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Abstract: This paper investigates the kinematics and dynamics of multi-rigid-body systems in screw
form. The Newton—Euler dynamics equations are established in screw coordinates. All forces and
torques of the multi-rigid-body system can be solved straightforwardly since they are explicit in the
form of screw coordinates. The displacement and acceleration are unified in matrix form, which
associates the kinematics and dynamics with variable of velocity. A one-step numerical algorithm
only is needed to solve the displacements and accelerations. As a result, all absolute displacements,
velocities, and accelerations are directly obtained by one kinematic equation. The kinematics and
dynamics of Gough-Stewart platform validate this the method. In this paper, the kinematics and
dynamics are carried out with the example of a Gough-Stewart platform, which represents the most
complex multi-rigid-body system, to verify the computational dynamics method. The proposed
algorithm is also fit for the kinematics and dynamics modeling of other multi-rigid-body systems.

Keywords: multi-rigid-body system; screw coordinate; kinematics; dynamics

1. Introduction

It is well known that a multi-rigid-body system is normally a complex system with
many links and joints and is fundamental for mechanism research in robotics, space-
craft, and bionic areas. Studies of multi-rigid-body systems can neglect the flexibility
of the bodies and focus on the kinematic and dynamic performance of the mechanisms.
Extensive research has proposed a series of theoretical models of multi-rigid-body systems.
Parallel mechanisms are common multi-rigid-body systems with high loading ability, good
dynamic response, and precise motion. The Gough-Stewart platform as a common parallel
mechanism is proposed as a flight simulator by Gough and Stewart [1-3], which has high
flexibility. Therefore, the study of the kinematics and dynamics of the Gough-Stewart
platform is vital research topics for its application.

Dynamics analysis has theoretical and practical significance for realizing robot control,
stability in motion, and optimization in structure. Scholars presented some dynamics
methods for parallel mechanisms. The widely-used methods for multi-rigid-body system
dynamics mainly include Lagrange equation [4,5], Newton-Euler equation [6], virtual work
principle equation [7,8], Kane equation [9], and Gibbs—-Appell equation [10]. The Newton-
Euler dynamics equation for the Gough-Stewart platform, which is based on the vector
method and proposed by Dasgupta, is a classic algorithm in dynamics modeling [11,12].
Newton-Euler equations can express the rotational and translational motion of a rigid
body in the absolute coordinate system. Through a single equation with six components
in the form of column vectors and matrix, the forces and moments acting on the rigid
body and the motion of the center of mass of a rigid body can be combined [13-15].
Gallardo-Alvarado [16,17] proposed dynamics analysis of parallel mechanisms by screw
coordinates and the principle of virtual work. The analysis of a multi-rigid-body system is
usually solved through analytical methods in classical mechanics and vector equations [18-21].
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The displacement, velocity, and acceleration obtained in kinematics are essential
information for dynamics modeling. To describe the kinematics of a mechanism, the
translational and rotational motions should be expressed with a suitable mathematical
framework in a relatively general way [22,23]. Meanwhile, there are also several finite
solutions corresponding to different configurations of a multi-rigid-body system [24-26].
The kinematics modeling of a multi-rigid-body system can be simplified by resorting
to screw coordinates. Many researchers have utilized screw coordinates in kinematics
analysis [27,28] of parallel mechanisms.

This paper focuses on the kinematics and dynamics of a multi-rigid-body system by
the Newton—Euler method in screw coordinate. From kinematics analysis, the absolute
displacement, velocity, and acceleration of each joint and link can be derived in the absolute
coordinate frame, which can be applied directly in dynamics. This method would be much
clearer and more straightforward not only for the inverse dynamics problem but also for
the derivation of closed-form dynamics formulae.

2. Kinematics of a Multi-Rigid-Body System

This section presents the method for establishing the kinematics of a multi-rigid-body
system based on screw coordinates. Velocity screw is defined to unify the angular velocity and
linear velocity of a joint. With the velocity screw equation, the relative velocity of each joint can
be obtained. Then, both displacement and acceleration are calculated by a one-step numerical
method. Based on the linear superposition principle, the absolute displacement, velocity, and
acceleration of each joint can be derived uniformly in screw coordinates.

