
This research aimed to identify a sufficient number of clusters from the point of view of the
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equipment’s effective mode during the aggregates’ operation. Under the effective mode, the
setting of optimal drilling parameters (i.e., revolutions and pressure force), wear of the drill
bit and aggregates, drilling speed, and energy consumption are understood. Experimental
measurements were performed in laboratory conditions, where the working environment
was controlled, from the technical condition of the equipment to the drilled rock. However,
various emergency conditions can occur in the industrial practice of geotechnical engineering.
Therefore, future research will be oriented towards experiments in real conditions. These will
provide information that is more reflective of real geoengineering applications.

Author Contributions: Conceptualization, P.F., R.F. and J.K.; Data curation, P.F. and R.F.; Formal
analysis, M.D. and M.L.; Methodology, P.F. and J.K.; Project administration, P.F.; Resources, M.D. and
M.L.; Supervision, M.D. and M.L.; Validation, M.D.; Writing—Original draft preparation, P.F., R.F.
and J.K.; Writing—review and editing J.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Cultural and educational grant agency of the Ministry of
Education, science, research and sport of the Slovak Republic under grant KEGA 010TUKE-4/2023
“Application of educational robots in the process of teaching the study program industrial logistics”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We appreciate the support from the Cultural and educational grant agency of
the Ministry of Education, science, research and sport of the Slovak Republic under grant KEGA
010TUKE-4/2023 “Application of educational robots in the process of teaching the study program
industrial logistics”.

Conflicts of Interest: The authors declare no conflict of interest.

References
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9. Krepelka, F.; Chlebová, Z.; Ivaničová, L. Measurement, analyzes and evaluation of stochastic processes operating in rock drilling.

Acta Mech. Slovak. 2008, 12, 229–236.
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