2.1. Relative Displacement, Velocity and Acceleration of Each Joint

In Figure 1a, for a multi-rigid-body system, there are p kinematic chains each of which
has 7 joints. In the multi-rigid-body system, L represents a link, j represents a joint and
loop represents a kinematic chain. As shown in Figure 1b, suppose L;_1 and L;_, are two
rigid bodies in a serial kinematic chain which are connected by joint j;_.
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(a)
Figure 1. A multi-rigid-body system: (a) multi-rigid-body system; (b) a serial kinematic chain.

The dual 3-dimensional vectors, wa and Ovij , can fully determine the motion of link Lf .
Its velocity screw vector can be defined as

14
w
v =[] ®
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where wa is the relative angular velocity vector of joint ]f with respect to the grounded
link 0, va is the relative linear velocity of a point on the link Lf with its extended body that
is passing through the origin of the absolute coordinate frame at this instant.

The 3-dimensional vector va can be expressed by va = Or’f X wa where Or’f is the
position vector of joint ]f with respect to the origin of the grounded coordinate frame.

Suppose ||e]|| = 1, Equation (1) can be rewritten as
P [ ef
Vi = w 2
0¥1 01 [0’{ % ei’:| ( )

where ef is the direction vector of joint ]f in the absolute coordinate frame, and wa is the
relative angular speed of joint ]f in the absolute coordinate frame. Let

p
$ = [ pl 4 ©)

o X €

where $f is the unit screw of joint ]f .
Substituting Equation (3) into Equation (2) yields

oV} = gwl$] (4)

For a kinematic chain loop(p) shown in Figure 1a, based on the linear combination,
the kinematics of the end joint ]f can be expressed as:
p_ p p p p p
0%“n = 0%} + 142 + 23 RE n-2¥n-1 + n1n )
0¥n = 0¥1 T 10 T 203 0 F 20ty qn

In accordance with Equation (2), the forward kinematics of a single kinematic chain
can be rewritten as:
n
P _ (A
Vi =) iViyy = S'wl ©6)
i=0
where

st =1[¢ $5 - 8] (7)

which represents the unit screw matrix of the single kinematic chain loop(p) and
T
Wl = [w] qw) o, o] ®)

where n_lwg is the relative angular speed of the link L} with respect to the link LZ_l
connecting joint ij’il.

With the definition of the twist matrix and Equation (6), the velocity screw equation of
a multi-rigid-body system would be obtained,

Sw=V )

where

S = diag[s' §*> ... V] (10)

6px6p

in which S” is the unit screw matrix of the single kinematic chain loop(p), and diag[ ]is a
diagonal matrix of sl §2 ... sP.
And

w:[(wl)T (WZ)T (wp)T} (11)
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in which w? is the vector of relative angular speeds of all joints in the single kinematic
chain loop(p), and

T

v=lew” " e @), 12

in which ,V}, is the vector of the absolute velocity screw of the nth joint in the single
kinematic chain loop(p). Equation (10) is the screw matrix of the multi-rigid-body system.
Equation (11) is a velocity vector composed of the relative angular speeds of each general-
ized joint with respect to its previous link. Equation (12) is the velocity vector of each end
joint in the absolute coordinate frame.

With Equation (6), when the kinematics of the terminal link j, is specified, its inverse
kinematics of the multi-rigid-body system can be derived,

STSw = 8TV (13)

When ‘STS‘ = 0, the multi-rigid-body system is either redundantly actuated or in singular-
ity configuration. Otherwise, we gain the angular speeds of all joints from Equation (13):

w = [STS} sty (14)

-1
where {STS} ST is called the pseudo inverse of screw matrix S. Equation (14) represents

the inverse velocity of the multi-rigid-body system. Based on Equation (14), we get the

steps to calculate the inverse kinematics of a multi-rigid-body system below:

1. With the initial condition consisting of position angles , ,0}(t = 0) and structure
parameters R, 7, and I};, the unit screw matrix $(0) of the multi-rigid-body system at
time ¢ = 0 can be gained first.

2. Substituting $(0) into Equation (14) and with the twist matrix $}, of the end joint j}
in Equation (7) being known, the relative angular velocity of each joint w(0) at time
t = 0 can be derived.

3. With the initial conditions consisting of position and velocity, the parameters of $}, (k)
from Equation (10) and w(k) from Equation (14) could be updated by steps 1 and 2
where t = 0 is replaced by t = kAt:

1100 (kH1)A) = 100 (kAt) + Atw(k) (15)

where k=1,2,---.

With the unit screw matrix S(k), the position vector, Orz, and orientation vector, e}, of
each joint can be deduced from Equation (14).

2.2. Absolute Displacement, Velocity, and Acceleration of Each Joint

Due to the linear superposition principle, the absolute velocity of the nth joint at the
absolute coordinate frame is expressed by

n
oValk+1) =3 ;i 1Vi(k+1) (16)
i=1
o’
Suppose (D, = [0 d?] , in which (D, is the absolute displacement vector of each
0%n

joint that consists of absolute angular displacement ,0,, and absolute linear displacement

] , in which ,A,, is the absolute acceleration vector of each joint

od,,. Suppose (A, = {gg "

n
that consists of absolute angular acceleration (8, and absolute linear acceleration ya,,.
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The absolute displacement and acceleration of each joint at the absolute coordinate frame
can be expressed by the simplest one-step numerical algorithm,

{ BRI A M 7
oA (k1) = 2DV,

The absolute velocity screw matrix )V, the absolute displacement vector ,D,;, and the
absolute acceleration vector A, can be obtained by calculating the angular displacement

100 (t = 0) with Equation (15). The results can be applied to the kinematics analysis of
any point on a single-rigid-body.

2.3. Absolute Displacement, Velocity and Acceleration of Each Rigid-Body

Suppose there is a point P on the rigid-body L}, and the velocity of the point P on the
rigid-body L} is hence represented as

p
0¥ = 0¥y T oWy X ofp (18)

where (7, indicates the position vector of the point P in the absolute ground coordinate
frame 0.
For a kinematic chain loop(p) shown in Figure 1b, the absolute angular and linear
velocities of the point P on the rigid-body L}, can be expressed as:
0wy = @] @5 +owh o Wy, g wh (19)
0¥ = 0] 195 0% 1 g0y g oWy X oTp

Consequently, the velocity of a point P on the rigid-body L}, is expressed in the screw
coordinates below

0
VP:V—i—[ } 20
o¥n 0Vn o“’gxo”p ( )

The absolute acceleration vector of point P on the rigid-body L can be derived in a
similar one-step numerical algorithm in Equation (17):

P L P P
oDy (k+1) = ,21 n_1Dn (k) + At 1V, (k)
l:
" P o (21)
oAb (k1) = 3 et nl e Bl
i—1

The absolute acceleration of a point on the rigid-body in the absolute ground coor-
dinate frame 0 can be directly used in the Newton-Euler dynamics of a multi-rigid-body
system. The procedures of the above calculation are illustrated in Figure 2.
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Figure 2. The procedure for the kinematics on multi-rigid-body system.

3. Dynamics of a Multi-Rigid-Body System

The dynamics of a rigid body was described by the Newton-Euler equations in
classical mechanics. Euler’s two laws of motion for a rigid body are grouped together into a
single equation by the Newton-Euler equation. When the external loads, constraint forces,
and self-weights of all bodies are taken into account in the calculation of wrenches, the
balance conditions for a single-rigid-body will be

T\ _{Jn O |[|B]  |wx]ww

L—"} N [0 mnl] [a + Mpg (22)
where T = T" — T""! is the resultant torque of a single-rigid-body, in which T" is the
constraint torque vector at joint j,, F = F* — F*~! is the resultant force of a single-rigid-
body, in which F” is the constraint force vector at joint j,, I is an identity matrix of 3 x 3, m;,
is the mass of a single-rigid-body, a is the absolute linear acceleration at the mass center, g is

the absolute angular acceleration, and w is the absolute angular velocity. Figure 3 demonstrates
the Newton-Euler parameters of two adjacent bodies in a multi-rigid-body system.

Jo = RouJ RS, (23)

where ] is the matrix of mass moment of inertia of a single-rigid-body at its mass center in
the absolute coordinate frame (coordinate frame 0), J,, is the matrix of mass moment of inertia
of a single-rigid-body at its principal coordinate frame of the mass center (coordinate frame ),
and Ry, is the rotation matrix from the coordinate frame 7 to the coordinate frame 0.

The Newton-Euler equations of dynamics of the multi-rigid-body system can be

therefore be written as:
CW5 = MAM + W€ + WE (24)

E - E]

rigid-body system including all constraint forces and constraint torques, W€ is the Coriolis
wrench matrix of the multi-rigid-body system, WF is the external wrench matrix exerted
at the multi-rigid-body system which also includes the gravity, C is the displacement
matrix, M is the mass matrix, and AM is the acceleration matrix composed by the absolute
accelerations of the mass centers in the multi-rigid-body system.

where W° = is the constraint wrench matrix of a multi-
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Figure 3. Newton-Euler parameters.

When the number of constraint wrenches equals the number of equations in Equation (24),
the supporting wrench can be calculated by

WS — (ccT) ! (MAM T WE 4 WE) (25)

4. Kinematics and Dynamics of the Gough—Stewart Platform

In this section, an application of the above method will be presented in the example of
the Gough-Stewart platform. As shown in Figure 4, the Gough-Stewart platform consists
of six kinematic chains, which are composed of a spherical joint, a prismatic joint and
a universal joint. To simplify the expression of the kinematic chains, the spherical joint,
prismatic joint, and universal joint are presented by the capital of the first letter of the
joint name: S, P, and U, respectively. The prismatic joint P is the actuated joint in the
multi-rigid-body system. The Gough—Stewart platform has a fixed base and a moving
manipulator connected by six extendable legs through universal joints at both ends.

(b)

Figure 4. Kinematics analysis of the Gough-Stewart platform: (a) kinematics of the Gough-Stewart

platform; (b) initial condition of the first kinematic chain.
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4.1. Kinematics Analysis of the Gough—Stewart Platform
This section gives the inverse kinematics analysis of the Gough-Stewart platform.
As shown in Figure 4, the inverse kinematics of the Gough-Stewart platform can be

expressed as:
Sw = V¢ (26)

where § = diag[s! §* §° s* §° s°] in which ¥ = [¢V $b ¢f sF ¢f sf],

p p p p
p_ | @ p_ | @& P_| & p_ |0 _| &
and $; = , 9 = ;955 = ;b = , 95 = ,
51 L)rpA X elp] % [Orﬁ X ep} & Lri x el 54 e} 5 ofe % ek
p
e T
) = { ,56 p}, p = 12,6 w = [0 « & w' & «° and where
ofc X e
1 [ 1 1 1 1 1 nT
wh = [pwy qw; w3 Vi 45 5wl
To get the unit screws in Equation (26), the rotation matrix is applied to express e}, )
of each joint in the local coordinate frame, p represents the pth chain, and n represents the

nth joint in a chain.

en =R} (HH2R§>3£(O) {(” =12-.-,6) (27)

=12,---,6
= R (o (0) + RERERE, ) L )
where R; is the rotation matrix around z axis, which can be expressed as: RZ =R (%(p—1)).

R’ is the rotation matrix from link L, to link L,_;, when it rotates around x-axis,
R = R, (n719f; ), when it rotates around y-axis, Rh = Ry (nfl(%’l] ), and when it rotates

around z-axis, R} = R, (n719ﬁ> . The initial condition parameters are illustrated in Table 1,
and I3,3) is an identity matrix of 3 x 3.

Table 1. Initial conditions and rotation matrix of Gough-Stewart platform.

Initial

e}(0) ¢}(0) ¢}(0) el(0) eh(0)

posture

1o o o o 1" 0 o o 1o o 0 1 0o

Initial

74(0) r5(0) rc(0)

position

R o o o o 1" o o 21]"

Homogeneous

p p p p p
R} R} R} R R/

transformation
matrix

Ty (o6} T.(16) ! T (:6%) T (46)

After knowing the velocity screw of the moving platform at its mass center in the
absolute coordinate frame, the relative angular velocity of each chain L?, (p =1,2---6)
can be derived based on Equation (14):

-1
w = [STS} SV (28)
where Vz, (p=1,2---6) is the velocity screw of joint jc, which can be expressed as:

Ve =Vp— VP, (29)
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where Vp is the velocity screw of the reference point P on the moving platform, and it is given
for the inverse kinematics. CVf,, (p=1,2---6) is the relative kinematics screw from joint
jg, (p=1,2---6) to the reference point P on the moving platform. It can be expressed as:

0
Vb = [ } (30)
TP Lgwe % orp
where Owg, (p =1,2---6) is the absolute angular velocity of the moving platform, and

Or’;, (p=1,2---6) is the absolute position vector of the reference point P on the mov-
ing platform.

4.2. Dynamics Analysis of the Gough—Stewart Platform
a.  Inverse dynamics equations for the fixed leg LZB, (p=12---6)

The fixed leg LZ g (P =1,2---6) consists of one spherical joint and one prismatic joint,
which is shown in Figure 5b. At spherical joint j,, (p = 1,2 - - 6), there are three forces

F 4 without torque. At prismatic joint jg, (p=1,2---6), there are three forces Fp and three
torques Tp. The dynamics equations for the fixed leg LZ g (p=1,2---6) can be derived:

(31)

ATD XFA—DTB x Fgp —Tpg o
F,—Fp -

Jp 0 H,BD] n [WD X Jpwp

ng

0 mDI ap

Figure 5. Dynamic analysis of the Gough-Stewart platform: (a) dynamics of the first kinematic chain;
(b) dynamics of the fixed leg LZB, (p=1,2---6); (c) dynamics of the moving leg Lgc, (p=12---6).

b.  Inverse dynamics equations for the moving leg Lg o(p=12---6)

The moving leg Lgc, (p=1,2---6) consists of one universal joint and one prismatic
joint which is shown in Figure 5c. At universal joint ]g, (p=1,2---6), there are three forces
F¢ and one torque T¢, the direction of the torque T¢ at joint ]g, (p=1,2---6) is along the
leg. At prismatic joint jg, (p =1,2---6), there are three forces Fp and three torques Tg.
The dynamics equations for the fixed leg LZC, (p =1,2---6) can be expressed by

pfe X Fp —pte xFc+Tg—Tc| _ |Jg 0 | |BE n wg X Jpwg (32)
FB—FC 0 mEI ar MEgg
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c.  Inverse dynamics equations for the moving platform Lp

The moving platform Lp consists of six universal joints ]g, (p=1,2---6), which are
shown in Figure 5c. At the universal joint ]g, (p=1,2---6), there are three forces Fc and
one torque T¢. Suppose that there is an external force system (if any) acting on the moving
platform, which consists of a force Fp and a torque Tp in the absolute coordinate frame.
The dynamics equations for the moving platform Lp are expressed by

6 6
) Fc)+ Y T
L lore XG c)+ X Te ) [,P 0 H,;P%[W Ipwp] +[11:ﬂ 33)

0 T}’lpl ap mpg

d.  Inverse dynamics equations for Gough—Stewart platform

Suppose,
WS =[F4a Fg Fc Ty T(] (34)
where Fy = [F, F, --- F] T, in which F, is the supporting force at joint j},, and F},
can be expressed by a 3-dimensional vector, and Ty = [T, T3 - T§] T, in which T} is
the supporting torque at joint j3, and T} can be expressed by a 3-dimensional vector.
Suppose,
ATD —pTB 01sx18)  —Tasxis)  O(isxe)
Tasxis)  —Iasxis)  Ousxis)  Ousxis) 0(18x6)
c — |Oasxis) BTE —gfc Lagx18)  —alc(isxe) (35)
Osx1s)  Iasxis)  —Iasxis)  Osxis) 0(18x6)
03x18)  O(3x18) —plc 0i3x18)  —ACc(3xe)
[03x18)  Opx1s)  —Iaxis)  O@xis) 0Gxe)
where I, is an identity matrix of n X =7, I3x18) =
Ii3x3) Iax3) Iixa) Iax3) Iixs) Ix3)),and 0(y1xm) is a zero-matrix. In Equation (30),
. 0 —r: 1y .
r=| 14 0  —ry| and ris a skew matrix which consists of the position vector of joint
—ry  Tx 0
jh,(p=1,2---6),(n=1,2---6) in the absolute coordinate frame.
Suppose,
AM—[Ap Ap Ap]T (36)
1\T o\T 6T T, : 1 ﬁlD 1
where Ap = [(AD) (AD) - (AD) } , in which Ap = [ullj , and Apis the abso-
lute acceleration of the mass center D at the fixed leg LY, ; in the absolute coordinate frame.
Suppose,
M= diﬂg[MD ME Mp] (37)
J5 0 1 . - 1 .
where MY, = [ 5 il J , and My, is the mass matrix consisting of ], the matrix of mass
D
moment of inertia of the fixed leg L}a 5, and mass m}j which contains mass of the fixed leg L% B
Suppose,
T
INT o\ T 7 . . 1 [wh x Thwh 1
where Wp = {(WD> (WD) e (W%) } , in which W, = m}Jg ,and Wy,

is a matrix consisting of the inertial torque resulting from Coriolis forces and the force of gravity.
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Suppose,

%

_ [}—:ﬂ _ |:7'P1>:<PFP] _ {ODP(‘II::I?) X FP} (39)

where WE is the external force vector (if any) acting on the moving platform and is available
as a force Fp and a torque Tp in the local coordinate frame of reference, and (\Dp(4 : 6)
represents the columns from 4 to 6 of matrix (Dp.

Substituting Equations (34)—(39) into Equation (24), the dynamics equation of Gough—
Stewart platform can be derived as:

CW’ = MAM + W€ + Wt (40)

When the number of constraint wrenches in Gough—Stewart platform is 78, and the
sum of Equations (31)—(33) are 78, the wrenches can be calculated by Equation (40),

WS = (CCT)A (MAM +WE 4 WE) 41)

5. Numerical Experiment and Discussion

In this section, a prescribed trajectory is used to evaluate the inverse kinematics
and dynamics of the Gough-Stewart platform. It has 6 degrees of freedom, including
3 translations and 3 rotations. Suppose that the moving platform follows a spiral trajectory.
Here, the parametric equations of the path in displacement, velocity, and acceleration in
the absolute coordinate frame are listed in Table A1l. With the initial spiral trajectory of
the moving platform in Figure 6, the inverse kinematics solutions of the Gough-Stewart
platform can be applied directly to the dynamics.

-0.05 -0.2

Figure 6. Kinematics analysis of the Gough-Stewart platform.

5.1. Inverse Kinematics Simulation for Gough—Stewart Platform

When the velocity screw of the reference point P on the moving platform is specified
in Appendix A Table Al, and the initial conditions of the Gough-Stewart platform are
also provided in Tables A2 and A3, the inverse velocity and the inverse displacement
(through one-step numerical integration) and acceleration (through one-step numerical
differentiation) of the Gough-Stewart platform could be programmed in accordance with
the algorithms deduced in Section 3. With the discrete conditions in Table 2 for the
numerical calculations, the kinematics parameters can be output by programming in
MATLAB. In Figures 7-11, the kinematics of each kinematic chain for the Gough-Stewart
platform are all plotted.
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e
o n

|
e
n

Angular displacement (rad)

Angular velocity (rad/s)

Table 2. Discrete conditions for numerical algorithm.

Initial Condition Parameters Value
Total time of the path t(s) 10
Interval of iteration At 0.001
Steps of iteration k 10,000

Figure 7 illustrates the relative displacements of all joints. Figure 7a shows the angular
displacements of all rotational joints, and Figure 7b represents the angular displacement of all
prismatic joints. They are all solved by Equation (15) with the one-step numerical algorithm.

0.5

Linear displacement (m)
(=3
(o)

Figure 7. Relative displacements of the joints in each link: (a) relative angular displacements; (b) relative
linear displacements.

Figure 8 illustrates the relative velocities of all joints. Figure 8a shows the angular
velocities of rotational joints, and Figure 8b shows the angular velocities of prismatic joints.
They are all represented by Equation (14) with the one-step numerical algorithm.

Figure 8. Relative velocities of each joint in each link: (a) relative angular velocities; (b) relative
linear velocities.

Figure 9 illustrates the absolute angular velocities of all legs. Figure 9a shows the
absolute angular velocities of the fixed legs LZB, (p=1,2---6), and Figure 9b shows the
absolute angular velocities of the moving legs Lgc, (p=12---6).

Figure 10 illustrates the absolute accelerations of the fixed legs LZ g(p=12---6)at
their individual mass centers. Figure 10a shows the absolute linear accelerations of point D
on the fixed legs while Figure 10b illustrates the absolute angular accelerations.

Figure 11 illustrates the absolute accelerations of the moving legs LZC, (p=1,2---6)
at their individual mass centers. Figure 11a shows the absolute linear accelerations of the
mass centers of the moving legs, and Figure 11b shows the absolute angular accelerations
of the moving legs.
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Absolute angular velocity (rad/s)
Absolute angular velocity (rad/s)

(b)

Figure 9. Absolute angular velocities of all legs: (a) absolute angular velocities of the fixed legs
LZB, (p=1,2---6); (b) absolute angular velocities of the moving legs Lgc, (p=12---6).
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(a) (b)

Figure 10. Absolute accelerations of the fixed legs Li g (p =1,2---6) at their individual mass centers:
(a) absolute linear accelerations of the mass centers of the fixed legs; (b) absolute angular accelerations

of the fixed legs.

o
o

0.1

Linear acceleration (m/sz)

(b)

Figure 11. Absolute accelerations of the moving legs Lgc, (p=1,2---6) at their respective mass

centers: (a) absolute linear accelerations of the mass centers of the moving legs; (b) absolute angular
accelerations of the moving legs.

5.2. Inverse Dynamics Simulation for Gough—Stewart Platform

Suppose that the external force exerted on the moving platform at its center point
PisFp = [0 0 10](N), and the torque is Mp = [10 0 0](Nm). With the structure
variables, the mass and the mass moment of inertia of each leg of the Gough—Stewart
platform listed in Table A4 and the external force and torque applied on the moving platform,
the forces and torques of the driving forces Ff, (p = 1,2, - - - ,6) can be gained (Figure 12) from
the dynamics Equation (41). In order to verify this method, we compare the output calculated
by vector method and our method. In Figure 12, Method A illustrates the method this paper
proposed and Method B presents the method proposed by Dasgupta [11,12].
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Figure 12. Resultant driving force of each prismatic joint jg, (p=12,---,6).

Figure 12 shows that the resultant driving forces at prismatic joint jg, (p=12---,6)
of the six kinematic chains. In addition, the component forces along the three coordinate
frames can be derived from the direction of each chain, and the curves indicate that the
driving forces are changing as the moving platform changes.

6. Conclusions

This paper provides a programmable method to solve the kinematics and dynamics
of multi-rigid-body systems in screw coordinate. With this method, both displacement
and acceleration are uniformly expressed in the matrix form of velocity, and as a result, a
one-step numerical algorithm is sufficient to solve them for establishing the dynamics of a
multi-rigid-body system. All constraint and driving forces and torques of the multi-rigid-
body system can therefore be resolved straightforwardly in the form of screw coordinate.
The kinematics and dynamics of the Gough-Stewart platform validate this method which
is also suited to analyze a series of multi-rigid-body systems.
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Nomenclature

Notation Description

0y Linear acceleration of joint j,, with respect to jj

oAy Acceleration of joint j, with respect to jy

AM Absolute acceleration matrix of a multi-rigid-body system
c Displacement coefficient matrix

o Linear displacement of joint j, with respect to jy

oDn Displacement of joint j, with respect to jy

e Posture vector of joint j, in the absolute coordinate frame
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F, Force vector at joint j,

I Identity matrix of 3 x 3

ofn Position vector of joint j, in the absolute coordinate frame

ih The nth joint in the pth kinematic chain

To Matrix of mass moment of inertia of a single-rigid-body
in the absolute coordinate frame

T, Matrix of mass moment of inertia of a single-rigid-body
at its principal coordinate frame of the mass center

k Steps of iteration

14 Length of the nth link in the pth kinematic chain
Lh The nth link in the pth kinematic chain
my,  Mass of a single-rigid-body

M Mass matrix

n Number of joints in a kinematic chain

p Number of kinematic chains

Ry, Rotation matrix from coordinate frame 7 to coordinate frame 0.
S Screw matrix of a multi-rigid-body system

$, Unit screw matrix of joint j,

t Total time of the path

At Interval of iteration

Ty Torque vector at joint jj,

oVn  Linear velocity of joint j,, with respect to jg

oV,  Velocity of joint j, with respect to jo

W5 Constraint wrench matrix of the multi-rigid-body system

WC  Coriolis wrench matrix of the multi-rigid-body system

WE  External wrench matrix exerted on the multi-rigid-body system
ow,  Angular velocity of joint j,; with respect to jg

oBn  Angular acceleration of joint j, with respect to jo

00,  Angular displacement of joint j, with respect to jy

Appendix A

Table A1l. Spiral trajectory of the moving platform.

Absolute Displacement Vector Absolute Velocity Vector Absolute Acceleration Vector
0 —0.1cos(t) +0.1 0.1sin(#) 0.1 cos(t)
0 0 0 0
0 0 0 0
oPe=10 %01 cos(t) — 0.1 oVe= | _o1 sin(#) oAe = | o1 cos(t)
0 —0.05sin(t) —0.05 cos(t) 0.05sin(t)
@ 0.1cos(t) — 0.1 —0.1sin(t) —0.1cos(t)
Table A2. Initial position of each leg in absolute coordinate frame.
Leg (m) Platform (m) Initial Position of Mass Center
L 0.05 rl [é 0 ﬁ]
P _ 0.02 do . 8 8
Lyc ¢ =005 {Ir{} = {0‘05} rh ¢ =Ra((p—1)30°) 1 V3 (p=12-6)
i Lo , 0
P 0 0 01

Table A3. Initial relative displacement of each joint in local coordinate frame.

09{7(0) (rad) 105(0) (rad) 26§(0)(rad)
{06} ={-% {,65} = {0} {,65} = {0}
3} (0)(m) 405(0)(rad) 505 (0)(rad)

{3d} } = {0.05} {465} = {0} {001} ={-5}
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Table A4. Mass and the moments of inertia at mass center and moving platform in local coordinate

frame.
Mass (kg) Moments of Inertia (kg-m?)
T T
r _ P P Py_ P (P — o
mh=3,(p=1,2---6) Vi, = my <rdo)T T, =14, (’d0>T }(P 1,2---6)
P _ —

me =1,(p=12---6) ]fo =mb (rgo) rfOI—rgo (rf[J) ,(p=12---6)
mp = 10

Jp, = mp| (rp,) "rp, L —rp, (rp,)"
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